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Abstract

This paper explores the possibility to pre-
dict audience engagement, measured in
terms of visible attention, in the context
of guided tours. We built a dataset com-
posed of Italian sentences derived from
the speech of an expert guide leading vis-
itors in cultural sites, enriched with mul-
timodal features, and labelled on the basis
of the perceivable engagement of the audi-
ence. We run experiments in various clas-
sification scenarios and observed the im-
pact of modality-specific features on the
classifiers.

1 Introduction

During face-to-face interactions, the average
speaker is generally very good at estimating the in-
terlocutor’s level of involvement, without the need
of an explicit verbal feedback. He/she only needs
to interpret visually accessible unconscious sig-
nals, such as body postures and movements, fa-
cial expressions, eye-gazes. The speaker can un-
derstand if the addressee is engaged with the dis-
course, and continuously fine-tune his/her com-
munication strategy in order to keep the commu-
nication channel open and the attention high in the
audience.'

Understanding of non-verbal feedback is not
easy to achieve for virtual agents and robots, but
this ability is strategic for enabling more natural
interfaces capable of adapting to users. Indeed,
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Recent studies have shown that the processing of emo-
tionality in prosody, facial expressions and speech content
is associated in the listeners’ brain with enhanced activation
of auditory cortices, fusiform gyri and middle temporal gyri,
respectively, confirming that emotional states are processed
through modality-specific modulation strategies (Regenbo-
gen et al., 2012).

perceiving signals of loss of attention (and thus, of
engagement) is of paramount importance to design
naturally behaving virtual agents, enabled to ad-
just the communication strategy to keep high the
interest of their addressees. That information is
also a general sign of the quality of the interaction
and, more broadly, of the communication experi-
ence. At the same time, the ability to generate en-
gaging behaviors in an agent can be beneficial in
terms of social awareness (Oertel et al., 2020).

The objective of developing a natural behaving
agent, able to guide visitors along a tour in cultural
sites, was at the core of the CHROME Project?
(Cutugno et al., 2018; Origlia et al., 2018), and
the present work is intended in the same direction.
More specifically, this paper explores the possibil-
ity to predict audience engagement in the context
of guided tours, by considering acoustic and lin-
guistic features of the speech of an expert guide
leading visitors inside museums.

The paper is organised as follows: Section 2
draws a brief overview of related works in the
field of engagement annotation and prediction;
Section 3 describes in details the construction of
the dataset; Section 4 reports the methodology
adopted to extract features specific for both lin-
guistic and acoustic modalities; Section 5 illus-
trates the set of experiments conducted on the col-
lected data, in terms of classification scenarios and
features used; Section 6 gathers final observations
and ideas for future works.

Contributions The main contributions in this
paper are: i) a novel multimodal Italian dataset
with engagement annotation; ii) multiple clas-
sification scenarios experiments; iii) impact of
modality-specific features on multimodal classifi-
cation.

2Cultural Heritage Resources Orienting Multimodal Ex-
perience. http://www.chrome.unina.it/



2 Related Works

With the word engagement we refer to the level
of involvement reached during a social interaction,
which assumes the shape of a process through the
whole communication exchange. More specifi-
cally, Poggi (2007) defines the process of social
engagement as the value that a participant in an
interaction attributes to the goal of being together
with the other participant(s) and continuing the in-
teraction. Another definition, adopted by many
studies in Human-Robot Interaction (HRI),? de-
scribes engagement as the process by which inter-
actors start, maintain, and end their perceived con-
nections to each other during an interaction (Sid-
ner et al., 2005).

Observations and annotations of engagement
are collected on the basis of visible cues, such
as facial expressions and reactions, eye gazes,
body movements and postures. The majority of
the studies are often conducted on a dyadic base,
i.e. focusing on communication contexts involv-
ing only two participants, most of the times a hu-
man interacting with an agent/robot (Castellano et
al., 2009; Sanghvi et al., 2011; Ben-Youssef et
al., 2021). Nevertheless, engagement can be mea-
sured in groups of people taking part in the same
communication event as the average of the degree
to which individuals are involved (Gatica-Perez et
al., 2005; Oertel et al., 2011). Human-to-human
interactions within groups have been studied prin-
cipally in the research field of education (Fredricks
et al., 2004) where visible cues are related to atten-
tion, which is considered as a perceivable proxy
to the more complex and inner process of engage-
ment (Goldberg et al., 2019).

3 Dataset

The dataset presented in this paper is derived from
a subset of the CHROME Project data collection
(Origlia et al., 2018), which comprises aligned
videos, audios and transcriptions of guided tours
in three Charterhouses in Campania. Two videos
have been recorded for each session: one video
with the guide as subject, the other focused on the
group of visitors. Data of 3 visits with the same
expert guide (in the same Charterhouse) have been
selected. Each visit is organised in 6 points of in-
terest (POI), i.e. rooms or areas inside the Char-
terhouse where groups stop during the tours and

3For a broad and complete overview of works on engage-
ment in HRI studies, see Oertel et al. (2020)

the guide describes the place with its furnishings,
history, and anecdotes.

In total, starting data consist of 2:44:25 hours of
audiovisual material and 22,621 tokens from the
aligned transcriptions. The language of the speech
is Italian.

3.1 Annotation and Segmentation

Engagement has been annotated as a continuous
measurement of visitor’s attention, as a visible cue
of engagement. The annotation has been carried
out using PAGAN Annotation Tool (Melhart et al.,
2019), and performed by two annotators watching
videos of the groups of visitors in order to observe
cues of gain or loss of attention. Following Oer-
tel et al. (2011), annotators have been asked to
evaluate the average behaviour of the whole group.
Agreement between the two annotators is consis-
tent, with an average Spearman’s rho of 0.87 (Rav-
elli et al., 2020).

The raw transcriptions have been manually seg-
mented with the objective of creating textual seg-
ments close to written sentences, and this segmen-
tation has been projected on audio files, in order
to obtain aligned text-audio pairs for each seg-
ment. Given that every visit is similarly struc-
tured, and also topics and whole pieces of infor-
mation are mostly the same across different vis-
its, the resulting transcriptions are extremely clear
and phenomena such as retracting and disfluen-
cies are minimum if compared to transcriptions of
typical spontaneous speech. Thus, text normalisa-
tion (i.e., disfluencies removal, basic punctuation
insertion) has been easy to obtain, and the result-
ing adaptation lead to sentences easy to parse with
common NLP tools trained on written texts.

Segmentation has been performed on the ba-
sis of perceptual cues of utterance completeness.
As described by Danieli et al. (2005), a break is
said terminal if a competent speaker (i.e. mother
tongue speaker) assigns to it the quality of con-
cluding the sequence. Starting with this observa-
tion, two annotators have been asked to listen to
the original audio tracks and mark transcriptions
with a full stop where they perceived a break as a
boundary between utterances, on the basis of into-
nation and prosodic contour. Utterances perceived
as independent but pronounced too quickly to al-
low a clean cut (especially considering audio seg-
mentation and the consequent features extraction)
have been kept together in a single segment.



To assess the reliability of the segmentation pro-
cess, we measured the accuracy between the two
annotators on a subset of the data (the 40% of the
total, corresponding to one of the three visits). We
adopted a chunking approach to the problem, by
adapting an IOB (Inside-Outside-Begin) tagging
framework to label tokens, from the continuous
transcriptions of the sample, at the beginning (B),
inside (I), end (E) of segments, or outside (O) any
of those. We measured an accuracy of 91,53% in
terms of agreement/disagreement on the basis of
the series of labelled tokens derived for each an-
notator.

At the end of the segmentation process, the
dataset counts 1,114 Italian sentences, with an av-
erage of 20.31 tokens per sentence (std: 11.96),
and an average duration of audio segments of 8.13
seconds (std: 5.22).

An engagement class has been assigned to each
sentence: 1 if an increase in engagement has been
recorded in the span of that sentence, O in case of
decrease or no variation. To compute the class, we
considered the delta between the input and output
values of the continuous measurement obtained
with the annotations, with respect to the begin-
ning and end of sentences. Specifically, for each
sentence we selected all the annotations (one per
millisecond) falling into the sentence boundaries,
and then we subtracted the value of the first one
from the last one. We reduced the task to a bi-
nary classification in order to test to which extent
it is possible to predict engaging content before to
evaluate the possibility to expand the analysis to
a finer classification, accounting also for what is
specifically engaging, not-engaging or neutral.

4 Features Extraction

In order to train and test a classifier in predict-
ing the engagement of the addressee of an ut-
terance, using both linguistic and acoustic infor-
mation, features specific for each modality have
been extracted independently, and then concate-
nated as unique vectors representing each entry of
the dataset.

4.1 Linguistic Features

The textual modality has been encoded by using
Profiling—UD (Brunato et al., 2020), a publicly
available web—based application* inspired to the

*Profiling-UD can be accessed at the following link: ht
tp://linguistic-profiling.italianlp.it

methodology initially presented in Montemagni
(2013), that performs linguistic profiling of a text,
or a large collection of texts, for multiple lan-
guages. The system, based on an intermediate step
of linguistic annotation with UDPipe (Straka et al.,
2016), extracts a total of 129 features per each
analysed document. In this case, Profiling-UD
analysis has been performed per sentence, thus the
output has been considered as the linguistic fea-
ture set of each segment of the dataset. Table 1
reports the 127 features extracted with Profiling-
UD and used as textual modality features for the
classifier.

Linguistic features n

Raw text properties | 2
Morpho-syntactic information | 52
Verbal predicate structure | 10
Parsed tree structures | 15
Syntactic relations | 38
Subordination phenomena | 10
Total | 127

Table 1: Set of linguistic features extracted with
Profiling-UD.

4.2 Acoustic Features

The acoustic modality has been encoded using
OpenSmile® (Eyben et al., 2010), a complete and
open-source toolkit for analysis, processing and
classification of audio data, especially targeted at
speech and music applications such as automatic
speech recognition, speaker identification, emo-
tion recognition, or beat tracking and chord detec-
tion. The acoustic features set used in this case
is the Computational Paralinguistics ChallengE’
(ComParE), which comprises 65 Low-Level De-
scriptors (LLDs), computed per frame. Table 2 re-
ports a summary of the ComParE LLDs extracted
with OpenSmile, grouped by type: prosody-
related, spectrum-related and quality-related.
Given that the duration (and number of frames,
consequently) of audio segments varies, common
transformations (min, max, mean, median, std)
have been applied on the set of per-frame features

3Qut of the 129 Profiling-UD features, n_sentences and to-
kens_per_sent (raw text properties) have not been considered,
given that the analysis has been performed per sentence.

*https://www.audeering.com/research/o
pensmile/

"http://www.compare.openaudio.eu



Acoustic features \ n

Prosodic
Fo (SHS and viterbi smoothing) 1
Sum of auditory spectrum (loudness) 1
Sum of RASTA-style filtered auditory |
spectrum
RMS energy, zero-crossing rate 2
Spectral
RASTA-style auditory spectrum, bands 26

1-26 (0-8 kHz)
MFCC 1-14 14
Spectral energy 250-650 Hz, 1 k—4 kHz 2
Spectral roll off point 0.25, 0.50, 0.75,
4
0.90
Spectral flux, centroid, entropy, slope 4
2
3

Psychoacoustic sharpness, harmonicity
Spectral variance, skewness, kurtosis

Sound quality
Voicing probability 1
Log. HNR, Jitter (local, delta), Shimmer 4
(local)
Total | 65

Table 2: Set of acoustic features extracted with
OpenSmile.

of each segment, leading to a total of 325 acoustic
features (65 LLDs x 5 transformations).

5 Experiments

To explore the possibility to predict engaging sen-
tences, we implemented a machine learning clas-
sifier using the linear SVM algorithm provided by
the scikit-learn library (Pedregosa et al., 2011).

We defined various classification scenarios on
the basis of 3 different train-test splitting of the
dataset. The first, and more common scenario, is
based on a k-fold setting, in which data has been
randomly split in 10 folds, trained on 9 of them
and tested on the remaining one. The second sce-
nario uses data from one POI from all the visits as
a test, and it is trained on the remaining parts. The
third scenario considers data from a whole visit as
test and is trained on the remaining two. Global
results are obtained by averaging the classification
performances of each run per scenario (e.g. aver-
age of all k-fold outputs tested on every fold).

For each scenario, the SVM classifier has been
trained and tested three times, once per single
modality (i.e. linguistic or acoustic features ex-

clusively) and once with joint representations (the
full set of both linguistic and acoustic features).
All the features have been normalised in the range
[0, 1] using the MinMaxScaler algorithm imple-
mented in scikit-learn.

k-fold POI Visit
Baseline | 51.53% | 47.05% | 47.32%
Linguistic | 57.81% | 58.05% | 57.44%
Acoustic | 55.35% | 55.64% | 55.83%
Multimodal | 53.49% | 54.25% | 54.40%

Table 3: Accuracy scores for each classification
scenario with all features settings.

Table 3 reports the aggregated results, in terms
of accuracy, from all the experiments. The base-
line considered is the assignment of the majority
class found in the training data. All the classifiers
in the three scenarios obtain better results than the
baseline, but the multimodal systems (the ones ex-
ploiting both linguistic and acoustic sets of fea-
tures) are never able to do better than models based
on linguistic features only. Moreover, it is possible
to observe that multimodal systems achieve scores
similar to acoustic systems.

Low performances, especially for multimodal
systems, may be ascribed to the fact that the clas-
sifiers are fed with too many features (452 total;
127 textual and 325 acoustic features) with respect
to the dimension of the dataset (1,114 items), and
thus they build representations with low variation
in terms of single feature weight. Moreover, sum-
ming the two sets in the multimodal systems leads
to worst results than single-modality systems, am-
plifying the problem.

In order to verify this hypotesis, we reduced the
number of features by observing the weights as-
signed to each feature by classifiers trained on sin-
gle modalities, and selecting only the top 20 from
each ranked set. Figures 1 and 2 show the reduced
set of features along with their weights for the lin-
guistic and acoustic set of features, respectively.
Among the top-rated, on the linguistic side, we can
find features related to the syntactic tree of the sen-
tence and verbal predicate structure; on the acous-
tic side, principally spectral and prosodic features.

As shown in Table 4, by using this reduced fea-
tures sets, all systems obtain better results with re-
spect to the experiments conducted exploiting the
whole sets of features. Most significant improve-
ments can be traced for models based on acoustic
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Figure 1: Top 20 linguistic features.

k-fold POI Visit
Baseline | 51.53% | 47.05% | 47.32%
Linguistic | 60.78% | 59.86% | 60.39%
Acoustic | 65.70% | 63.87% | 64.86%
Multimodal | 66.07% | 65.36% | 64.03%

Table 4: Accuracy score for each classification
scenario with best features settings.

and multimodal features set, with an average in-
crease in accuracy of the 10%. Differently from
previous experiments, multimodal systems reach
the best overall results in two out of three scenar-

ios (k-fold and POI).

Again, multimodal systems scores are close to
those obtained exploiting exclusively acoustic fea-
tures. For this reason, we compared the pre-
dictions from single modalities with multimodal
ones, and we found out that multimodal systems
predictions overlap more with acoustic systems
(0.86) than with linguistic systems (0.79). It con-
firms that this behaviour is due to the fact that
acoustic features are those more considered by the
multimodal classifier.

It is possible to observe the higher contribution
from acoustic features to the multimodal systems
in Figure 3: among the top 10 most important fea-
tures, only 2 are linguistic, and the trend is dramat-
ically off balance in favour of acoustic features.
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Figure 2: Top 20 acoustic features.

audSpec_Rfilt_sma[17]_max 2.653
pcM_zcr_sma_min 2.447
prep_dist_4 - 1. 908
mfcc_sma[16] min 4 1851
auds ec_Rfilt sma[18] max

Spec_Rfilt_sma[7] min

pcm_| ﬁ‘tMag spectra\s\ope sma_max
mfcc_sma[8]_min

vg_token per clause
||tterDDP sma_median
mfcc_smal6]_max
pcm_fftMag_fband250-650_sma_mean -
“audSpec_Rfilt_Ssma[3]_min -
mfcc_sma[3]_mean
jitterDDP_sma_max
audSpec Rfilt_sma[18] std
tferL oca\ sma_max
dep_dist_csubj
tokens_per sent
subordinate_dist 5
subordinate_dist_4
verbal_root_perc
dep_dist_amod
aux_form_dist_Ger
rma?al proposition_dist
voicingFinalUnclipped_sma_median
aux_mood_dist_Imp
dep_dist_expl:impers
dep_dist_aux:pass
ep_dist_punct
verb_edges_dist_3
pcm_fftMag_spectralKurtosis_sma_max
upos_dist PONCT

ep_dist_conj
pcm_| RMSener%y Sma_max
dist_cop
subordinate_dist_3
voicingFinalUnclipped_sma_min
pem_fftMag_spectralSkewness_sma_min
avg_prepositional chain_len

Figure 3: Features weight after selecting best 20
linguistic and acoustic features.

6 Conclusions

In this paper we introduced a novel multimodal
dataset for the analysis and prediction of engage-
ment, composed of Italian sentences derived from
the speech of an expert guide leading visitors in
cultural sites, enriched with multimodal features,
and labelled on the basis of the perceivable en-
gagement of the audience. We performed several
experiments in different classification scenarios, in
order to explore the possibility to predict engage-



ment on the basis of features extracted for both
the linguistic and acoustic modalities. Combin-
ing modalities in classification leads to good re-
sults, but with a filtered set of features to avoid
too noisy representations. An in interesting ex-
periment would be to combine the outcomes of
two different systems (one exploiting exclusively
acoustic features, linguistic features the other)
rather than using a monolithic one fed with all the
features. This technique often leads to better per-
formances with respect to the decisions taken by a
single system (WoZniak et al., 2014; Malmasi and
Dras, 2018).

Moreover, we are working on aligning features
derived from the visual modality, by encoding in-
formation from the videos used to annotate en-
gagement. In this way, the dataset will contain
a more complete representation, and it would be
possible to correlate perceived engagement in the
audience with the full set of stimuli offered during
the guided tour.
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