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Abstract

Spoken Language Understanding (SLU)
in task-oriented dialogue systems involves
both intent classification (IC) and slot fill-
ing (SF) tasks. The de facto method for
zero-shot cross-lingual SLU consists of
fine-tuning a pretrained multilingual model
on English labeled data before evaluating
the model on unseen languages. However,
recent studies show that adding a second
pretraining stage (continued pretraining)
can improve performance in certain set-
tings. This paper investigates the effec-
tiveness of continued pretraining on unla-
beled spoken language data for zero-shot
cross-lingual SLU. We demonstrate that
this relatively simple approach benefits ei-
ther SF and IC task across 8 target lan-
guages, especially the ones written in Latin
script. We also find that discrepancy be-
tween languages used during pretraining
and fine-tuning may introduce training in-
stability, which can be alleviated through
code-switching.

1 Introduction

In task-oriented dialogue systems, a Spoken Lan-
guage Understanding (SLU) component typically
involves intent classification (IC) and slot filling
(SF) (Tur and De Mori, 2011) tasks. For ex-
ample, in “Show me the fares for Delta flights
from Dallas to San Francisco®, the intent is ASK-
ING AN AIRFARE and its corresponding slots are
Delta (AIRLINE-NAME), Dallas (CITY-ORIGIN),
and San Francisco (CITY-DESTINATION). Scaling
SLU models to other languages is still challeng-
ing, especially when there is limited or no labeled
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data available in the target language (Louvan and
Magnini, 2020).

To approach this problem, previous work studies
IC and SF tasks in a zero-shot cross-lingual setting
(Schuster et al., 2019; Upadhyay et al., 2018; Xu
et al., 2020), where it is assumed that a labeled
dataset is only available for a high resource lan-
guage (e.g., English). With the rise of pretrained
multilingual language models (LMs) (Devlin et
al., 2019; Lample and Conneau, 2019) the most
common approach is by fine-tuning the pretrained
multilingual model on the English labeled data,
and then evaluate the model directly on the target
language data that are not seen during fine-tuning.

While direct fine-tuning serves as a strong base-
line, pretrained LMs are not necessarily univer-
sal and they may need domain-specific adaptation.
Recent works have shown that adding a second
pretraining stage (or continued pretraining) be-
fore fine-tuning can give positive impact on the
model performance (Beltagy et al., 2019; Lee et al.,
2020; Gururangan et al., 2020). During continued
pretraining, we continue training the pretrained
language model using a domain-specific or task-
specific unlabeled dataset, with the same masked
language model objective. This stage is useful to
alleviate the domain mismatch between the original
pretraining and the target task data. By continued
pretraining on domain specific unlabeled data, the
model acquires prior knowledge which is expected
to be helpful in the fine-tuning stage. This approach
has shown promising results on text classification,
typically on English. However, it remains unclear
whether it is applicable in the context of zero-shot
cross-lingual SLU.

In contrast to previous work which has mostly
focused on English classification tasks, we inves-
tigate the effectiveness of continued pretraining
for zero-shot cross-lingual SLU tasks on eight tar-
get languages. Our study reveals that the existing
continued pretraining method (Gururangan et al.,
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Figure 1: The overall stages of zero-shot cross lingual SLU using a pretrained multilingual model. The
standard approach follows the stages marked with blue arrows (direct fine-tuning). We investigate the
effectiveness of adding a continued pretraining stage (red dashed box) in the overall pipeline.

2020), that is successful in English text classifica-
tion tasks, does not always generalize to the context
of zero-shot cross-lingual SLU. We focus on the
following research questions:

(Q1) Is continued pretraining effective for zero-
shot cross-lingual SLU tasks?

— Our experiments on the MultiATIS++ dataset
(Xu et al., 2020) reveal that incorporating contin-
ued pretraining on intermediate English data can
improve performance over direct fine-tuning for
all languages, on zero-shot SLU. The performance
gain is especially evident for languages with Latin
script writing system. The benefit of continued
pretraining diminishes as we inject cross-lingual
supervision in the fine-tuning stage, even with sim-
ple data augmentation through code-switching.
(Q2) What are the factors that influence the effec-
tiveness of the continued pretraining stage?

— Using the target language for continued pre-
training before fine-tuning on English can be detri-
mental to the overall performance. However, this
can be largely alleviated by code-switching the
fine-tuning data. We also observe that performance
improvement are not obtained by merely adding
more continued pretraining data; higher domain
similarity between the continued pretraining data
and the fine-tuning data is indeed more important.

2 Continued Pretraining in Zero-Shot
SLU

Figure 1 shows a comparison between the stan-
dard direct fine-tuning approach with the continued
pretraining approach. The main difference is the
additional intermediate pretraining stage (second
block in Figure 1), in which we continue training
the model on an intermediate unlabeled data us-

ing the same masked language modeling objective.
As the original pretraining data is relatively far
from the task-oriented dialogues used in SLU, we
hypothesize that continued pretraining can allevi-
ate the domain mismatch and ingest a better prior
knowledge that will be useful during fine-tuning.

Intermediate Data for Continued Pretraining.
We define several criteria for the intermediate pre-
training data for the continued pretraining stage.
First, their domain should be relatively close to
the target dataset. We interpret the term domain
as a multidimensional variety space (Ramponi and
Plank, 2020; Plank, 2016): a domain comprises
multiple aspects (style, topic, and genre (van der
Wees et al., 2015)) that contribute to the text vari-
ation. Using this perspective and considering the
target domain of a task-oriented dialogue system,
we require that the intermediate data comprises text
that presents a spoken language dialog style and
covers a broad range of topics. Second, the dataset
should be several magnitudes larger in size than the
target task dataset. Finally, it must be available in
many languages to support our study of continued
pretraining with the target language.

3 Experimental Setup

In this section, we describe the experimental set-
tings related to models, evaluation metrics, and
datasets.

3.1 Models

For all of our experiments, we use a transformer-
based model (Vaswani et al., 2017), namely mul-
tilingual BERT (mBERT) (Devlin et al., 2019), as
the pretrained model. This model was pretrained



on Wikipedia articles covering 104 languages, and
we use the bert-base-multilingual-cased version.

Continued Pretraining. For the continued pre-
training stage, we further train mBERT with un-
labeled intermediate data using only the Masked
Language Modeling (MLM) objective for 12.5K
steps, and mostly adopt the hyperparameters in Gu-
rurangan et al. (2020). We compare the following
configurations: (i) DAPTtg; a continued domain
adaptive pretraining (DAPT) of mBERT on inter-
mediate unlabeled data on the target language. (ii)
DAPTE, acontinued DAPT of mBERT on inter-
mediate unlabeled data on English.

Fine-Tuning. As the baseline model, without any
adaptation (No DAPT), we use the joint IC and
SF model architecture (Chen et al., 2019). This
model is the state-of-the-art for IC and SF (Louvan
and Magnini, 2020), and it is often used as one
of the baselines in recent zero-shot cross-lingual
SLU studies (Xu et al., 2020; Li et al., 2021). The
model is trained on the English dataset; as the setup
is zero-shot cross-lingual and we use the model’s
last epoch for zero-shot evaluation following Xu et
al. (2020). We evaluate the effectiveness of each
of the DAPT configurations when applied to the
following fine-tuning scenarios:

* Fine-tuning on English (FINETUNE-EN). This is
the standard fine-tuning scenario, where we take
mBERT either with DAPT or no DAPT, fine-tune
it on the English IC and SF data, and then per-
form zero-shot prediction to all target language
data.

* Fine-tuning on the English code-switched data
(FINETUNE-CS). In this scenario, we perform
data augmentation on the English fine-tuning
dataset via code-switching. We follow the ap-
proach from Qin et al. (2020), where we replace
the English words with their translation in the
target language using the Panlex bilingual dic-
tionary (Kamholz et al., 2014). Given a training
batch, we randomly sample sentences and tokens
to replace. We use the same hyperparameter used
by Qin et al. (2020), that defines both sentence
and word ratio to control the word replacement.
We include FINETUNE-CS because we want to
study the benefits of DAPT when adding stronger
cross-lingual supervision in the fine-tuning stage.

We did not experiment with more complex models

models as our main goal is to investigate the effect

of the the continued pretraining stage, rather than

achieving the state of the art performance per se.

Implementation & Model Evaluation met-
ric. For the intent and SF models, we adapt
the implementation from Qin et al. (2020)
in which they make it publicly available
(https://github.com/kodenii/CoSDA-ML). The sen-
tence and token ratio replacement for code-
switching is set to 1.0 and 0.9 respectively. For
training, the learning rate is set to 10~°, batch size
is set to 32, number of epoch is set to 20. We
did not do extensive hyperparameter tuning, as this
is a zero-shot cross lingual case where the target
dataset is not available, we use the same hyperpa-
rameters as Xu et al. (2020). For the continued
pretraining we use the language modeling script
from Huggingface (Wolf et al., 2019). We use the
bert-base-multilingual-cased, hidden
state size is 768, we apply dropout probability of
0.1. The number of training steps is 12,500 follow-
ing Gururangan et al. (2020), the batch size is set
to 16.

3.2 Dataset

SF and IC Dataset. We use the MultiATIS++
(Xu et al., 2020) dataset, which contains nine lan-
guages (Table 1). The dataset is derived from
the original ATIS English dataset (Hemphill et al.,
1990), widely used as a benchmark for IC and SF
for task-oriented dialogue systems. Utterances are
related to conversations of a user asking for flight
information to a system.

Language #train / #dev /#test  #slot #intent
English (EN) 4.4K/ 490/ 893 83 24
German (DE) 44K/ 490/ 892 83 24
Spanish (ES) 4.4K/ 490/ 893 83 24
French (FR) 44K /490/893 83 24
Portuguese (PT) 44K /489 /892 83 24
Hindi (HI) 1.4K/ 160/ 888 74 22
Japanese (JA) 4.4K / 490/ 886 83 24
Chinese (ZH) 44K /490/893 83 24
Turkish (TR) 0.6K / 60/ 715 70 21

Table 1: Multi-ATIS++ (Xu et al., 2020) statistics.

Continued Pretraining Dataset. We use the
OpenSubtitle (OpenSub) (Lison and Tiedemann,
2016) (Table 2) dataset for the continued pretrain-
ing stage for several reasons. First, the dataset is
constructed from movies and TV series contain-
ing spoken language in dialogue settings covering
a broad range of topics. Second, OpenSubtitle
covers all the languages that we use on the down-
stream tasks, which enables us to evaluate not only



DAPTE, but also DAPTry. Third, the dataset is
large in size, thus ideal for continued pretraining.
Typically, the dataset used for continued pretrain-
ing is larger than that used for fine-tuning. For our
experiments we randomly sampled 100K sentences
for each language in the OpenSub dataset, result-
ing in a dataset around 20 times larger than the
downstream task dataset.

Language Total Tokens
English (EN) 734,302
German (DE) 691,039
Spanish (ES) 711,264
French (FR) 739,551
Portuguese (PT) 676,789
Hindi (HI) 688,675
Japanese (JA) 747,780
Chinese (ZH) 611,700
Turkish (TR) 554,709

Table 2: OpenSub (Lison and Tiedemann, 2016)
dataset statistics. Each language has 100 K utter-
ances.

4 Results

The main goal of our experiment is to answer
research question (Q1). Table 3 compares the
zero-shot performance for SF and IC across lan-
guages. In terms of language (by column in Table
3), we observe that all languages improve over
No-DAPT in at least one DAPT setting, suggest-
ing that DAPT is effective across languages. Ob-
serving the results per task, SF benefits from ei-
ther DAPTg,, or DAPT g for German, Spanish,
French, Portuguese, and Turkish, which all are lan-
guages with Latin scripts writing system. For these
languages, the margin obtained from DAPT when
fine-tuning on English (FINETUNE-EN) is higher
than when we apply DAPT on code-switched data
(FINETUNE-CS). The margin of DAPT when
applied on FINETUNE-CS diminishes because
FINETUNE-CS uses a stronger supervision signal
in the fine-tuning stage, thus providing a higher
baseline. For languages with non-Latin script writ-
ing system, continued pretraining is less useful; we
only observe marginal improvement on Japanese
when applying DAPTE, and FINETUNE-EN. Sim-
ilar to Lauscher et al. (2020), we believe that per-
formance is also affected by typological language
proximity such as the subject, verb, and object
ordering, phonology features or other aspect re-
lated to the original size of the pre-training data of
mBERT. We leave this for future work.

DAPT is less effective for IC than for SE. The
only language that consistently benefits from con-
tinued pretraining in both fine-tuning scenarios is
Turkish. We found that it is harder to improve the
model performance of languages with Latin script
through DAPT because the baseline is relatively
high; a stronger supervision signal would thus be
needed. The performance gain is small even for
those languages that do benefit from DAPT. We
also observe that using a different language be-
tween continued pretraining and fine-tuning stages,
DAPTrgt and FINETUNE-EN, may hamper per-
formance.

5 Analysis and Discussion

To answer the research question (Q2), we analyze
our results focusing on the performance variation
when using different languages in DAPT and fine-
tuning (§5.1) and the effect of domain distribution
in different sources for DAPTg, (§5.2).

5.1 Performance Variation when Applying
DAPT

As we have noticed in Section §4, there are cases
where performance drop when we use DAPT g
and FINETUNE-EN, especially for IC. This be-
haviour holds even for languages relatively close to
English, such as German and French. One possible
reason for the drop in accuracy is that the language
difference introduces instability in fine-tuning. Our
post-hoc analysis shows that the target language
performance during training on the dev set has a
large deviation and continues fluctuating even after
the English dev performance has stabilized. This
observation resonates with a previous study from
Keung et al. (2020), which shows that, for zero-shot
text classification, English dev performance often
does not correlate with those of the target language.
Using DAPTrg and FINETUNE-EN pronounces
the disagreement of performance between the En-
glish and the target dev set. Figure 2 shows the
comparison of the IC performance during training
across continued pretraining strategies when fine-
tuning on English for French. However, for the SF
task, we do not observe a large performance vari-
ation even with a language mismatch: this might
indicate that text classification is more susceptible
to instability than sequence tagging. The variabil-
ity caused by DAPT gt is largely alleviated when
we use DAPTg,,. For the FINETUNE-CS scenario,
the system is relatively stable even when combined
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Table 3: Performance comparison on the test set for SF and IC. Scores for No DAPT are the average slot
F1 and intent accuracy over five runs. The ADAPTT,; and ADAPTg, indicate the delta between DAPT

and No DAPT.
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Figure 2: Post-hoc analysis: development set performance variation on IC between English and French,
using FINETUNE-EN and applying different DAPT strategies.

with DAPT g or DAPTE,,.

5.2 Domain Relevance for DAPTg,

We aim at investigating whether the improvement
from the continued pretraining comes from the do-
main relevance of the intermediate data. For this
purpose, we selected a few written text datasets
instead of spoken language, which are focused on
a specific topic. Specifically, we use the European
Medicines Agency (EMEA) and European Cen-
tral Bank corpus (ECB) from Tiedemann (2012).
EMEA contains articles about human, veterinary,
or herbal medicines extracted from the EMEA web-
site. ECB contains financial documents that are
extracted from the website and documentation of

the European Central Bank. In order to check that
EMEA and ECB are more distant in terms of do-
main from MultiATIS than OpenSub, we compute
the Jensen Shannon Divergence (JSD) measure
of the term distribution (Dai et al., 2020; Ruder
and Plank, 2017). We compute the JSD between
the MultiATIS English dataset that is used for
fine-tuning and each English intermediate dataset.
Based on the JSD measure, EMEA and ECB are
more distant to MultiATIS than OpenSub (Table
4).

For each intermediate dataset, we randomly
sample 100K sentences and use them for con-
tinued pretraining. We compare the SF perfor-
mance of DAPTg, with FINETUNE-EN on Open-



EMEA
0.391

ECB
0.397

OpenSub
JSD 0.419

Table 4: Domain similarity between MultiATIS
and each of the intermediate data.

Lane, NO ADAPTE,
S DAPT

OpenSub EMEA ECB
DE 65.3 JEE2E 25 9.5
ES 71.3 ¢ +0.9 +0.9 [ F1.3
FR 64.0 +0.7
PT 61.9 —0.3  —9.1
Avg © 425 40.005 —4.1

Table 5: Comparison of SF performance with dif-
ferent intermediate data.

Sub, EMEA, and ECB in Table 5. We focus on
languages that belongs to Indo-European family
which mostly obtain benefit from DAPT on SF (Ta-
ble 3) Overall, we see that DAPT using OpenSub
obtains improvements over No-DAPTin all cases.
The DAPT performance using EMEA and ECB
are lower than OpenSub in most cases. Even for
DE and PT languages, DAPT with ECB obtains
substantially lower performance than No-DAPT.
However, there are cases when EMEA or ECB
match or even perform better than OpenSub i.e., for
Spanish. These cases indicate that performing data
selection before continued pretraining could be ben-
eficial to construct more optimal DAPT dataset. It
would be interesting also to observe how continued
pre-training would work using smaller unlabeled
pre-training data but more task relevant. We leave
this possibility for future work.

6 Related Work

Zero-Shot Cross-Lingual SLU. Before the ad-
vent of the pre-trained multilingual transformer
models, most approaches relied on pre-trained
cross-lingual embeddings to perform zero-shot
SLU. Upadhyay et al. (2018) uses cross-lingual
embedding (Bojanowski et al., 2017) to perform
zero-shot SLU while Schuster et al. (2019) uses
multilingual embedding (Cove) from pre-trained
multilingual bi-LSTM encoder used in Neural Ma-
chine Translation (NMT). Liu et al. (2019) lever-
ages transferable latent variables to improve the
sentence representation across languages. More re-
cently, as pre-trained multilingual transformer mod-
els show potential in zero-shot settings, most ap-
proaches focus on improving their multilingual rep-
resentation through augmentation and alignment

methods. Qin et al. (2020) proposes multilingual
code-switching using a bi-lingual dictionary to im-
prove mBERT’s multilingual representation. Xu
et al. (2020) introduces soft alignment of slots be-
tween English and the target language produced
by a machine translation system that eliminates the
need for an annotation projection pipeline. Kul-
shreshtha et al. (2020) study the effect of vari-
ous cross-lingual alignment methods to improve
mBERT representation.

Continued Pre-training Domain adaptation is
a long-studied problem in the NLP community
(Daumé 111, 2007; Blitzer et al., 2007), in which
we assume data in the target domain might be hard
to obtain while being abundant in source domains.
Continued pre-training — where the model is trained
on relevant data using the same pre-training objec-
tive — is used for mitigating the distribution mis-
match between the pre-training and the fine-tuning
data in terms of domain (Logeswaran et al., 2019;
Han and FEisenstein, 2019; Gururangan et al., 2020;
Beltagy et al., 2019), task (Gururangan et al., 2020),
and language (Pfeiffer et al., 2020). A complemen-
tary approach performs a first fine-tuning on related
auxiliary tasks (for which training data are easy to
obtain) before the final fine-tuning on the down-
stream task (Arase and Tsujii, 2019; Garg et al.,
2020; Khashabi et al., 2020). Our work is in line
with Gururangan et al. (2020) where we investigate
further the effectiveness of continued pre-training
in the context of zero-shot cross-lingual SLU.

7 Conclusion

We systematically study the effectiveness of contin-
ued pre-training of a multilingual model on interme-
diate English unlabeled spoken language data for
zero-shot cross-lingual tasks, namely intent clas-
sification and slot filling, on 8 languages. Our
results show that the domain knowledge learned
in English is transferable to other languages. The
gain from continued pre-training diminishes as we
inject cross-lingual supervision in the fine-tuning
stage. There are several factors that influence the
effectiveness of the continued pre-training: (i) Us-
ing different language between pre-training and
fine-tuning can hamper performance and introduce
instability in the model training, which can be alle-
viated with code switching. (ii) Domain similarity
is important. The more similar — in terms of data
distribution — the intermediate data to the target
dataset yields better performance.
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