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Abstract

English. Contextualized embedding mod-
els, such as ELMo and BERT, allow the
construction of vector representations of
lexical items that adapt to the context in
which words appear. It was demonstrated
that the upper layers of these models cap-
ture semantic information. This evidence
paved the way for the development of
sense representations based on words in
context. In this paper, we analyze the
vector spaces produced by 11 pre-trained
models and evaluate these representations
on two tasks. The analysis shows that
all these representations contain redundant
information. The results show the disad-
vantage of this aspect.

Italiano. Modelli come ELMo o BERT
consentono di ottenere rappresentazioni
vettoriali delle parole che si adattano
al contesto in cui queste appaiono. Il
fatto che i livelli alti di questi mod-
elli immagazzinino informazione seman-
tica ha portato a sviluppare rappresen-
tazioni di senso basate su parole nel
contesto. In questo lavoro analizziamo
gli spazi vettoriali prodotti con 11 mod-
elli pre-addestrati e valutiamo le loro
prestazioni nel rappresentare i diversi
sensi delle parole. Le analisi condotte
mostrano che questi modelli contengono
informazioni ridondanti. I risultati eviden-
ziano le criticità inerenti a questo aspetto.

1 Introduction

The introduction of contextualized embedding
models, such as ELMo (Peters et al., 2018) and
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BERT (Devlin et al., 2019), allows the construc-
tion of vector representations of lexical items that
adapt to the context in which words appear. It has
been shown that the upper layers of these mod-
els contain semantic information (Jawahar et al.,
2019) and are more diversified than lower lay-
ers (Ethayarajh, 2019). These word representa-
tions overcame the meaning conflation deficiency
that affects static word embedding techniques
(Camacho-Collados and Pilehvar, 2018; Tripodi
and Pira, 2017), such as word2vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014) thanks to
the adaptation to the context of use.

The evaluation of these models has been con-
ducted mainly on downstream tasks (Wang et al.,
2018; Wang et al., 2019). With extrinsic evalua-
tions, the models are fine-tuned, adapting the vec-
tor representations to specific tasks. The result-
ing vectors are then used as features in classifica-
tion problems. This hinders a direct evaluation and
analysis of the models because the evaluation also
takes into account the ability of the classifier to
learn the task. A model trained for this kind of task
may learn only to discriminate among features that
belong to each class with poor generalization.

The interpretability of neural networks is an
emerging line of research NLP that aims at ana-
lyzing the properties of pre-trained language mod-
els (Belinkov and Glass, 2019). Different stud-
ies have been conducted in recent years to dis-
cover what kind of linguistic information is stored
in large neural language models. Many of them
are focused on syntax (Hewitt and Manning, 2019;
Jawahar et al., 2019) and attention (Michel et
al., 2019; Kovaleva et al., 2019). For what con-
cerns semantics, the majority of the studies fo-
cus on common knowledge (Petroni et al., 2019)
and inference and role-based event prediction (Et-
tinger, 2020). Only a few of them have been de-
voted to lexical semantics, for example, Reif et al.
(2019) show how different representations of the



Figure 1: t-SNE representations for the word foot in SemCor, grouped by sense.

same lexical form tend to cluster according to their
sense.

In this work, we propose an in-depth analy-
sis of the properties of the vector spaces induced
by different embedding models and an evaluation
of their word representations. We present how
the properties of the vector space contribute to
the success of the models in two tasks: sense in-
duction and word sense disambiguation. In fact,
even if contextualized models do not create one
representation per word sense (Ethayarajh, 2019),
their contextualization create similar representa-
tions for the same word sense that can be easily
clustered.

2 Related Work

Given the success (and the opacity) of contextual-
ized embedding models, many works have been
proposed to analyze their inner representations.
These analyses are based on probing tasks (Con-
neau et al., 2018) that aim at measuring how the
information extracted from a pre-trained model is
useful to represent linguistic structures. Probing
tasks involve training a diagnostic classifier to de-
termine if it encodes desired features. Tenney et al.
(2019) discovered that specific BERT’s layers are
more suited for representing information useful to
solve specific tasks and that the ordering of its lay-
ers resembles the ordering of a traditional NLP
pipeline: POS tagging, parsing, NER, semantic
role labeling, and coreference resolution. He-
witt and Manning (2019) evaluated whether syn-
tax trees are embedded in a linear transformation
of a neural network’s word representation space.
Hewitt and Liang (2019) raised the problem of in-
terpreting the results derived from probing analy-

sis. In fact, it is difficult to understand whether
high accuracy values are due to the representation
itself or, instead, they are the result of the ability
to learn a specific task during training.

Our work is more in line with works that try
to find general properties of the representations
generated by different contextualized models. For
example, Mimno and Thompson (2017) demon-
strated that the vector space produced by a static
embedding model is concentrated in a narrow
cone and that its concentration depends on the ra-
tio of positive and negative examples. Mu and
Viswanath (2018) explored this analysis further,
demonstrating that the embedding vectors share
the same common vector and have the same main
direction. Ethayarajh (2019) demonstrated how
upper layers of a contextualizing model produce
more contextualized representations. We built on
top of these works analyzing the vector space gen-
erated by contextualized models and evaluating
them.

3 Construction of the Vector Spaces

We used SemCor (Miller et al., 1993) as reference
corpus for our work. This choice is motivated by
the fact that it is the largest dataset manually anno-
tated with sense information and it is commonly
used as training set for word sense disambigua-
tion. It contains 352 documents whose content
words (about 226, 000) have been annotated with
WordNet (Miller, 1995) senses. In total there are
33, 341 unique senses distributed over 22, 417 dif-
ferent words. The sense distribution in this corpus
is very skewed, and follows a power law (Kilgar-
riff, 2004). This makes the identification of senses
challenging. The dataset is also difficult due to the



Model training data vocab. size n. param. vec. dim. objective

BERTbase (Devlin et al., 2019) 16GB 30K 110M 768 masked language model and next sentence prediction
BERTlarge (Devlin et al., 2019) 16GB 30K 340M 1024 masked language model and next sentence prediction
GPT-2base (Radford et al., 2019) 40GB 50K 117M 768 language model
GPT-2medium (Radford et al., 2019) 40GB 50K 345M 1024 language model
GPT-2large (Radford et al., 2019) 40GB 50K 774M 1280 language model
RoBERTabase (Liu et al., 2019) 160GB 50K 125M 768 masked language model
RoBERTalarge (Liu et al., 2019) 160GB 50K 355M 1024 masked language model
XLNetbase (Yang et al., 2019) 126GB 32K 110M 768 bidirectional language model
XLNetlarge (Yang et al., 2019) 126GB 32K 340M 1024 bidirectional language model
XLMenglish 16GB 30K 665M 2048 language model
CTRL (Keskar et al., 2019) 140GB 250K 1.63B 1280 conditional transformer language model

Table 1: Statistics and hyperparameters of the models.

Model AvgNorm MeanVecNorm(A) MeanVecNorm(Â) avg.MEV avg.IntSim avg.ExtSim

BERTbase 25.78± 1.28 17.94 17.84 0.43± 0.18 0.74± 0.05 0.69± 0.06
BERTlarge 20.83± 2.51 12.43 11.58 0.38± 0.18 0.66± 0.08 0.59± 0.08
GPT-2base 125.13± 10.25 91.46 90.99 0.46± 0.18 0.79± 0.05 0.76± 0.05
GPT-2medium 427.45± 38.78 371.86 360.36 0.51± 0.18 0.85± 0.03 0.84± 0.03
GPT-2large 290.29± 38.56 226.39 212.97 0.43± 0.18 0.75± 0.05 0.72± 0.05
RoBERTabase 25.78± 0.56 22.17 22.25 0.51± 0.17 0.87± 0.02 0.85± 0.03
RoBERTalarge 31.47± 0.65 26.99 27.04 0.52± 0.18 0.88± 0.02 0.84± 0.03
XLNetbase 47.68± 0.66 43.28 43.26 0.53± 0.17 0.88± 0.01 0.87± 0.02
XLNetlarge 28.27± 1.42 19.56 19.68 0.38± 0.17 0.66± 0.04 0.62± 0.05
XLMenglish 44.92± 2.61 37.13 36.7 0.45± 0.18 0.79± 0.03 0.77± 0.03
CTRL 4443.62± 351.98 3927.86 3879.56 0.49± 0.18 0.84± 0.02 0.83± 0.02

Table 2: Detailed description of the embedding space produced with each model.

fine granularity of WordNet (Navigli, 2006).
To construct the vector space A from Sem-

Cor we collected all the senses Si of a word
wi and for each sense sj ∈ Si we recovered
the sentences {Sentwisj

1 , Sent
wisj
2 , ..., Sent

wisj
n }

in which this particular sense occurs. These sen-
tences are then fed into a pre-trained model and
the token embedding representations of word wi,
{ewisj

1 , e
wisj
2 , ..., e

wisj
n }, are extracted from the

last hidden layer. This operation is repeated for
all the senses in Si, and for all the tagged words in
the vocabulary, V . The vector space corresponds
to all the representations of the words in V .

A t-SNE visualization of the different embed-
dings in SemCor for the word foot is presented in
Figure 1. In this Figure, we can see that the three
main senses of foot (i.e., human foot, unit of length
and lower part) occupy a definite position in the
vector space, suggesting that the models are able
to produce specific representations for the differ-
ent senses of a word and that they lie on defined
subspaces. In this work we want to test to what
extent this feature is present in language models.

Implementations details The pre-trained mod-
els used in this study are: two BERT (Devlin et al.,
2019) models, base cased (12-layer, 768-hidden,

We used the transformers library (Wolf et al., 2019).

12-heads, 110M parameters) and large cased
(24-layer, 1024-hidden, 16-heads, 340M param-
eters); three GPT-2 (Radford et al., 2019) mod-
els, base (12-layer, 768-hidden, 12-heads, 117M
parameters), medium (24-layer, 1024-hidden, 16-
heads, 345M parameters) and large (36-layer,
1280-hidden, 20-heads, 774M parameters); two
RoBERTa (Liu et al., 2019) models, base (12-
layer, 768-hidden, 12-heads, 125M parameters)
and large (24-layer, 1024-hidden, 16-heads, 355M
parameters); two XLNet (Yang et al., 2019) mod-
els, base (12-layer, 768-hidden, 12-heads, 110M
parameters) and large (24-layer, 1024-hidden, 16-
heads, 340M parameters); one XLM (Lample
et al., 2019) model (12-layer, 2048-hidden, 16-
heads) and one CTRL (Keskar et al., 2019) model
(48-layer, 1280-hidden, 16-heads, 1.6B parame-
ters). The main features of these models are sum-
marized in Table 1. We averaged the embed-
dings of sub-tokens to obtain token-level represen-
tations.

3.1 Analysis

The first objective of this work is to analyze the
vector space produced with the models. This anal-
ysis is aimed at investigating the properties of the
contextualized vectors. A detailed description of
the embedding spaces constructed with the pre-



trained models is presented in Table 2. We com-
puted the norm for all the vectors in the vector
space A, and averaged them:

AvgNorm =
1

|A|

|A|∑
i=1

∥ei∥2. (1)

This measure gives us an intuition on how diverse
the semantic space constructed with the different
models is. In fact, we can see that the magnitude
of the vectors constructed with BERT, RoBERTa,
XLNet, and XLM is low while those of GPT-2 and
CTRL are very high.

We computed also the norm of the vector re-
sulting in averaging all the vectors in the semantic
space V , as:

MeanV ecNorm =

∥∥∥∥∥∥ 1

|A|

|A|∑
i=1

ei

∥∥∥∥∥∥
2

. (2)

All the semantic spaces have non-zero mean and
the mean norm is high. This result suggests
that the vectors contain redundant information and
share a common nonzero vector. This is not only
because the vector space contains representations
of the same sense. In fact, if we create a new se-
mantic space, Â, averaging all the representations
of the same word sense, the MeanV ecNorm of
this space is still high for all the models.

We used the Maximum Explainable Variance
(MEV) for the representations of each word in V .
This measure corresponds to the proportion of the
variance in the embeddings that can be explained
by their first principal components and was com-
puted as:

MEV (w) =
σ2
1∑
i σ

2
i

. (3)

where σ2
i 1 is the first principal component of the

vector space A. It can give an upper bound on how
contextualized representations can be replaced by
a static embedding (Ethayarajh, 2019). The model
with the lowest MEV is BERTlarge and XLNetlarge.

The other measures that we used for the evalu-
ation of the vector space are based on the very no-
tion of a cluster, which imposes that the data points
inside a cluster must satisfy two conditions: inter-
nal similarity and external dissimilarity (Pelillo,
2009). To this end, we used the senses of each
word in the vocabulary of SemCor as clusters and
extracted the corresponding vectors from V . We

Figure 2: The first 500 principal components com-
puted on A and Â.

then computed the internal similarity of a cluster,
c, as:

IntSim(c) =
1

n2 − n

∑
j

∑
k ̸=j

cos(ej , ek), (4)

where n is the number of data points in the cluster.
We computed also the external similarity of a clus-
ter c by computing the cosine similarity among
each point in c and all the points in the subspace S
induced by the senses of a word that has c as one
of its senses:

ExtSim(c) =
1

n ·m

n∑
j=1

m∑
k=1

cos(ej , ek), (5)

where m is the total number of data points in the
subspace S (excluding those in c) and n is the
number of points in the cluster c. Our hypothe-
sis is that good representations should have high
internal similarity and low external similarity and
that the difference between them should be high.

As it can be seen from Table 2 the internal
similarity is higher than the external for all the
models. Despite this, the scores are in a wide
range. The lowest IntSim is given by BERTlarge
and the highest by RoBERTalarge and XLNetbase.
The lowest ExtSim is given by BERTlarge and
the highest by XLNetbase. The largest difference
between the two measures is given by BERTlarge.
RoBERTalarge gives has also a large gap between
the two measures, furthermore, their standard de-
viation is very low. As we will see in Section 4
these last two models perform better than others
in clustering and classification tasks.

4 Evaluation

Sense Induction This task is aimed at under-
standing if representations belonging to different
senses can be separated using an unsupervised ap-
proach. We hypothesize that a good contextualiza-
tion process should produce more discriminative



model k-means dominant-set

N V A R All N V A R All
BERTbase 57.2 50.6 56.2 62.0 54.9± 14.8 55.7 45.3 51.7 45.8 51.0± 17.5
BERTlarge 59.3 51.9 56.9 59.0 56.2± 15.3 53.4 42.6 46.8 39.9 47.8± 17.1
GPT-2base 54.1 48.3 55.6 56.8 52.3±14.7 54.3 45.3 50.2 46.3 50.1± 17.2
GPT-2medium 53.9 49.1 56.2 59.8 52.8± 14.5 59.7 49.8 58.7 54.8 56.0± 18.8
GPT-2large 53.8 49.4 58.1 58.8 53.0± 14.8 50.2 44.1 46.1 44.1 47.1± 16.0
RoBERTabase 56.4 51.4 56.7 59.7 54.8± 14.7 65.3 55.1 64.8 61.4 61.6± 19.2
RoBERTalarge 58.5 53.0 58.6 62.7 56.7±14.9 66.7 56.6 66.3 64.2 63.2±19.3
XLNetbase 54.2 49.1 53.8 56.8 52.2± 14.4 67.2 55.0 68.7 63.8 62.7±20.7
XLNetlarge 57.6 52.5 57.9 60.8 55.9±14.4 51.0 44.8 47.5 40.9 47.6±15.0
XLMenglish 56.3 50.1 56.5 62.1 54.3± 15.1 60.4 51.3 59.5 55.9 57.0± 18.1
CTRL 53.8 47.0 56.5 57.4 51.9± 15.4 60.4 49.4 61.7 56.3 56.8± 19.2

Table 3: Results (as average accuracy) on clustering divided by algorithm and part of speech: nouns (N),
verbs (V), adjectives (A), adverbs (R) and on the concatenations of all datasets (All).

representations that can be easily identified by a
clustering algorithm.

We used the sense clusters extracted from Sem-
Cor as ground truth for this experiment (see Sec-
tion 3) and grouped them if they are senses of
the same word (with a given part of speech). We
retained only the groups that have at least 20
data points and we discarded also monosemous
words for the evaluation on k-means. The re-
sulting datasets consist of 1871 (entire) and 1499
(without monosemous words) sub-datasets with
141, 074 and 116, 019 data points in total, respec-
tively. We computed the accuracy on each sub-
dataset computing the number of data points that
have been clustered correctly and averaged the re-
sults to measure the performance of each model.

The first algorithm is k-means (Lloyd, 1982).
It is a partitioning, iterative algorithm whose ob-
jective is to minimize the sum of point-to-centroid
distances, summed over all k clusters. We used
the k-means++ heuristic (Arthur and Vassilvitskii,
2007) and the cosine distance metric to determine
distances. We selected this algorithm because it
is simple, non-parametric, and is widely used. It
is important to notice that k-means requires the
number of clusters to extract, for this reason, we
restricted the evaluation only to ambiguous words.

The second algorithm used is dominant-set (Pa-
van and Pelillo, 2007). It is a graph-based algo-
rithm that extracts compact structures from graphs
generalizing the notion of maximal clique defined
on unweighted graphs to edge-weighted graphs.
We selected this algorithm because it is non-
parametric, requires only the adjacency matrix of
a weighted graph as input, and, more importantly,
does not require the number of clusters to extract.
The clusters are extracted from the graph sequen-

tially using a peel-off strategy. This feature al-
lows us to include in the evaluation also unam-
biguous words and to see if their representations
are grouped into a single cluster or partitioned into
different ones. We used cosine similarity to weigh
the edges of the input graph.

The results of this evaluation are presented in
Table 3. RoBERTa and BERT have the overall best
performances on this task using both algorithms.
In particular, RoBERTalarge performs consistently
well on all parts of speech and across algorithms,
while other models perform well only in combina-
tion with one of the two algorithms. This is pre-
sumably owing to the big gap between the internal
and the external similarity produced by this model,
as explained in Section 3.1.

This evaluation tends to confirm the claim that
larger versions of the same model achieve bet-
ter results. From Table 3, we can also see that
the models have more difficulties in identifying
the different senses of verbs, while nouns and ad-
verbs have higher results. This is probably due
to the different distribution of these word classes
in the training sets of the models and WordNet’s
fine-granularity. The performances of the models
with dominant-set are surprisingly high, consid-
ering that the setting of this experiment is com-
pletely unsupervised. Furthermore, this algorithm
is conceived to extract compact clusters and this
feature could drive it to over partition the vector
space of monosemous words. Instead, the results
suggest the opposite: that the models are able to
produce representations with high internal similar-
ity, positioning their representations on a defined
sub-space.

Word Sense Disambiguation We used the
method proposed in Peters et al. (2018) to create



Model S2 S3 SE07 SE13 SE15 All

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
BERTbase 80.6 67.9 73.7 77.2 68.8 72.8 66.4 63.1 64.7 74.4 62.7 68.1 78.3 68.8 73.2 77.0 66.8 71.5
BERTlarge 81.2 68.4 74.3 80.3 71.5 75.6 68.5 65.1 66.7 75.8 63.9 69.3 79.7 70.1 74.6 77.9 67.5 72.3
GPT-2base 75.6 63.7 69.1 71.5 63.7 67.4 59.3 56.3 57.7 71.8 60.5 65.7 74.4 65.4 69.6 72.4 62.8 67.2
GPT-2medium 76.5 64.5 70.0 72.9 65.0 68.7 62.0 58.9 60.4 74.0 62.3 67.7 76.6 67.3 71.7 74.0 64.2 68.8
GPT-2large 76.4 64.4 69.9 72.1 64.2 67.9 61.8 58.7 60.2 72.8 61.4 66.6 75.6 66.3 70.7 73.4 63.6 68.1
RoBERTabase 82.0 69.1 75.0 79.4 70.7 74.8 66.7 63.3 64.9 75.5 63.7 69.1 79.5 69.9 74.4 78.5 68.0 72.9
RoBERTalarge 82.0 69.1 75.0 80.0 71.2 75.4 70.6 67.0 68.8 77.1 65.0 70.5 81.0 71.1 75.7 79.4 68.9 73.8
XLNetbase 78.8 65.8 71.7 76.2 67.4 71.5 67.3 63.7 65.5 70.7 58.3 63.9 77.5 67.1 71.9 75.4 64.6 69.5
XLNetlarge 80.6 67.9 73.7 78.7 70.1 74.2 67.6 64.2 65.8 75.3 63.5 68.9 80.6 70.8 75.4 78.0 67.7 72.5
CTRL 73.4 61.9 67.1 70.1 62.5 66.1 54.2 51.4 52.8 68.2 57.5 62.4 72.3 63.5 67.6 69.9 60.6 64.9

Table 4: Results indicating precision (P), recall (R) and F1 on each dataset and on their concatenation
(All). All the results are computed using Â as vector space.

sense vectors from contextualized word vectors.
This method consists in averaging all the repre-
sentations of a given sense. The resulting vector
space corresponds to Â (see Section 3.1). We eval-
uated the generated vectors on a standard bench-
mark (Raganato et al., 2017) for WSD. It consists
of five datasets that were unified to the same Word-
Net version: Senseval-2 (S2), Senseval-3 (S3),
SemEval-2007 (S7), SemEval-2013 and SemEval-
2015, having in total 10, 619 target words.

The identification of word senses is conducted
by feeding the entire texts of the datasets into a
pre-trained model and extracting, for each target
word wi, its embedding representation ewi

k as was
done for the construction of the semantic space.
Once these representations are available, we com-
pute the cosine similarities among ewi

k and the em-
beddings in Â constructed with the same model
and selected the sense with the highest similarity.
We did not use more sophisticated models such as
WSD-games (Tripodi and Navigli, 2019; Tripodi
et al., 2016) because we wanted to keep the evalu-
ation as simple as possible as not to influence the
evaluation of the results.

The results of this evaluation are presented in
Table 4. The first trend that emerges from the
results is the big gap between precision and re-
call. This is due to the absence of many senses in
our training set. We did not want to use back-off
strategies or other techniques usually employed in
the WSD literature, to not influence the perfor-
mances and the analysis of the results. Despite
the simplicity of the approach, it performs surpris-
ingly well. In particular, BERT, RoBERTa, and
XLNet (three bidirectional models) have very high
results. The low performances of CTRL are proba-
bly due to its large vocabulary and to its objective,
designed to solve different tasks.

5 Conclusion and Future Work

We conducted an extensive analysis of the seman-
tic capabilities of contextualized embedding mod-
els. We analyzed the vector space constructed us-
ing pre-trained models and found that their vectors
contain redundant information and that their first
two principal components are dominant.

The results on sense induction are promising.
They demonstrated the effectiveness of contex-
tualized embeddings to capture semantic infor-
mation. We did not find higher performances
from more complex models, rather, we found that
RoBERTa, a model that was developed by sim-
plifying a more complex model, BERT, was one
of the best performers. Neither the dimension of
the hidden layers, the size of the training data,
nor the size of the vocabulary seems to play a big
role in modeling semantics. As stated in previous
works, inserting an anisotropy penalty to the ob-
jective function of the models could improve di-
rectly the representations. We also noticed that,
even if BERT models and XLNet have different
objectives and are trained on different data, they
have similar performances. It emerged that these
models are less redundant than others.

The conclusion that we can draw from our
analysis and evaluation is that pre-trained lan-
guage models can capture lexical-semantic infor-
mation and that unsupervised models can be used
to distinguish among their representations. On
the other hand, these representations are redun-
dant and anisotropic. We hypothesize that reduc-
ing these aspects can lead to better representations.
This operation can be carried out post-hoc but we
think that training new models keeping this point
in mind could lead to the development of better
models.
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