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Abstract

We present here FANCY (FActivity, Nega-
tion, Common-sense, hYpernimy), a new
dataset with 4000 sentence pairs con-
cerning complex linguistic phenomena
such as factivity, negation, common-sense
knowledge, hypernymy and hyponymy.
The analysis is developed on two levels:
coarse-grained for the labels of the Natural
Language Inference (NLI), that is to say
the task of determining whether a hypoth-
esis is true (entailment), false (contradic-
tion), or undetermined (neutral) and fine-
grained for the linguistic features of each
phenomenon. For our experiments, we
analyzed the quality of the sentence em-
beddings generated from two transformer-
based neural models, BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019b),
that were fine-tuned on MNLI and were
tested on our dataset, using CBOW as a
baseline. The results obtained are lower
than the performance of the same models
on benchmarks like GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019)
and allow us to understand which linguis-
tic features are the most difficult to under-
stand.

1 Introduction

Nowadays it has become more and more impor-
tant to understand how much neural models ap-
plied to Natural Language Processing can under-
stand about language features.

The probing task methodology is a simple but
effective approach to address this issue (Conneau
et al., 2018). A network is trained on a specific
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task and then the representations are passed to
a classifier. The performance of the classifier is
evaluated with a dataset constructed to test the un-
derstanding of specific linguistic phenomena. If
the classifier performs well, then it can be deduced
that the neural embeddings have stored syntactic
and semantic knowledge relative to those specific
linguisitc phenomena.

One of the most widely used tasks for this ap-
proach is Natural Language Inference, in which
the model must decide whether a hypothesis is an
entailment, a contradiction, or simply neutral with
respect to the premise.

Another approach consists in using bench-
marks, i.e. datasets relating to various types of
tasks, which are able, on the basis of the results ob-
tained, to provide a general judgment on the per-
formance of the model. Although benchmarks are
very useful in evaluating the average performance
of models, they are less effective in representing a
wide range of linguistic phenomena that the mod-
els are able to deal with.

It is in this context that the challenge sets are
born, (also called adversarial sets, stress sets or
diagnostic sets) such as the SNLI (Stanford Nat-
ural Language Inference) (Bowman et al., 2015)
and the MultiNLI (Multi-genre Natural Language
Inference) (Williams et al., 2018). This datasets
provide the possibility of more specific evaluation
frameworks compared to traditional benchmarks
(Belinkov and Glass, 2019): as in the case of the
probing task, the aim is to evaluate the quality of
linguistic information encoded by vector represen-
tations.

For our research we built a diagnostic dataset
that addresses key aspects of the human knowl-
edge of lexical and compositional meaning, in or-
der to test the deep semantic abilities of the latest
computational models.

In this paper, we introduce FANCY, a dataset
with 4,000 different hand-annotated sentence pairs



with inference relation between them. In Sec-
tion 3 we will briefly present the linguistic phe-
nomena we decided to analyze. In Section 4 we
will present the methods of dataset construction
and in Section 5 we will discuss the results of the
experiments conducted on FANCY.

2 Related Work

Despite the progress made in recent years in the
study of vector representations, it is still difficult
to understand exactly what kind of linguistic prop-
erties they capture. The main approaches used in
this area are probing tasks and diagnostic datasets.

A probing task is a classification problem fo-
cused on the simple linguistic properties of sen-
tences (Conneau et al., 2018). This approach has
been used on a wide variety of linguistic phe-
nomena. The work of Ettinger (2016), for exam-
ple, focused on semantic role and negation scope:
the sentence embeddings used are Skip-Thought
(Kiros et al., 2015), Paragram (Le and Mikolov,
2014) and those obtained from the average of
GloVe word embeddings (Pennington et al., 2014).
Adi et al. (2016) verified whether sentence embed-
dings are able to encode information such as the
order, length and content of words in a sentence.
These elements were evaluated on sentence em-
bedding produced by CBOW (Continuous Bag-of-
Words) and Encoder-Decoder (ED) models, both
pre-trained on Wikipedia.

On the other hand, the importance of challenge
sets is demonstrated by the fact that some tradi-
tional benchmarks have been equipped, in addi-
tion to the standard datasets, with challenge sets
dedicated entirely to the NLI task. In fact, both
GLUE and SuperGLUE have a diagnostic dataset,
consisting of about 1000 pairs of manually con-
structed sentences involving 30 linguistic phenom-
ena, including anaphora, factivity, negation, re-
dundancy, hyponymy, etc. Similar challenge sets
have been developed and described in the publi-
cations of Naik et al. (2018), a dataset in which
the errors committed related to negation, anti-
nomies and numerical reasoning are also investi-
gated, Glockner et al. (2018), a challenge set cre-
ated with particular reference to common knowl-
edge and McCoy et al. (2019), an evaluation
dataset that contains 30,000 specific examples on
which neural models perform incorrect classifica-
tions, such as lexical overlap, subsequence, con-
stituent, etc.

3 Linguistic Phenomena

We selected four different kinds of linguistic phe-
nomena to analyze: (1) the factivity, which ad-
dress the truthfulness and the factuality of the
events mentioned inside the phrases, (2) the nega-
tion, which in the English language can be ex-
pressed by several terms and situations, (3) hierar-
chical relations, i.e. semantic relations like hyper-
nymy between a general term and a more specific
term, and (4) the common-sense knowledge, which
relates to the shared knowledge among speakers
about events and facts concerning the real world.

3.1 Factivity

Factivity is a linguistic phenomenon related to the
truthfulness of events or concepts that are men-
tioned and expressed in a sentence: each event,
based on the elements contained in the sentence,
can assume a certain degree of certainty.

a. John thinks it’s raining.
b. John knows it’s raining.
When a speaker reads the non-factive verb think

(a.), he understands that the event mentioned in the
sentence (it’s raining) is just a possibility, while he
deduces that it’s a fact when the factive verb know
is used (b.).

When we talk of situations and events that oc-
cur, have occurred or will surely occur in the
world, we present them as facts, while we usually
complete our tales using approximations in cases
where we do not know whether the things we are
talking about have actually happened and we are
not completely sure of their certainty. It is in this
context that we can observe the phenomenon of
factivity (Saurı́ and Pustejovsky, 2012).

3.2 Negation

Negation is a complex phenomenon that charac-
terize human language among all (Horn, 1989).
From a logical perspective, it is the opposite of af-
firmation, which means that the truth value of the
statement is reversed by the negative. The main
challenge is to identify the scope of the negative
marker within the sentence, i.e. which element
is semantically negated (Jackendoff, 1969). If we
consider a sentence such as Mary does not read
carefully, we can observe that the scope is partial,
because the negation refers only to the adverb. Be-
sides the most common not, nobody and nothing,
we have taken into account all possible negative
cases in the English language.



Negation may be implicit, such as forget mean-
ing not remember, or affixal in such terms as il-
legal or dis-agreement. It could be related to
quantifiers, in cases such as not all veggies are
tasty which contradicts all veggies are not tasty.
Some sentences can occur with double negative
markers, such as John called neither his father
nor his mother. Moreover, we can observe con-
trastive negation (McCawley, 1991), in sentences
like John drank not coffee but tea. So, although
characteristic of all languages and frequently used,
negation is a complex phenomenon to investigate.

3.3 Hierarchical Relations
In many cases, the entailment relations can oc-
cur not only at a sentence level but also at a word
level, if we consider the meaning relations that ex-
ist between words: these kinds of relations are de-
fined as lexical entailment (Roller, 2017) and they
are determined for example by subtype/type hier-
archical relations such as hyponymy (dog is hy-
ponym of animal) and troponymy (run is troponym
of move) (Pustejovsky and Batiukova, 2019). We
define the subtype/type relation as entailment (dog
entails animal) and the type/subtype relation as
neutral (animal does not entail dog) (MacCartney
and Manning, 2009). However, the logical rela-
tions between lexical elements can be differently
projected by the properties (upward monotone,
downward monotone and non-monotone) of some
semantic functions (projectivity signatures) such
as restrictive quantifiers (some, any, every, etc.),
negation and superlative (MacCartney and Man-
ning, 2014). A function is upward monotone if
the logical relation between premise and hypothe-
sis is projected without change: the sentence some
parrots talk entails some birds talk. A function is
downward monotone if it reverses the logical rela-
tions between premise and hypothesis: no fish talk
entails no carp talk. A function is non-monotone
if it projects the logical relation between premise
and hypothesis as neutral: most humans talk does
not entail most animals talk (and vice-versa).

3.4 Common-Sense Knowledge
The concept of common-sense is hard to define
because it is strictly entangled with the way we
humans reason. Even though its definition is con-
troversial, we adopt here what Feldman called The
Standard View (Feldman, 2003). In his book he
defined eleven categories that give us an idea of the
things we know as human beings. He stated two

different thesis that constitute the Standard View:
the first one states that We know a large variety
of things in categories (a)-(k)1 and the second one
states that Our primary sources of knowledge are
(a)-(f)2.

Starting from the types suggested by LoBue and
Yates (2011), we grouped common-sense into five
macro-categories.

Causal Relations The categories in which the
statement of the premise causes the hypothesis
statement, e.g. the man had a bath entails the man
got wet: here we can see how the fact that the man
took a bath is the cause for him of being wet, hence
there is a Cause/Effect relation. At the same time
the fact that Mary was married to John automati-
cally implies John was married to Mary, therefore
the relation is of Simultaneous Condition.

Spatial Relations This category includes sen-
tences that specify the physical position of an
agent or an object with respect to someone or
something, e.g. the fact that John is inside his
home contradicts the sentence John is close to his
home because: in this case, the spatial prepositions
inside and close to cannot subsist at the same time.

Temporal Relations In this category are in-
cluded texts that specify the time of en event with
respect to someone or something, e.g. the fact that
Julius Caesar was assassinated in 44 B.C. implies
that Julius Caesar died before the birth of Christ.
In this example the reader is supposed to know that
B.C. indicates the birth of Christ, which is not triv-
ial.

World Knowledge Relations All the categories
that suppose a previous knowledge of the phenom-
enal or human world, for example all the sentences
that suppose a geographic knowledge to be cor-
rectly tagged, e.g. Charles Dickens is buried in
Westminster Abbey implies that Charles Dickens
rests in London only if we know that Westminster
is in London.

Other Relations In this set we put all the cate-
gories which are not included in the previous ones
(e.g., arithmetic relations and mutually exclusive
relations). For example, On the train, there are
340 passengers and 40 employees implies that On
the train, there are 380 people because we know
that if there are 340 + 40 people on the train then
the total of the people will be 380.

1The categories that we know, such as the past, morality,
science etc.

2He individuated six different sources of knowledge such
as perception, memory,reasoning etc.



4 Dataset Construction

The dataset created for the experiments consists
in 4000 pairs of sentences that were built manu-
ally by the authors, and this is because we decided
to only include sentences that were as simple and
clear as possible, in order to specifically focus on
the linguistic features of the phenomena and to
exclude other external factors of complexity that
could have affected the performance of the neural
models. For the construction of FANCY, we fol-
lowed the diagnostic dataset schema provided with
the SuperGlue3 benchmark for models evaluation,
so all the data were inserted in a tabular framework
and tagged with the following columns and labels.

Premise and Hypothesis Are the first two
columns of the dataset and indicate which sen-
tence is the premise and which is the hypothesis.

FW and BW These two columns point out
which one of the sentences should be used as the
premise. For instance, if we find the sentence
Granada is in Spain as the premise, and Granada
is in Europe as the hypothesis in the database, the
column FW (forward) considers the first as the
premise and the second as the hypothesis while
the columns BW (backward) considers the second
sentence as the premise and the first as the hypoth-
esis. In both of the columns we inserted the cor-
rect output: in the example above, the column FW
would contain the tag entailment, because the first
sentence implies the second one, while the column
BW would contain the tag neutral because the sec-
ond sentence does not imply the first one but does
not contradict that either.

Phenomenon Category This column is very
important for this study because it specifies which
kind of feature regarding a particular phenomenon
is represented by the sentence pairs.

Phenomenon E N C
Factivity 239 465 296
Negation 410 428 158
Hierarchical 369 475 156
Common-sense 388 254 358

Table 1: Distribution of Entailment (E), Neutral (N) and
Contradiction (C) labels.

In Table 1 we can see that FANCY is composed
of 1406 pairs of sentences that lead to an entail-
ment, 1622 sets of neutral sentences and 968 con-
tradictions.

3https://super.gluebenchmark.com/diagnostics

5 Experiments

In this section, we report the results of the exper-
iments conducted using our dataset FANCY. We
tested state-of-the-art models for NLI on the four
different linguistic phenomena in the dataset. We
selected bert-base-uncased-MNLI and roberta-
large-mnli, both of which were finetuned on the
MNLI dataset, and also a baseline model based
on CBOW. The BERT and RoBERTa models are
based on the Transformer architecture and are
available on the Hugging Face web page.4 For
what concerns the CBOW model, it was built us-
ing the tensorflow library,5 with the word embed-
dings generated by GloVe pretrained with 840 Bil-
lions tokens, a vocabulary of 2.2 millions cased
words and the resulting word vectors with 300 di-
mensions.6 The model was then trained on the
MultiNLI dataset, so that all three models were
trained on the same data.

Set BERT RoBERTa CBOW
MNLI 84.6 90.2 65.2
Factivity 65.2 74.6 45.1
Negation 70.0 82.0 45.0
Hierarchical 49.7 60.4 37.8
Common-sense 57.0 68.0 41.0

Table 2: Accuracies report.

We tested every model on the examples of
FANCY. The results in Table 5 show how the mod-
els struggled to address these kind of phenomena,
if compared with the results on the MNLI. We
can see that the baseline model performed quite
poorly on all the subsets of our data. RoBERTa
is the best performing one, even though it showed
poor performances on linguistic phenomena such
as common-sense and hierarchical relations while
performing better on factivity and negations.

Label Error Tot %
Possibly Fact 257 416 62
Possibly Counterfact 8 50 16
Fact 27 244 11
Counterfact 32 290 11

Table 3: RoBERTa errors on factivity relations.

In Table 3 we can see the errors that RoBERTa
made in labeling examples regarding factivity.
Most of the errors concern examples where the hy-
pothesis gave place to a Possible fact and therefore
should be tagged as neutral.

4https://huggingface.co/
5https://www.tensorflow.org/
6https://nlp.stanford.edu/projects/glove/



Premise Hypothesis Gold Pred.
The man was born in 1950. The man was 18 in 1968. E C

No arrow hit the target. Not all arrows hit the target. C E

Bob believes that Twin Peaks Twin Peaks is the best tv N E

is the best tv show ever. show ever.
All seagulls fly. All birds fly. N E

Table 4: Error examples. The column Gold contains the correct tags, while the column Predicted contains the incorrect tags
predicted by RoBERTa.

Label Errors Tot %
Negation 116 568 62
Implicit Negation 30 146 16
Contrastive Negation 19 179 10
Partial Negation 16 32 8
Affixal Negation 5 75 3

Table 5: RoBERTa errors on negation relations.

In Table 5 it is evident that the largest number
of errors belongs to the Negation macro-category.
In this case, the sentences contained elements such
as quantifiers, modals, temporal adverbs and rela-
tive pronouns. Therefore, it appears that the com-
prehension of negation is more difficult when it is
related to these elements.

Label Errors Tot %
Downward Monotone 189 222 48
Upward Monotone 25 138 6
Non-Monotone 62 98 16

Table 6: RoBERTa errors on hierarchical relations.

In Table 6 we can see the errors made by the
RoBERTa in dealing with hierarchical relation-
ships. Most errors relate to Downward Monotone
and Non-Monotone sentences.

Label Errors Tot %
Temporal Relation 64 182 19.94
Preconditions 53 146 16.51
World Knowledge 26 60 8.10
Spatial Relation 45 148 14.02
Cause/Effect 24 74 7.48

Table 7: RoBERTa errors on common-sense relations.

In Table 7 we show only the most relevant
categories for what concerns the errors commit-
ted by the model dealing with common-sense and
common-knowledge.

As we can see, Temporal Relation, Precondi-
tions and Spatial Relation are the most difficult
categories for the model to label correctly.

As illustrative examples, in Table 4 are four sen-
tences mislabelled by RoBERTa. We note that the

sentences are very simple and easy for human be-
ings to understand.

6 Conclusions

Following a large number of recent studies (Naik
et al., 2018), (Glockner et al., 2018), (Belinkov
et al., 2019), (Liu et al., 2019a), we also tried to
investigate whether the latest neural models were
able to understand certain linguistic phenomena.
On the one hand, we wanted to test the models on
the real understanding of the English language, on
the other hand, we wanted to build a fine-grained
dataset, which allows a detailed analysis of each
phenomenon. We tested two of the the most high-
performance models such as BERT and RoBERTa
and we observed how they struggle dealing with
linguistic features that are quite simple to under-
stand for a human being.

We have shown how the models can better han-
dle phenomena such as factivity and negation if
compared with the results obtained on hierarchi-
cal relation and common-sense knowledge. More
in particular, we were able to stress how the state-
of-the-art models struggle in dealing with linguis-
tic phenomena that are essential for a correct un-
derstanding of the language such as the possi-
bility generated by a statement, temporal rela-
tions between entities, the negation when there
is a presence of temporal adverbs and relative
pronouns and cases of downward monotone sen-
tences. In future developments of our work we
could use FANCY in order to perform fine tun-
ing on Transformer-based models with the aim of
increasing model performance and inferential ca-
pabilities. To do this it would be useful to produce
more data, possibly annotated by different people,
to test the models developed on different types of
natural language. At the same time, the dataset
could be implemented with other languages, such
as Italian.
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