
Atypical or Underrepresented?
A Pilot Study on Small Treebanks

Akshay Aggarwal1 and Chiara Alzetta2

1. Twilio, Prague, Czechia
2. Istituto di Linguistica Computazionale “A.Zampolli”, CNR, Pisa - ItaliaNLP Lab

aaggarwal@twilio.com, chiara.alzetta@ilc.cnr.it

Abstract

We illustrate an approach for multilingual
treebanks explorations by introducing a
novel adaptation to small treebanks of a
methodology for identifying cross-lingual
quantitative trends in the distribution of
dependency relations. By relying on the
principles of cross-validation, we reduce
the amount of data required to execute
the method, paving the way to expanding
its use to low-resources languages. We
validated the approach on 8 small tree-
banks, each containing less than 100,000
tokens and representing typologically dif-
ferent languages. We also show prelim-
inary but promising evidence on the use
of the proposed methodology for treebank
expansion.

1 Introduction and Motivation

Linguistically-annotated language resources like
treebanks are fundamental for developing reliable
models to train and test tools used to address Nat-
ural Language Processing (NLP) tasks acquiring
linguistic evidence from corpora. Concerning the
latter, researchers frequently rely on multilingual
or parallel resources in contrastive studies to quan-
tify the similarities and differences between lan-
guages (Jiang and Liu, 2018). Over the past few
years, the Universal Dependencies (UD) initia-
tive1 (Zeman et al., 2021) has further encouraged
such studies. UD defines a universal inventory
of categories and guidelines to facilitate consis-
tent annotation of similar constructions across lan-
guages (Nivre, 2015; de Marneffe et al., 2021),
and, at present, the project includes about 200 tree-
banks representing over 100 languages. The con-
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sistent annotation of linguistic phenomena under
a shared representation and across different lan-
guages makes UD treebanks exceptionally well
suited for quantitative comparison of languages
(see, for example, Croft et al. (2017), Berdicevskis
et al. (2018), Vylomova et al. (2020) and among
our works, Alzetta et al. (2019a) and Alzetta et al.
(2020a)).

Despite their great relevance for linguistic in-
vestigations, large treebanks are available for only
a tiny fraction of the world’s languages (Vania et
al., 2019). Even within the UD project, around
60% of the treebanks can be considered small,
i.e. containing less than 100,000 tokens. Tree-
bank size, in fact, is generally identified as the
bottleneck for obtaining high-quality representa-
tive models of language use to be employed in
downstream NLP applications. In general terms,
larger datasets allow for better generalisations of
language constructions, leading to better perfor-
mances of systems trained using such data (Zeman
et al., 2018). In fact, ad-hoc strategies are gener-
ally needed when dealing with low-resourced lan-
guages (Hedderich et al., 2021).

This paper illustrates a novel workflow specif-
ically designed to adapt an existing methodology
for treebank exploration to small treebanks. The
base method, extensively described by Alzetta et
al. (2020b), relies on an unsupervised algorithm
called LISCA (LInguistically–driven Selection of
Correct Arcs) (Dell’Orletta et al., 2013). LISCA
has been successfully employed in past works
for performing quantitative cross-lingual analyses
(Alzetta et al., 2019a; Alzetta et al., 2019b; Alzetta
et al., 2020a) and error detection on UD treebanks
(Alzetta et al., 2017). The algorithm works in
two main steps. First, it acquires evidence about
language use from the distributions of phenomena
in annotated sentences. The algorithm then uses
such evidence to distinguish typical from atypical
constructions in an unseen set of sentences. The



typicality of a construction is determined with re-
spect to the examples observed in a corpus used
as a reference, and is encoded with a score. This
score, in fact, reflects the probability of observing
a dependency occurring in a given context (both
sentence-level and corpus-level) on the basis of the
constructions sharing common properties reported
in the reference corpus. Hence, from our point of
view, typicality and frequency are tightly related
concepts, as non-standard constructions are also
usually less frequent in natural language use.

As such, the LISCA methodology relies on
large sets of automatically parsed sentences to col-
lect the statistics about phenomena distributions:
even if the data contains parsing errors2, the cor-
pus size guarantees the collected statistics reflect
the actual language use. However, such an ap-
proach can be employed only for analysing lan-
guages for which large amounts of data are avail-
able, or at least for which the parser outputs are
generally considered reliable. To overcome such a
limit, Aggarwal (2020) suggested that if the statis-
tics are acquired from gold annotations (such as
treebanks), the algorithm could collect the statis-
tics from fewer data since these resources are as-
sumed to be error-free.

We implemented this proposal by adapting the
original LISCA workflow as detailed in Section 2.
Our variation to the original methodology is in-
spired by the k-fold approach commonly used for
performing systems’ cross-validation: according
to this approach, a dataset is split into sub-sets
of equal size, iteratively used for training and/or
evaluating a system. We employ a similar strategy
for evaluating the typicality of the dependency re-
lations in each treebank split, acquiring the statis-
tics from the sentences contained in the other splits
rather than from an external reference corpus. This
small but substantial change in the method work-
flow allows us to apply the LISCA algorithm to
small treebanks, which is particularly relevant in
the case of analyses performed on low-resource
languages.

We tested the methodology in a case study, re-
ported in Section 3, involving 8 languages rep-
resented using UD treebanks. Our goal is to
test if our method can support linguistic inves-
tigations for exploring and quantifying similari-

2An assumption when producing automatically parsed
data is that most of the errors made by a parser are consis-
tent. As we showed in (Alzetta et al., 2017), the LISCA-based
method allows to spot these errors types in annotations.

ties and differences between typologically differ-
ent languages. To this aim, we first validate the
adaptation to the original LISCA approach pro-
posed here in Section 3.1. Then, we exemplify
how the obtained results can be employed for lin-
guistic investigations in Section 3.2. To improve
the cross–linguistic comparability of the analy-
sis, we relied on Parallel UD (PUD) treebanks: a
collection of parallel treebanks developed for the
CoNLL–2017 Shared Task on multilingual pars-
ing (Zeman et al., 2017) and linguistically anno-
tated under the UD representation. Being parallel,
PUDs are particularly well suited for carrying out
multilingual studies since they contain only 1,000
sentences manually translated from English into
the other languages, representing a perfect testbed
for our approach.

Before concluding the paper in Section 5, we
report the results of preliminary investigations to
explore whether our approach could also be em-
ployed for automatically identifying underrepre-
sented phenomena in treebanks. Søgaard (2020)
and Anderson et al. (2021) argue that some tree-
banks cover only a restricted sample of the struc-
tures commonly used in a language, leaving out
less common phenomena. This leakiness might af-
fect the performances of NLP systems even more
than the system architecture. Thus, treebanks
should be expanded not only to improve their rep-
resentativeness but also to obtain more truthful
performances of systems trained using them. Sec-
tion 4 investigates if our methodology can con-
tribute to this issue by exploring its application in
automatic treebank expansion.

The contributions of the paper can be listed
as: (i) a novel approach specifically designed for
carrying out multilingual investigations on small
treebanks; (ii) a case study involving eight typo-
logically different languages to test the methodol-
ogy; and (iii) a novel formula, introduced in Sec-
tion 3.2, to measure the distance between depen-
dents and their syntactic head which improves the
cross-lingual comparability of treebanks with re-
spect to such property.

2 Approach

The method presented in this paper relies on a
methodology for treebank exploration based on
the unsupervised algorithm LISCA (Dell’Orletta
et al., 2013), which we adapted to expand its usage
for small treebanks, namely containing less than



100,000 tokens.
As mentioned earlier, LISCA can be employed

to quantify the typicality of each dependency re-
lation (hereafter deprel)3 of a linguistically anno-
tated corpus with respect to a large set of exam-
ples taken as reference (Alzetta et al., 2020b). To
achieve this goal, the algorithm first collects statis-
tics about linguistically motivated properties of
deprels extracted from a corpus of automatically
parsed sentences (called reference corpus) to cre-
ate a statistical model (SM). Then, the algorithm
calculates a typicality score for each deprel ap-
pearing in a test corpus relying on the SM while
also considering its linguistic context to assess the
relevance of the dependency label used for mark-
ing the dependency in the given context. When
interpreting the assigned LISCA score, a deprel
marked by LISCA as highly typical was possibly
frequently observed in similar contexts also in the
reference corpus. In contrast, an atypical deprel
could be characterised by certain properties which
make it somehow distant from the other instances
of dependency marked with the same label in the
reference corpus.

In essence, LISCA computes the score for a
given deprel taking into account local properties
(e.g., dependency length and direction) of each de-
prel in the test corpus as well as the linguistic con-
text where it is located (e.g., distance form root,
leaves and number of siblings), comparing them
both against the properties and contexts of all de-
pendencies annotated with the same dependency
label in the reference corpus. For this reason, the
reference corpus has generally corresponded to a
large corpus of around 40M tokens: the corpus
size allows accounting for a more comprehensive
set of examples of linguistic constructions while
also compensating for possible parser errors.

Workflow. For this study, we implemented the
adaptation of the LISCA workflow proposed by
Aggarwal (2020). Inspired by the k-fold valida-
tion approach, we modified the original approach
as follows:
1) Split a treebank into k portions of equal size
(k = 4 for this work), each containing the same
number of sentences;
2) Use LISCA to acquire the statistics (encoded
in the SM) about the distribution of linguistic
phenomena from a reference corpus obtained by

3Given a deprel A
nsubj−−−−→ B, we refer to A −→ B as the

dependency, with nsubj as the dependency label.

merging k−1 portions of the previously split tree-
bank;
3) Use the obtained SM to compute the typical-
ity score of the deprels appearing in the remaining
treebank portion (i.e., the one not included in the
reference corpus);
4) Repeat steps 2 and 3 until all k portions are
analysed;
5) Merge the analysed portions and order the de-
prels by decreasing LISCA score to have a unique
ranking of all the deprels in the treebank.

The ordered ranking of deprels can be explored
to investigate which linguistic constructions, rep-
resented by means of the deprels, were marked
as typical or atypical, characterised by higher and
lower scores, respectively.

2.1 Data and Languages

We tested our method on a selection of Parallel
UD (PUD) treebanks (Zeman et al., 2017), each
containing 1,000 sentences. In order to encom-
pass different language families and genera4, we
carried out the case study on the following eight
languages: Arabic (AR; Afro-Asiatic, Semitic),
Czech (CZ; Indo-European, Slavic), English (EN;
Indo-European, Germanic), Hindi (HI; Indo-
European, Indic), Finnish (FI; Uralic, Finnic), In-
donesian (ID; Austronesian, Malayo-Sumbawan),
Italian (IT; Indo-European, Romance) and Thai
(TH; Tai-Kadai, Kam-Tai).

3 Results

3.1 Validating the Approach

We report the results of an analysis to verify
whether the adapted and original LISCA-based
methods return comparable results. To this aim,
we compared the LISCA ranking of PUD deprels
obtained using the original algorithm workflow,
which employs a large reference corpus to build
the language SM, and the novel workflow defined
above, which acquires the statistics from the tree-
bank itself. We carried out this analysis for Ital-
ian and English PUD treebanks. We manually
verified in previous studies that the original ap-
proach applied to those languages allows captur-
ing elements of linguistic and parsing complexity

4The language family and genus, reported between paren-
thesis as (ISO language code, family, genus), are acquired
from the World Atlas of Language Structures (WALS, avail-
able online https://wals.info/languoid) (Dryer
and Haspelmath, 2013).



distinguishing between typical and atypical con-
structions along with the produced ranking of de-
prels (Alzetta et al., 2019a; Alzetta et al., 2020b).

We compared the deprel rankings obtained us-
ing the two methodology workflows in terms of
Spearman correlation, which returns a rank cor-
relation coefficient indicating a statistical depen-
dence between the rankings of two observed vari-
ables. The analysis showed a strong and signif-
icant correlation between the rankings produced
relying on the two workflows in both languages.
Specifically, we obtained a Spearman correlation
coefficient of 0.95 (p < 0.5) for Italian and En-
glish.

Such high correlations confirm that gold cor-
pora, although small, can be used to acquire rel-
evant statistics about language use. Manually re-
vised data might be limited in size. However,
their annotations are also generally correct in the
case of rare phenomena, which a parser could
wrongly annotate due to their low frequency in
the data. While large reference corpora compen-
sate for the possibly wrong parses assigned to rare
constructions with their size, small reference cor-
pora shall compensate with consistency and cor-
rectness. Hence, we could say that using gold data
for building the SM allows reducing the number
of examples for acquiring language statistics. We
notice a difference between the two rankings only
when focusing on the bottom part, where we find
deprels with the lowest scores. While the origi-
nal method produces only a tiny number of deprels
with LISCA score equal to 0, which we usually ex-
cluded from the analyses, we observe many more
of them in the ranking produced with our work-
flow adaptation. LISCA score zero is assigned
to those dependencies never observed in the refer-
ence corpus; thus, their typicality is extremely low.
It is not surprising that smaller reference corpora
produce a higher number of these cases, given
their limited coverage. However, the high correla-
tion coefficient reported above suggests that such
deprels are still interesting from a linguistic per-
spective. They correspond to rare constructions
in the language, obtaining a score slightly higher
than zero in the case of a larger reference corpus
but are still placed in the lower positions of the
ranking.

Figure 1: LinkLengthAdjusted formula for nor-
malising deprel length in multilingual compar-
isons. Note: ⌊·⌋ denotes floor function, while
[a, b] denotes closed interval over a and b.

3.2 Rankings Exploration

This subsection exemplifies how the ranking of de-
prels obtained with our adapted approach can be
employed in linguistic analyses to identify sim-
ilarities and differences between languages. For
this case study, we focused on a specific property
of deprels, namely the length of the dependency
link. The length of a deprel, measured as the linear
distance in terms of intervening tokens between
a word and its syntactic head, is a property fre-
quently explored in linguistically annotated cor-
pora. It is highly related to processing complexity
in all languages (Demberg and Keller, 2008; Tem-
perley, 2007; Futrell et al., 2015; Yu et al., 2019).
For example, McDonald and Nivre (2011) ob-
served that parsers tend to make more mistakes on
longer sentences and longer dependencies. Such
complexity makes this property particularly inter-
esting from a multilingual perspective, especially
when dealing with parallel corpora, as in our case
study.

We inspected the ranking of deprels to monitor
the LISCA score associated with deprels of differ-
ent lengths and their distribution along the rank-
ing of each language. To facilitate the rankings
exploration and comparison, we split each rank-
ing into three portions of equal size, referred to
as top, middle and bottom, where top contains de-
prels obtaining the highest scores (more typical).
In contrast, the bottom contains the deprels with
the lowest scores (atypical).

In order to allow a proper multilingual compari-
son of the distribution of deprel lengths along with
the rankings, we defined the novel measure called
Adjusted Link Length (LLadjusted, cf. Figure 1).
The measure, inspired by Brevity Penalty used in
BLEU score (Papineni et al., 2002), is designed
to compute the length of deprels involving content
words as dependant while simultaneously improv-
ing cross-language comparability as the length of



Figure 2: Distribution of Adjusted Link Length on content words across LISCA Rankings.

a deprel is measured keeping in mind the over-
all length of the sentence where it is located and
the average sentence length in the treebank. This
way, instead of comparing absolute length values,
we can observe the tendency of languages towards
producing longer or shorter deprels.

In LLadjusted, we operationally compute
the length of deprels as a function of a)
the average sentence length in the treebank
(TrbAvgSentLen), b) the length of the sentence
where the deprel appears (SentLength), and c)
the distance, in tokens, between the dependent and
its syntactic head (LLraw). The formula’s values
of 0.5 and 1.25 were determined empirically to
account for unusually short and long sentences,
respectively, in the treebank. Thus, the result-
ing value associated with each deprel denotes it
as ‘long’, ‘medium’ or ‘short’ with respect to the
average deprel length computed in the treebank.
Note that, although our analysis focuses on con-
tent words, function words are still accounted for
when computing the LISCA score as they might
be part of the context of content words.

Figure 2 displays the distribution of deprels
of different lengths (computed using LLadjusted)
along the portions of the treebank ranking of
each language. The distributions show that longer
deprels are given a lower plausibility score by
LISCA in all languages. Interestingly, the length
distributions are pretty similar across different
languages except for Hindi. Such difference
could be due to the typical word order of con-
stituents of the considered languages. Hindi,
in fact, is the only language of our set where
the order of the main constituents is of the type
S(ubject)O(bject)V(erb)5, and the dominant word

5All the other languages are S(ubject)V(erb)O(bject) lan-
guages.

order of a language has been shown to influence
the dependency length across major dependency
types by Yadav et al. (2020).

It should be noted that such difference between
languages could also be observed computing the
length of dependency relations straightforwardly
on PUD treebanks: the average linear link length
computed on Hindi PUD is 6.54, for Thai PUD,
the language showing shorter relations, is 2.67,
while the remaining languages show a value rang-
ing between 3.1 and 3.5. However, our method-
ology allows us to combine multiple properties si-
multaneously into a score, thus isolating in differ-
ent portions of the rankings the deprels that show
an atypical value for a given property but could
be still considered quite typical for the language
based on their context. As proof, observe that long
and medium deprels in Hindi tend to appear earlier
in the ranking than in other languages: 19.73% of
deprels located in the middle bin are covered by
medium and long deprels, suggesting that longer
deprels are more common in Hindi. On the con-
trary, only 7% of deprels of the middle bin are
long in Thai, pointing to their atypicality in the
language.

The above results show the methodology’s ef-
fectiveness for exploring tendencies and peculiari-
ties of languages in multilingual studies. However,
small samples like PUD treebanks are usually not
suited for analysing infrequent phenomena (Taher-
doost, 2016). Hence, one might wonder if we are
actually capturing the atypicality of linguistic con-
structions, or instead, we are biased by phenomena
underrepresented in the treebank. In the follow-
ing Section, we will explore whether low LISCA
scores might be associated with infrequent linguis-
tic phenomena due to under-representation in the
data used to build the SM.



Figure 3: Parsing accuracy (LAS) on sentences
having high and low LISCA scores.

4 Towards Treebank Expansion

Our analyses started from the premise that PUD
treebanks are error-free. Therefore we can look at
the rankings as containing correctly annotated ex-
amples of language use. However, the approach
employed in this study does not exclude the sce-
nario that a deprel might obtain a low LISCA score
because of a lack of similar constructions in the
treebank. We explored this idea both at deprel and
sentence level, as described below.

Concerning the deprel–level analysis, we tested
the accuracy of a parser for deprels in the three
portions of the LISCA rankings. To this aim, we
parsed each PUD treebanks using UDPipe (Straka
et al., 2016), relying on the k-fold approach used
to train LISCA: we split each PUD into 4 por-
tions of 250 sentences each, trained UDPipe with
3
4 of the portions and parsed the remaining por-
tion. Then, we checked if deprels were parsed ac-
curately. Again, we excluded function words from
this analysis to improve cross-language compara-
bility and avoid biased results as function words
are usually more accurately parsed than content
words. We observed that wrongly parsed deprels
mainly concentrate in the bottom bins for all lan-
guages based on the obtained results. This sug-
gests that there might be a relationship between
low LISCA scores and underrepresented phenom-
ena.

For the sentence-level analysis, we computed
the LISCA score for each sentence in all PUD tree-
banks as the arithmetic mean of the scores of the
individual deprels belonging to the sentence to get
a sentence–level LISCA score. In the analysis,
we explored whether sentences with low average
LISCA scores are also more difficult to parse than
those with higher average LISCA scores. Having
computed the sentence–level LISCA scores, we

collected two test sets of 100 sentences each by
grouping sentences showing the highest and low-
est LISCA scores. Then, we trained UDPipe using
the remaining 800 sentences of PUD. The perfor-
mances of UDPipe on the test sets are reported in
terms of Labelled Attachment Score (LAS).

The results of this experiment are reported in
Figure 3. We observe that the test sets composed
of sentences characterised by the highest scores
are more accurately parsed than the lower-score
sets for all the languages involved. Differences
between languages in terms of overall Label At-
tachment Score (LAS) and between the two sub-
groups of sentences will be further investigated in
future work. Such results complement the deprel-
level analysis: they suggest that the methodology
could isolate difficult-to-parse sentences, and not
only deprels, that could be employed to expand
treebanks.

Treebank expansion is extremely valuable for
low-resourced languages and small resources in
general as it allows to include unseen exam-
ples to treebanks. Our results suggest that the
sentence suites collected by grouping sentences
characterised by the lowest LISCA scores con-
tain difficult-to-parse constructions, possibly un-
derrepresented in PUD, that should be included in
the treebank to improve its representativeness.

5 Conclusion

We proposed a novel workflow to adapt an ex-
isting approach for treebank exploration to small
treebanks and low-resourced languages. Results
of our analyses showed the effectiveness of the
methodology in multiple scenarios. First, the
adapted method allows obtaining reliable results
on par with the original method workflow when
performing linguistic explorations of the tree-
banks. Secondly, the results also show the po-
tential of the method for automatically identify-
ing underrepresented constructions in treebanks.
The latter result paves the way for the automatic
identification of cases required to expand the tree-
banks, which we plan to further investigate in fu-
ture work.
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Larissa Rinaldi, Laura Rituma, Luisa Rocha, Eiríkur
Rögnvaldsson, Mykhailo Romanenko, Rudolf Rosa,
Valentin Ros, ca, Davide Rovati, Olga Rudina, Jack
Rueter, Kristján Rúnarsson, Shoval Sadde, Pegah
Safari, Benoît Sagot, Aleksi Sahala, Shadi Saleh,
Alessio Salomoni, Tanja Samardžić, Stephanie Sam-
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