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Abstract

In this paper, we describe a supervised
approach for extracting relations from
Wikipedia. In particular, we exploit a
self-training strategy for enriching a small
number of manually labeled triples with
new self-labeled examples. We integrate
the supervised stage in WikiOIE, an ex-
isting framework for unsupervised extrac-
tion of relations from Wikipedia. We rely
on WikiOIE and its unsupervised pipeline
for extracting the initial set of unlabelled
triples. An evaluation involving dif-
ferent algorithms and parameters proves
that self-training helps to improve perfor-
mance. Finally, we provide a dataset of
about three million triples extracted from
the Italian version of Wikipedia and per-
form a preliminary evaluation conducted
on a sample dataset, obtaining promising
results.

1 Introduction

The goal of an Open Information Extraction (Open
IE) system is to extract relations occurring within
a text written in natural language. Each relation
is structured in the form of a triple that is com-
posed by three elements i.e. {(arg1; rel; arg2)}.
More specifically, given a relation, arg1 and arg2
can be nouns or phrases, while rel is a phrase
that denotes the semantic relation between them.
Open IE finds its application in several NLP tasks
like Question Answering, Knowledge Graph Ac-
quisition, Knowledge Graph Completion, and Text
Summarization. For this reason, Open IE is gain-
ing ever-growing attention as a research topic.
Given the nature of the task, approaches for Open
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IE are deeply intertwined with the language of
the corpora that have to be analyzed. Due to the
availability of English corpora, the majority of
the state-of-the-art works are specific for that lan-
guage. For what concerns the Italian language, the
model proposed by Guarasci et al. (2020) relies
on verbal behavior patterns based upon Lexicon-
Grammar features. In a previous work, we pro-
posed WikiOIE (Cassotti et al., 2021), a frame-
work in which Open IE methods for the Italian lan-
guage can be easily developed with the aim of en-
couraging researchers to conduct further work also
for under-represented languages. The first solu-
tions developed in WikiOIE are unsupervised, re-
lying merely on PoS tags patterns and dependency
relations. In Cassotti et al. (2021) the triples ex-
tracted by WikiOIE underwent a deep error analy-
sis. The error analysis reveals syntactic errors such
as missing subject or incomplete object informa-
tion and semantic errors such as generic subject
or relation. In this work, we propose a supervised
approach to automatically filter out non-relevant
triples provided by WikiOIE and a self-training
strategy. Self-training (Yarowsky, 1995) works it-
eratively: a classification model is trained on la-
beled data, the trained model is used to classify
unlabeled data i.e. pseudo-labels, the classifica-
tion model is retrained on labeled data and high-
confident pseudo-labels. Specifically, we manu-
ally annotate a small number of triples extracted
by WikiOIE. Afterward, the annotated triples are
augmented using self-training. Finally, the set of
triples obtained through self-training at the previ-
ous step is exploited to train a supervised model.
The paper is structured as follows: after a brief in-
troduction of state-of-the-art methods for Open IE,
Section 3 provides details about the self-training
and the supervised model behind our methodol-
ogy. Section 4 reports the results of the evaluation,
while Section 5 closes the paper.



2 Related Work

At first, the IE task was performed by extracting
from the text relations that were defined a-priori.
However, the increasing amount of corpora avail-
able nowadays makes this process unfeasible, thus
creating the urge to propose novel solutions to
tackle this problem.

The Open IE task was defined in 2008 by Et-
zioni et al. (2008). The three most important el-
ements characterizing this task are the following:
it is domain independent, meaning that the text re-
lations must be extracted from, can be related to
any topic, the extraction must be unsupervised, ap-
proaches to solve this task must take into account
the amount of data available and must be scalable.

Along with the definition of a new task, the au-
thors proposed a model called TextRunner. It ap-
plies an approach that is composed of three main
modules. The first one is a learner that exploits
a parser to label the training data as trustworthy
or not and then uses the extracted information to
train a Naive Bayes classifier. Next, the extractor
uses POS-tag features to obtain a set of candidate
tuples from the corpus, and only those labeled as
trustworthy are kept. Finally, a module denomi-
nated assessor assigns a probability score to the
tuples extracted at the previous step based on the
number of occurrences in the corpus.

The learning-based approach used in TextRun-
ner has also been applied by several other sys-
tems like WOE (Wu and Weld, 2010), OLLIE
(Mausam et al., 2012), and ReNoun (Yahya et al.,
2014). In particular, WOE exploits Wikipedia-
based bootstrapping: the system extracts the sen-
tences matching the attribute-value pairs available
within the info-boxes of Wikipedia articles. This
data is then used to build two versions of the sys-
tem: the first one based on PoS-tags, regular ex-
pressions, and other shallow features of the sen-
tence, the latter based on features of dependency-
parse trees, thus obtaining better results than the
other one but with a lack of performance in terms
of speed.

In recent works, OIE has been treated as a
sequence labeling task. In this setting, models
are trained to extract triple elements, i.e., subject,
predicate, and object using a modified BIO tag
schema (Ratinov and Roth, 2009) that involves
particular prefixes to represent the triple elements,
i.e., A0, P, and A1. Hohenecker et al. (2020) pro-
vide an evaluation of different training strategies

and different neural network architectures such
as bidirectional Long short-term Memory (BiL-
STM), Convolutional Neural Networks (CNNs),
and Transformers improving the state-of-the-art
on the OIE16 benchmark (Stanovsky and Dagan,
2016) which focuses on the English language.

3 Methodology

In this section, we describe our supervised ap-
proach based on self-training integrated into the
information extraction system called WikiOIE1.
Before discussing details about the supervised ap-
proach, it is necessary to recap how WikiOIE
works. The input of the pipeline is represented by
the textual format of the Wikipedia dump obtained
through the WikiExtractor tool2 (Attardi, 2015).
The text is extracted from the Wikipedia dump
and processed using the UDPipe tool (Straka and
Straková, 2017). For this task, we use version 1
of UDPipe with version 2.5 of the ISDT-Italian
model. We opt for UDPipe, since it is trained us-
ing Universal Dependencies data for over 100 lan-
guages. In this way, our system can be potentially
used on different Wikipedia dumps of several lan-
guages. WikiOIE directly calls the REST API pro-
vided by UDPipe so that it is easy to change the
endpoint and the model/language. Another advan-
tage of using Universal Dependencies is the com-
mon tag-set that is defined for all the languages.
PoS-tags3 and syntactic dependencies4 are anno-
tated with shared sets of labels. Again, this fea-
ture also allows the system to be independent from
the language. The Wikipedia dump is read line-
by-line. Each line contains a fragment (passage)
of text that is processed using UDPipe. The out-
put of this process is a set of sentences, and each
sentence is annotated with syntactic dependencies.
The sentence is transformed into a dependency
graph that is the input of the Wiki Extractor mod-
ule. This module extracts facts from the sentence
in the form of triples (subject, predicate, object)
and assigns a score.

As aforementioned, each sentence occurring in
the text is annotated by UDPipe that provides an-

1The code is available on GitHub: https://github
.com/pippokill/WikiOIE.

2https://github.com/attardi/wikiextra
ctor/wiki/File-Format

3https://universaldependencies.org/u/
pos/

4https://universaldependencies.org/u/
dep/



Figure 1: An example of UDPipe processing.

notations following the CoNLL-U format5. As
shown in Figure 1, each token into the sentence
is denoted by an index (first column) correspond-
ing to the token position into the sentence (starting
from 1). In the other columns are stored the fea-
tures extracted by UDPipe, such as the token, the
lemma, the universal PoS-tag, the head of the cur-
rent word, and the universal dependency relation
to the HEAD. If the head of the current word is
equal to 0, it means that that token represents the
head of the whole sentence, then the universal de-
pendency relation will be equal to root. Figure 1
also reports the dependency graph of the sentence
that is used by the Wiki Extractor module for ex-
tracting triples. We use an unsupervised pipeline
based on both PoS-tag and dependencies to extract
the first set of triples.

The first step of the extraction process consists
of identifying sequences of PoS-tags that match
verbs as reported in Table 1. In Table 1, the first
column reports the PoS-tag patterns, while the sec-

5https://universaldependencies.org/fo
rmat.html

PoS-tag Pattern Example
AUX VERB ADP ... è nato nel ...
AUX VERB ... è nato ...
AUX=(essere, to be) ... è ...
VERB ADP ... nacque nel ...
VERB ... acquisı̀ ...

Table 1: Patterns of valid predicates.

ond one reports an example of pattern usage. The
sentence showed in Figure 1 matches the last pat-
tern (VERB, fondò).

When the information extraction algorithm
finds a valid predicate pattern, it checks for a can-
didate subject and object for the predicate. A valid
subject/object candidate must match the following
constraints:

1. the candidate must be composed by a se-
quence of tokens belonging to the follow-
ing PoS-tags: noun, adjective, number, de-
terminer, adposition, proper noun;

2. the sequence of tokens composing the candi-



date can contain only one determiner and/or
one adposition.

The candidate subject must precede the verb,
while the candidate object must follow the pred-
icate pattern. For the sentence in Figure 1 the
candidate subject is “Nakamura”, while the candi-
date object is “il quartier generale di il Kyokushin
Karate”6.

After identifying the candidate subject and ob-
ject, the triple is accepted only if both the subject
and the object have a syntactic relation with the
verb. In particular, one of the tokens belonging to
the subject/object must have a dependent relation
with a token of the verb pattern.

More details about the unsupervised extraction
of triples are reported in Cassotti et al. (2021).

3.1 Self-Training
Using the unsupervised approach, we obtain
3,562,803. We randomly select a subset of 200
triples for which the predicate occurs at least 20
times. Then, each triple is annotated by two ex-
perts as relevant (valid) or not-relevant. Details on
this dataset and the results of the annotation pro-
cess are reported in (Cassotti et al., 2021). For the
self-training, we select only triples in which the
two experts agree. Finally, we have a set of 137
triples that we call L.

From the whole set of 3.5M triples, we ran-
domly select the 1% of unlabeled triples in which
the predicate occurs at least 20 times. This subset
is denoted as U . The set L is split in two subsets:
Lt for training and Lv for validation. In particular,
Lt is used as the initial dataset for the self-training
procedure, while Lv is used for setting the initial
parameters’ values of the learning algorithm.

As a preliminary step, we search for the best pa-
rameters using Lt for training and Lv for validat-
ing the performance. We use the macro-averaged
F1 score since our dataset is highly unbalanced:
the 82% of the triples are labelled as relevant.

The self-training process works as follow:

1. from the set U , we randomly select p triples;

2. we train a supervised model using labeled
triples in Lt;

3. the p triples are labeled using the trained
model, and a confidence score is assigned to
each classified triple;

6It is important to note that UDPipe splits the articulated
preposition “del” in “di:ADP” and “il:DET”.

4. the triples with a confidence score higher or
equal to a threshold t are added to Lt by
maintaining classes balance in Lt. If the clas-
sifier does not provide a confidence score, all
instances labeled as valid are included in Lt;

5. if U contains at least p triples go to step 1 oth-
erwise ends. The self-training loop can also
be terminated if a specific number of itera-
tions is reached.

The resulting set of labeled triples Lt is used to
train the final model, which is employed to clas-
sify all the triples extracted using the unsupervised
approach.

More details about both the parameters’ values
and the training algorithm are reported in Section
4.

3.2 Supervised Approach

For both the self-training and the classification of
triples, we exploit algorithms provided by LibLin-
ear7. In particular, we use both logistic regression
and support vector classification: the former can
provide a confidence score, while the latter can-
not.

The set of features is selected by taking into
account the supervised approaches already devel-
oped for English. In particular, we use:

• the PoS-tags occurring into the subject, ob-
ject, and predicate;

• the sequence of PoS-tags that compose the
predicate. This feature is also computed for
both the subject and the object;

• the n-gram that composes the predicate;

• the set of dependencies that link the subject
to the predicate;

• the set of dependencies that link the object to
the predicate.

The C value of the learning algorithm is deter-
mined by performing a grid search using Lt for
training and Lv for validating. Due to the small
size of the original set L, we perform a 50/50 split.
More details are reported in Section 4.

7https://www.csie.ntu.edu.tw/ cjlin/liblinear/



Method C P0 R0 F10 P1 R1 F11 F1
Slog 10 .54 .58 .56 .91 .89 .90 .62
Ssvc 8 .60 .75 .66 .94 .89 .92 .73

Table 2: Results of the grid search.

Method Size P0 R0 F10 P1 R1 F11 F1 ∆%
Slog 15,771 .88 .58 .70 .92 .98 .95 .74 19.35%
Ssvc 19,545 .60 .50 .55 .90 .93 .91 .60 -17.81%

Table 3: Results of the self-training approach.

4 Evaluation

The goal of the evaluation is twofold: 1) measure
the performance and the contribution of the self-
training; 2) evaluate the quality of the extracted
triples. For the first goal, we evaluate how the new
instances added to the initial set of training affect
the performance. For the second goal, we manu-
ally annotated a small subset of extracted triples in
order to evaluate their quality.

4.1 Evaluate Self-Training

The first step is to determine the best parameters
for the learning algorithm. We use two algorithms:
L2-regularized logistic regression (Slog) and L2-
regularized L2-loss support vector classification
(Ssvc). For both algorithms, we perform a grid
search for selecting the best value for the param-
eter C. Results of the grid search is reported in
Table 2. In the table, we report the best C value
for each approach. We denote with 0 the class of
not-relevant triples, while 1 denotes relevant ones.
F1 refers to macro-average F1. Results show that
classifiers have poor performance in recognizing
the class 0 since the dateset is both small and un-
balanced.

We perform two self-training steps (one for
each learning algorithm) using p = 1, 000 and 20
as the number of maximum iterations. For the lo-
gistic regression, we set 0.85 as threshold. After
the self-training step, we obtain a new training set
which contains new instances. Table 3 reports for
each learning approach the size of the new train-
ing set and the performance computed on the val-
idation set. Moreover, the last column reports the
increment of F1 with respect to the performance
obtained before the self-training.

Experiments using self-training show that Slog

is able to improve (+19%) its performance, while
self-training has a negative impact on Ssvc perfor-

mance (-18%). Probably, this is due to the fact
that it is not possible to set a threshold for se-
lecting good classified instances during the self-
training when the Ssvc is involved. After observ-
ing the overall performances in both Tables 2 and
3, we select as training set for extracting triples
the one obtained by Slog during the self-training.
Slog is also able to both overcome the performance
of Ssvc obtained without self-training and achieve
also an improvement in F10.

After the extraction and classification process,
we obtain 2,974,374 triples8 as reported in Table
4. The original set of triples extracted from the
unsupervised approach was 3,562,803, this means
that the 16.52% of unsupervised triples was classi-
fied as not-valid. Table 4 reports also information
about the number of distinct subjects, objects, and
predicates for both the unsupervised and super-
vised datasets. The supervised dataset is released
in the same JSON format described in Cassotti et
al. (2021).

4.2 Evaluate Triples

For the evaluation, we follow the same methodol-
ogy proposed in Cassotti et al. (2021). In partic-
ular, we sample a subset of 200 triples from the
final set of classified triples. The triples selected
are the ones for which the predicate occurs at least
20 times. Then, each triple is annotated by two ex-
perts as relevant (valid) or not-relevant. We used
Cohen’s Kappa coefficient (K) to measure the pair-
wise agreement between the two experts. K is a
more robust measure than simple percent agree-
ment calculation since it takes into account the
agreement occurring by chance. Higher values of
K correspond to higher inter-rater reliability. Open

8The triples are available on Zenodo: https://zeno
do.org/record/5655028. The triples obtained by the
unsupervised approach are available here: https://doi.
org/10.5281/zenodo.5498034.



Dataset #triples #dist. subj #dist pred #dist obj
unsupervised 3,562,803 1,298,481 269,551 2,030,742
supervised (Slog) 2,974,374 1,189,648 241,053 1,720,348

Table 4: Dataset statistics.

Dataset #valid (exp 1) #ratio (exp 1) #valid (exp 2) #ratio (exp 2) Kappa C.
unsupervised 115 0.64 161 0.81 0.24
supervised (Slog) 158 0.79 163 0.82 0.63

Table 5: Results of the annotation process.

IE task lacks a formal definition of triple relevance
thus for the annotation process, we adopt the con-
cept of triple relevance reported in (Stanovsky and
Dagan, 2016) that is based on assertiveness, mini-
malism, and completeness. This ensures that: the
triples extracted still enclose the semantics of the
original sentence (assertiveness), each element of
the triple is as compact as possible without any
unnecessary In our evaluation, we decide to give
less weight to minimalism and focus more on the
extraction completeness. After the annotation, we
compute the ratio of relevant triples (column #ra-
tio in Table 5) for each dataset and expert. Specif-
ically, the ratio is computed dividing the number
of triples annotated as relevant by the number of
sampled triples.

Results of the evaluation are reported in Table 5,
where also the previous results on the set of unsu-
pervised triples is reported. It is important to high-
light that the two datasets are not directly compa-
rable since they are composed of different triples.
In particular, a small subset of the unsupervised
dataset is used to train the supervised one as ex-
plained in Section 3. Cohen’s kappa coefficient
for each dataset is provided in the last column of
Table 5.

We obtain a good result in terms of number of
valid triples. In particular, the supervised model
provides a set of triples that improve the agree-
ment between annotators. The supervised ap-
proach removes noisy and ambiguous triples since
the initial subset Lt used for self-training contains
only triples for which the annotators agree.

In this task, it is not always possible to com-
pute standard metrics such as recall since it is not
easy to determine the total number of valid triples
due to the task’s “open” nature. As future work,
we plan to extend the number of manually anno-
tated triples for performing a more rigorous evalu-

ation and comparison of different information ex-
traction methods for Italian.

5 Conclusions and Future Work

We propose a self-training strategy for implement-
ing a supervised open information extraction sys-
tem for the Italian version of Wikipedia. Our
approach exploits a small set of manually la-
beled triples for expanding the training set. We
integrate this system into WikiOIE, which is a
framework for open information extraction on
Wikipedia dumps. WikiOIE exploits UDPipe as
a tool for processing and annotating the text and
can be extended by adding several information ex-
traction approaches.

We perform an extensive evaluation for measur-
ing the impact of self-training on the overall clas-
sification performance. Results prove that self-
training is able to improve the classification per-
formance and help to identify not-relevant triples.

Finally, we sampled a subset of extracted
triples, evaluated by two experts. The number
of relevant triples increases when the self-training
strategy is used by also improving the agreement
between annotators.

As future work, we plan to extend the evalua-
tion to a larger scale study, exploit several learn-
ing algorithms, and explore the application of the
approach to other languages.
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