
11

A Method for Collecting Security-Specific Architectural
Information for Microservice-Based Systems for Design Security
Assessment

Alexander V. Barabanov 1

1 Huawei, Chong-Ming Technology Center, 17 Krylatskaya ul., Moscow, 121614, Russia

Abstract
Objective. The microservice architecture is being increasingly used for designing and
implementing application systems in both cloud-based and on premise infrastructures. There
are many security challenges need to be addressed in the application design and
implementation phases. In order to address some security challenges it is necessity to collect
security-specific information on application architecture. The goal of this article is to provide
a concrete proposal of approach on how to collect microservice-based architecture information
to securing application that can be applicable in immature processes and agile development.
Method. In this paper, we conduct a systematic review of major electronic databases and
libraries and analysis of several practical use cases related with security architecture reviews.
Results and practical relevance. In this work based on research papers and several practical use
cases analysis, we presented method for collecting architecture security-specific information
for microservice-based applications and recommendations for applications security architect
on how to use collected information to provide application verification against OWASP ASVS
standard.

Keywords1
Microservices, microservice architectures, security, architecture artifacts,
architecture documentation

1. Introduction

Imagine that you are an application security engineer that was recently hired by a small young
company or startup without any matured development processes. The application that company
developed is microservice-based application system and you are the only one person responsible for
application security. You probably use GOST R 56939, OWASP SAMM or other secure development
lifecycle framework [1, 2] in order to establish application security processes. You provided self-
assessment, created a roadmap and even started to implement some application security activities like
security testing or static code analysis. And at one day you understand that you have to implement some
activities from “Security Design” portion, like “Threat assessment” or “Security architecture”. But in
order to do that you need some input information about architecture of the application you want to
secure like low-level design or data flow diagram. During application development based on
microservices architecture security architects/engineers usually face with the questions related with
attack surface analysis, data leakage analysis and application components business/security functions
verification [3, 4] to build secure application and minimize number of vulnerabilities and threats [5, 6,
7]. But if company is young firm without any matured development processes there are probably no
such artifacts at all or several artifacts are in place but they are not suitable for such application security
activities. Moreover, usually in agile development practices source code and presentation slides are the
only artifacts available for application security architect. On the other hand, microservice-based system
tends to change their architecture approximately every sprint that is every sprint security engineer faces

BIT-2021: XI International Scientific and Technical Conference on Secure Information Technologies, April 6-7, 2021, Moscow, Russia
EMAIL: barabanov.iu8@gmail.com (A. 1);
ORCID: 0000-0003-4061-6611 (A. 1);

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

12

with a new microservices or a new storage or a new connection between microservices. Thereby to have
an up-to-date security documentation for microservice system is a challengeable task because you need
somehow to collect that information, update it probably every sprint (and that operation should not take
too much time) and, more importantly, use collected information on a daily basis to make your
application secure [8, 9, 10, 11].

The goal of this article is to offer some concrete proposal of approach on how to collect
microservice-based architecture information and collected information to secure application. In
summary, this paper makes the following contributions:

• method for collecting architecture security-specific information for microservice-based
applications (Section 2);
• recommendations for applications security architect on how to use collected information to
provide application verification against OWASP ASVS (Section 3).

2. Method for collecting architecture security-specific information

Microservice architectures has emerged as a new architectural style allowing building application
systems by composing lightweight services that perform very cohesive business functions [12]. Security
threats and countermeasures for microservice-based system is a very important theme nowadays.
Recent studies [13, 14] shows that that unauthorized access, sensitive data exposure and compromising
individual microservices are the most treated and addressed threats by contemporary studies and
auditing, enforcing access control, and prevention based solutions are the most proposed security
mechanisms for microservice-based systems.

This chapter contains information about proposed method on how collect architecture security-
specific information for microservice based-system and prepare graphical representation of modeling
application system.

2.1. Collect information on the building blocks

Step 1. First steps to identify and describe application-functionality services that are the services that
implement business-related functions like storing customer details, storing and displaying product
catalog. It is advisable to collect the following information related to each microservices:

• unique service name or ID;
• short (one or two sentences) description of business process or functionality implemented by
the microservice;
• link to source code repository;
• development team which develops the microservice because it is usual to have several
development teams are working on product;
• API definition (e.g., OpenAPI specification) that describes interfaces exposed by microservice.
It is also advisable to collect some additional information like link to the microservice runbook or

microservice internal architecture description, it is not necessary but it may help you. You should not
collect too much information, e.g. information about 3rd-party components or libraries used in
microservice can be extracted from source code repository via analyzing pom-files or similar artifacts.
For application example provide on the Fig.1 during step 1 we capture information about following
services: “User info”, “Booking”, “Frontend app” and “Admin”.

13

Figure 1: Example microservice-based system high-level design

Step 2. Second step is to identify and describe infrastructure services. Infrastructure service is
general-purpose service including remote services that does not implement any business-related
functionality. Examples are: service registration and discovery, API gateway, security token service or
OAuth authorization service or logging service. It is advisable to collect the following information
related to each infrastructure service:

• unique service name or ID;
• short description of functionality implemented by the service (e.g., authentication,
authorization, service registration and discovery, logging, security monitoring, API gateway);
• link to source code repository;
• link to the service documentation that includes service API definition, operational
guidance/runbook, etc.
To collect this information you can investigate project repositories and collaborate with System

architect/Development Lead. For application example provide on the Fig.1 during step 2 we capture
information about following services: “Security Token Service”, “API Gateway” and “Service
Registry”.

Step 3. The next step is to identify data storages. It could be database management systems or caches.
You should collect a following information's related to each storage:

• unique storage name or ID;
• software that implements the data storage (e.g, “PostgreSQL”, “Redis”, “Apache Cassandra”).
For application example provide on the Fig.1 during step 3 we capture information about

PostgreSQL database instance (“PG”).
Step 4: Identify and describe message queues
Because event-driven architecture is widely adopted pattern there should be messaging systems in

application architecture like Apache Kafka or RabbitMQ. So, step number four is to identify those
messaging systems and collect information on:

• unique message queue name or ID;
• software type, i.e. software that implements the message queue (e.g., RabbitMQ, Apache
Kafka).
For application example provide on the Fig.1 during step 3 we capture information about “Apache

Kafka” instance.
Step 5. And the final step dealing with collecting information on the building blocks is to identify

data assets. That step is more intelligent that other because you cannot just inspect you repositories or
execute a command to list data assets. To identify data assets you should actively collaborate with other
member of you team like system analyst, product owner or business architect. Obviously, you could
not identify all data assets at once – so it is advisable firstly to identify assets, which are valuable from
a security perspective (e.g., “User information”, “Payment”). Collect information on the parameters
listed below related to each asset

14

• unique asset name or ID;
• asset protection level (eg, PII, confidential).

2.2. Collect information on relations between building blocks

Next steps after identification of application building blocks is to collect information on relations
between those building blocks. The typical relation types are:

• “service-to-storage” relations;
• “service-to-service” synchronous communications;
• “service-to-service” asynchronous communications;
• asset-to-storage” relations.
Step 6. Identify “service-to-storage” relations. Collect information on the parameters listed below

related to each “service-to-storage” relation:
• service name (ID);
• storage name (ID);
• access type, i.e. specify access type, e.g. “Read” or “Read/Write”.
For application example provide on the Fig.1 during step 6 we may e.g., capture information about

“User info” to “PG” relation.
Step 7. Identify “service-to-service” synchronous communications. Collect information on the

parameters listed below related to each “service-to-service” synchronous communication:
• caller service name (ID);
• called service name (ID);
• protocol/framework used, i.e. specify protocol/framework used for communication, e.g. HTTP
(REST, SOAP), Apache Thrift, gRPC;
• shortly describe the purpose of communication (requests for query of information or
request/commands for a state-changing business function) and data passed between services (if
possible, in terms of assets defined above).
For application example provide on the Fig.1 during step 7 we may capture information about

“Admin” and “Security Token Service” synchronous communications.
Step 8. Identify “service-to-service” asynchronous communications. Collect information on the

parameters listed below related to each “service-to-service” asynchronous communication.
• publisher service name (ID);
• subscriber service name (ID);
• message queue (ID);
• shortly describe the purpose of communication (receiving of information or commands for a
state-changing business function) and data passed between services (if possible, in terms of assets
defined above).
For application example provide on the Fig.1 during step 3 we may capture information about

“Booking” and “Admin” asynchronous communications.
Step 9. Identify “asset-to-storage” relations. Collect information on the parameters listed below

related to each “asset-to-storage” relation:
• Asset name (ID);
• Storage name (ID);
• Specify storage type for the asset, e.g. “golden source” or “cache”.

2.3. Create a graphical presentation of application architecture

It is advisable to follow “architecture-as-a code” [10] practice and create graphical presentation of
application architecture (building blocks and relations defined above) in form of services call graph or
data flow diagram. In order to do that one can use special software tools (e.g. Enterprise Architect) or
DOT language. An example of using DOT language to describe a simple microservice-based
application architecture is the following:

15

digraph architecture {
 rankdir=LR;

 subgraph client_side_app {
 front_end -> {API_GW} [label = "HTTPS"]

 }

 subgraph api_gateways {
 API_GW -> {AuthN, ms_1, ms_2, ms_3} [label = "HTTP"]

 }

 subgraph microservices {
 ms_1 -> {DB} [label="JDBC"]
 ms_2 -> {Queue} [label="gRPC"]
 ms_3 -> {Queue} [label="gRPC"]

 }

}

That code can be transformed to the following graphical presentation (Figure 2).

Figure 2: Example of using DOT language to describe microservice-based system architecture

3. Using collected information in secure software development practices

Collected information may be useful for doing application security practices, e.g. during defining
security requirements, threat modeling or security testing [15]. This section contains examples of
activities related to securing application architecture as well as its mapping to OWASP ASVS [16]
requirements and tips for their implementation using information collected above. This implementation
tips and recommendations were extracted and collected during multiple security architecture reviews.

16

Table 1
Collected data usage for OWASP ASVS “V1.1 Secure Software Development Lifecycle”

OWASP
ASVS ID

OWASP ASVS Description Implementation tips

1.1.2 Verify the use of threat modeling
for every design change or sprint
planning to identify threats, plan
for countermeasures, facilitate
appropriate risk responses, and
guide security testing.

Collected information can be used for threat
modeling purpose. Please see example listed after
the tables.

1.1.4 Verify documentation and
justification of all the application's
trust boundaries, components,
and significant data flows.

To verify documentation and justification of all the
application's trust boundaries, components, and
significant data flows analyze data collected during
following steps:

• Step 1 “Identify and describe application-
functionality services”;

• Step 2 “Identify and describe infrastructure
services”;

• Step 3 “Identify and describe data
storages”;

• Step 4 “Identify and describe message
queues”;

• Step 6 “Identify “service-to-storage”
relations”;

• Step 7 “Identify “service-to-service”
synchronous communications”;

• Step 8 “Identify “service-to-service”
asynchronous communications”.

1.1.5 Verify definition and security
analysis of the application's high-
level architecture and all
connected remote services.

To verify that analyze data on application
architecture collected during following steps:

• Step 1 “Identify and describe application-
functionality services”;

• Step 2 “Identify and describe infrastructure
services”;

• Step 7 “Identify “service-to-service”
synchronous communications”;

• Step 8 “Identify “service-to-service”
asynchronous communications”.

1.1.6 Verify implementation of
centralized, simple (economy of
design), vetted, secure, and
reusable security controls to avoid
duplicate, missing, ineffective, or
insecure controls

To verify that analyze data on application
architecture collected during following step in
order to derive what component provides
authentication, authorization and logging:

• Step 2 “Identify and describe infrastructure
services”.

17

Table 2
Collected data usage for OWASP ASVS “V1.2 Authentication Architecture”

OWASP
ASVS ID

OWASP ASVS Description Implementation tips

1.2.2 Verify that communications between
application components, including
APIs, middleware and data layers, are
authenticated and use individual user
accounts

To enumerate microservices endpoints that
need to be tested during security testing and
analyzed during threat modeling analyze data
collected under the following sections:

• Step 1 “Identify and describe
application-functionality services”
(parameter "API definition");

• Step 2 “Identify and describe
infrastructure services” (parameter
"Link to the service documentation")

1.2.3 Verify that the application uses a single
vetted authentication mechanism that
is known to be secure, can be extended
to include strong authentication, and
has sufficient logging and monitoring
to detect account abuse or breaches

To verify that analyze data on application
architecture collected during following step in
order to derive what component provides
authentication:

• Step 2 “Identify and describe
infrastructure services”.

1.2.4 Verify that all authentication pathways
and identity management APIs
implement consistent authentication
security control strength, such that
there are no weaker alternatives per
the risk of the application

To verify that analyze data on application
architecture collected during following step in
order to derive what component provides
authentication:

• Step 2 “Identify and describe
infrastructure services”.

Table 3
Collected data usage for OWASP ASVS “V1.4 Access Control Architecture”

OWASP
ASVS ID

OWASP ASVS Description Implementation tips

1.4.1 Verify that trusted enforcement points, such
as access control gateways, servers, and
serverless functions, enforce access controls.
Never enforce access controls on the client.

To verify that analyze data on
application architecture collected
during following step in order to derive
what component provides
authorization:

• Step 1 “Identify and describe
application-functionality
services”

• Step 2 “Identify and describe
infrastructure services”.

1.4.4 Verify the application uses a single and well-
vetted access control mechanism for
accessing protected data and resources. All
requests must pass through this single
mechanism to avoid copy and paste or
insecure alternative paths

To verify that analyze data on
application architecture collected
during following step in order to derive
what component provides
authorization:

• Step 2 “Identify and describe
infrastructure services”.

18

Table 4
Collected data usage for OWASP ASVS “V1.7 Errors, Logging and Auditing Architecture”

OWASP
ASVS ID

OWASP ASVS Description Implementation tips

1.7.2 Verify that logs are securely
transmitted to a preferably
remote system for analysis,
detection, alerting, and
escalation

To verify that analyze data on application
architecture collected during following steps in order
to understand how logging implemented:

• Step 1 “Identify and describe application-
functionality services”;

• Step 2 “Identify and describe infrastructure
services”;

• Step 7 “Identify “service-to-service”
synchronous communications”;

• Step 8 “Identify “service-to-service”
asynchronous communications”.

Table 5
Collected data usage for OWASP ASVS “V1.8 Data Protection and Privacy Architecture”

OWASP
ASVS ID

OWASP ASVS Description Implementation tips

1.8.1 Verify that all sensitive data is
identified and classified into
protection levels.

To verify that analyze data on application
architecture collected during following steps:

• Step 5 “Identify data assets”
• Step 9. Identify “asset-to-storage”

relations.

Table 6
Collected data usage for OWASP ASVS “V1.9 Communications Architecture”

OWASP
ASVS ID

OWASP ASVS Description Implementation tips

1.9.1 Verify the application encrypts
communications between
components, particularly when these
components are in different
containers, systems, sites, or cloud
providers.

To verify that analyze data on application
architecture collected during following steps
in order to understand how communication
protection is implemented:

• Step 1 “Identify and describe
application-functionality services”;

• Step 2 “Identify and describe
infrastructure services”;

• Step 7 “Identify “service-to-service”
synchronous communications”;

• Step 8 “Identify “service-to-service”
asynchronous communications”.

Here is an example on how to use collected information for threat modeling purpose. OWASP ASVS

requires to use of threat modeling for every design change or sprint planning to identify threats, plan
for countermeasures, facilitate appropriate risk responses, and guide security testing. During sprint
planning an application security engineer can easily modify architecture diagram (see fig.3) or its part

19

to reflect proposed architectural changes. Then, having updated diagram and description of services and
data assets, you can make some threat modeling activities based on STRIDE methodology or similar,
e.g.:

• Does “Frontend App” really need connection to “Security Token Service”? If yes, what
minimal privileges does that service need?
• Does “Booking” service really need an access to “Admin” service? If yes, what minimal
privileges does that service need?

Figure 3: Example of using DOT language to describe microservice-based system architecture

4. Related work

Various techniques have been developed and applied to document microservice-based system
architecture and use that information for security purposes but in most cases it can be applied in mature
software development lifecycle processes and do not focus on application security aspects.

B. Mayer and R. Weinreich [17] presented an approach to extract and analyze the architecture of a
microservice-based software system based on a combination of static service information with
infrastructure-related and aggregated runtime (logged outgoing and incoming requests) information.

G. Granchelli et al. [18, 19] presented an approach for semi-automatically recovering design of
microservice-based systems. Their approach is based on model driven engineering techniques usage
and domain-specific language for representing the key aspects of the architecture of a microservice-
based system.

S. Ma et al. [20, 21, 22] proposed an approach to the development of microservice-based systems
that enables the automatic generation of a service dependency graph by which to visualize and analyze
dependency relationships between microservices as well as between services and scenarios. It also
enables the automatic retrieval of test cases required for system changes to reduce the time and costs
associated with regression testing.

N. Riopelle et al. [23] proposed the use of dependency graph based modeling to streamline the failure
analysis process for private cloud and microservice-based applications.

Y. Lan et al. [24] proposed and designed a dependency model of microservices and dependency
mining method based on call chain logs to extract local dependencies and the discontinuous dependency
relationship.

N. Chondamrongkul et al. [25] presented an automated security analysis approach for microservice
architecture that can automatically identify security threats according to a collection of formally defined
security characteristics and provide a result that demonstrates how the attack scenarios may happen.

Compared with the related works our study is more narrow and concentrated on security of
microservice-based system, whereas most of the above-mentioned work considers some quality
characteristics. In contrast with above-mentioned works we are not only take into account microservice-
to-microservice dependency but also dependencies on general purpose services (like API Gateway and
service Discovery), data storages and messages queues. Moreover, to design our graph we use object
called “asset” (in contrast with [25]) that allows us to cover more security checks from OWASP ASVS.

20

5. Conclusion and further work

In this paper, we presented a method for collecting architecture security-specific information for
microservice-based systems that can be used even in immature software development processes to
secure application. Collected information may be useful for doing application security practices during
defining security architecture: attack surface analysis, data leakage analysis, analysis of the application's
high-level architecture, enforcement of the principle of least privilege and sensitive data identification
and classification in secure software development lifecycle. We tested our approach during
development of microservice-based system in Oil & Gas automation and received a positive feedback.
We also contributed that approach to OWASP Community in Cheat sheet series. Practical usage of
proposed light-weight method for collecting security-specific architectural information for
microservice-based systems allowed to decrease the time for collecting application design information
and to focus more on practical security aspects (like threat modeling) during sprint planning.

Further research is intended for combining graph algorithms with proposed approach in order to
automate steps needed to design microservice application design and make threat modeling for large-
scale distributed microservice-based applications.

6. References

[1] А. Barabanov, А. Markov, А. Fadin, М. Tsirlov, and I. Shakhalov. 2015. Synthesis of secure
software development controls. In Proceedings of the 8th International Conference on Security of
Information and Networks (SIN '15). Association for Computing Machinery, New York, NY,
USA, 93–97. DOI:https://doi.org/10.1145/2799979.2799998

[2] R. Trifonov, O. Nakov, G. Pavlova, S. Manolov, G. Tsochev and P. Nakov, "Analysis of the
Principles and Criteria for Secure Software Development," 2020 28th National Conference with
International Participation (TELECOM), 2020, pp. 125-128, doi:
10.1109/TELECOM50385.2020.9299567.

[3] M. Kleehaus and F. Matthes, "Challenges in Documenting Microservice-Based IT Landscape: A
Survey from an Enterprise Architecture Management Perspective," 2019 IEEE 23rd International
Enterprise Distributed Object Computing Conference (EDOC), Paris, France, 2019, pp. 11-20, doi:
10.1109/EDOC.2019.00012.

[4] Barabanov A., Makrushin D., Authentication and authorization in microservice-based systems:
survey of architecture patterns. Voprosy kiberbezopasnosti, №4 (38), 2020, pp 32-43. DOI:
10.21681/2311-3456-2020-04-32-43.

[5] Barabanov A.V., Markov A.S., Tsirlov V.L. Statistics of Software Vulnerability Detection in
Certification Testing. Journal of Physics: Conference Series. 2018. V. 1015. P. 042033.

[6] A. V. Barabanov, A. S. Markov, M. I. Grishin and V. L. Tsirlov, "Current Taxonomy of
Information Security Threats in Software Development Life Cycle," 2018 IEEE 12th International
Conference on Application of Information and Communication Technologies (AICT), Almaty,
Kazakhstan, 2018, pp. 1-6, doi: 10.1109/ICAICT.2018.8747065.

[7] Barabanov A., Markov A., Tsirlov V. On Systematics of the Information Security of Software
Supply Chains. Advances in Intelligent Systems and Computing. 2020. V. 1294. P. 115-129. DOI:
10.1007/978-3-030-63322-6_9.

[8] M. Ruggieri, T. Hsu and M. L. Ali, "Security Considerations for the Development of Secure
Software Systems," 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), New York, NY, USA, 2019, pp. 1187-1193, doi:
10.1109/UEMCON47517.2019.8993081.

[9] A. Ramirez, A. Aiello and S. J. Lincke, "A Survey and Comparison of Secure Software
Development Standards," 2020 13th CMI Conference on Cybersecurity and Privacy (CMI) -
Digital Transformation - Potentials and Challenges(51275), Copenhagen, Denmark, 2020, pp. 1-
6, doi: 10.1109/CMI51275.2020.9322704.

[10] R. A. Khan, S. U. Khan, H. U. Khan and M. Ilyas, "Systematic Mapping Study on Security
Approaches in Secure Software Engineering," in IEEE Access, vol. 9, pp. 19139-19160, 2021, doi:
10.1109/ACCESS.2021.3052311

21

[11] E. Yuan, "Architecture Interoperability and Repeatability with Microservices: An Industry
Perspective," 2019 IEEE/ACM 2nd International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering (ECASE), Montreal, QC, Canada,
2019, pp. 26-33, doi: 10.1109/ECASE.2019.00013.

[12] T. Yarygina and A. H. Bagge, "Overcoming Security Challenges in Microservice Architectures,"
2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), 2018, pp. 11-20, doi:
10.1109/SOSE.2018.00011.

[13] Abdelhakim Hannousse, Salima Yahiouche. Securing microservices and microservice
architectures: A systematic mapping study, Computer Science Review, Volume 41, 2021, 100415,
ISSN 1574-0137, https://doi.org/10.1016/j.cosrev.2021.100415.

[14] Nuno Mateus-Coelho, Manuela Cruz-Cunha, Luis Gonzaga Ferreira. Security in Microservices
Architectures, Procedia Computer Science, Volume 181, 2021, Pages 1225-1236, ISSN 1877-
0509, https://doi.org/10.1016/j.procs.2021.01.320.

[15] Varenitca V. V., Markov A. S., Savchenko V. V. Recommended Practices for the Analysis of Web
Application Vulnerabilities. 10th Anniversary International Scientific and Technical Conference
on Secure Information Technologies, BIT 2019 CEUR Workshop Proceedings. Volume 2603.
Moscow, 2019, pp. 75-78.

[16] S. Elder, N. Zahan, V. Kozarev, R. Shu, T. Menzies and L. Williams, "Structuring a
Comprehensive Software Security Course Around the OWASP Application Security Verification
Standard," 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET), 2021, pp. 95-104, doi: 10.1109/ICSE-
SEET52601.2021.00019.

[17] B. Mayer and R. Weinreich, "An Approach to Extract the Architecture of Microservice-Based
Software Systems," 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE),
Bamberg, 2018, pp. 21-30, doi: 10.1109/SOSE.2018.00012.

[18] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino and A. D. Salle, “Towards
Recovering the Software Architecture of Microservice-Based Systems,” in IEEE International
Conference on Software Architecture Workshops. IEEE, Apr. 2017, pp. 46–53.

[19] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino, and A. D. Salle,
“MicroART: A Software Architecture Recovery Tool for Maintaining Microservice-Based
Systems,” in IEEE International Conference on Software Architecture Workshops. IEEE, Apr.
2017, pp. 298–302.

[20] S. Ma, C. Fan, Y. Chuang, W. Lee, S. Lee and N. Hsueh, "Using Service Dependency Graph to
Analyze and Test Microservices," 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), 2018, pp. 81-86, doi: 10.1109/COMPSAC.2018.10207.

[21] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, I-Hsiu Liu, Ci-Wei Lan. Graph-based and scenario-
driven microservice analysis, retrieval, and testing. Future Generation Computer Systems, Volume
100, 2019, Pages 724-735, ISSN 0167-739X, https://doi.org/10.1016/j.future.2019.05.048.

[22] S. Ma, I. Liu, C. Chen, J. Lin and N. Hsueh, "Version-Based Microservice Analysis, Monitoring,
and Visualization," 2019 26th Asia-Pacific Software Engineering Conference (APSEC), 2019, pp.
165-172, doi: 10.1109/APSEC48747.2019.00031.

[23] N. Riopelle, A. Malatpure, S. Ashtekar and V. Raman, "Dependency Graph Based Failure Analysis
for Private Clouds," 2019 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2019, pp. 25-29, doi: 10.1109/ISSREW.2019.00037.

[24] Y. Lan, L. Fang, M. Zhang, J. Su, Z. Yang and H. Li, "Service dependency mining method based
on service call chain analysis," 2021 International Conference on Service Science (ICSS), 2021,
pp. 84-89, doi: 10.1109/ICSS53362.2021.00021.

[25] N. Chondamrongkul, J. Sun and I. Warren, "Automated Security Analysis for Microservice
Architecture," 2020 IEEE International Conference on Software Architecture Companion (ICSA-
C), 2020, pp. 79-82, doi: 10.1109/ICSA-C50368.2020.00024.

https://doi.org/10.1016/j.procs.2021.01.320

	1. Introduction
	2. Method for collecting architecture security-specific information
	2.1. Collect information on the building blocks
	2.2. Collect information on relations between building blocks
	2.3. Create a graphical presentation of application architecture

	3. Using collected information in secure software development practices
	4. Related work
	5. Conclusion and further work
	6. References

