
22

Algorithm for Determining Saddle Point in Game Theory
Problem of Choosing Software for Information Security on
Computer Network Servers

Aleksandr Yu. Bykov1, Maksim V. Grishunin1, Evgenij G. Fedorov1 and Irina A. Markova1

1 Bauman Moscow State Technical University, 5/1 2nd Baymanskay ul., Moscow, 105005, Russia

Abstract
The game formulation of the problem of two players is presented: a defender and an attacker.
The defender selects the information security software for the computer network servers,
taking into account the importance of the processed information, and the attacker selects the
possible types of attacks. The mathematical formulation of the problem is a discrete-
continuous game, the set of solutions of the defender is discrete, and the set of solutions of
the attacker is continuous. The game is a zero-sum game, with the defender's damage used as
a quality indicator. The defender, given the attacker's solution, solves the Boolean
programming problem, and the attacker, given the defender's solution, solves the linear
programming problem. An algorithm for finding the saddle point in a mixed strategy for the
defender, in a pure strategy for the attacker, based on reducing the continuous problem of the
attacker to a discrete one, is proposed. The algorithm is based on the ideas of the Brown-
Robinson method, but without explicit construction of the game matrix. To reduce the
computational resources of the processor required for the operation of the algorithm, it is
proposed that after a given number of steps a new solution is not obtained, not to solve
optimization problems, but to search for solutions by brute force among the previously found
solutions. An example of solving the problem is given.

Keywords 1
Information security, discrete-continuous game, zero-sum game, boolean programming,
linear programming, mixed strategy, pure strategy

1. Introduction

Mathematical models originating from game theory frequently arise when solving different
problems in information security field. The most common model class has two players: defender and
attacker, but there can be more players. Let’s look at some examples.

In [1] dynamic game theory is used to protect the privacy of medical data in internet of things.
In [2] attack and defense are viewed as a dynamic process in real time, a differential game theory

attack-defense model for choosing a strategy of network defense is used.
In [3] dynamic games are used to discover Advanced persistent threats (APTs). Two players are

making subjective decisions about choosing scanning interval and attack interval.
In [4] a multi-stage dynamic game of defender and attacker for resource-heavy discovery of

Advanced persistent threats (APTs). The game evolves on an information flow graph, whose nodes
are processes and objects (e.g., file, network endpoints) in the system and the edges capture the
interaction between different processes and objects.

In [5] a model for deceiving a potential attacker is considered. The defender is using differential
mechanisms for scrambling system configurations. The attacker is using Bayesian approach for
outputting real system configurations.

BIT-2021: XI International Scientific and Technical Conference on Secure Information Technologies, April 6-7, 2021, Moscow, Russia
EMAIL: abykov@bmstu.ru (A. 1); grishunin-mv@ya.ru (A. 2); fedorov.evg.msu@gmail.com (A. 3); gurina.irina.94@gmail.com (A. 4)
ORCID: 0000-0001-6336-5603 (A. 1); 0000-0001-9544-017X (A. 2); 0000-0003-2261-9691 (A. 3); 0000-0002-2297-5840 (A. 4)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

23

In [6], an equilibrium is sought in a two-level hierarchical game with non-opposite interests of
many players. A problem of protecting internet of things users from risks of breaching information
security is studied. Top level contains a centralized defender, while defenders with rights of ordinary
users are placed on the bottom level. Both centralized and decentralized models are studied.

In [7] a problem of protecting cyber-physical power systems from exploitation risks is studied.
Time delay of system recovery and distributed denial of service are considered as risks. A three stage
defender-attacker-defender model of mathematical programming based on dynamic game theory with
complete information is proposed.

In [8] a problem of data transmission in noisy channels is studied. A trade-off between
transmission speed and reliability is sought. Stochastic-mean-field-game is considered. Message
codes play the role of agents.

In [9] a game between a system administrator and an attacker is studied. This is an asymmetric
information game with zero sum between two players that are unequally informed about the game:
informed defender and uninformed attacker.

In [10] a mobile ad-hoc network in which network nodes are in motion is studied. Evolutionary
games for stimulating cooperation between mobile modes are used.

In [11] a perspective theory describing human behavior during risk-involved decision making is
used for discovering Advanced Persistent Threats. The game uses Nash equilibrium criterion.

In [12] Nash equilibrium is searched in order to ensure performance of blockchain system.
In [13] a fast defense system against DDoS and port scanning attacks in software-defined

networking is studied. Three approaches to attack discovery are compared: particle swarm
optimization, multi-layer neural network and discrete wavelet transform.

In most cases considered models can be either discrete or continuous. Combined discrete-
continuous models can also be used.

In [14] a coalition-free game with conflicting interests in the data transmission network with
possible loss of communication is studied. Data source and network nodes are considered as players.
In order to reduce transmission delays, hosts are stimulated by the source to cache files. A search for
equilibrium Nash states is carried out, both for pure/mixed strategies and for discrete/continuous sets
of strategies.

In [15] a game between intruder and subjects responsible for security, who exchange data on the
network, is studied. Data confidentiality breach is possible during this exchange. The gains from
cooperation and loss of confidentiality during information exchange are measured. Both discrete and
continuous games are considered.

Some other mathematical models that are applicable to information security problems are studied
in [16-25].

A discrete-continuous game of choosing which software to install on network servers for
information security is studied below. It takes into consideration the importance of data stored and
processed on these servers.

The problem under consideration is relevant, since there are many different software tools for
protecting information that have different protection efficiency and require different resources.
Because of this, the problem of choosing these tools arises, and defining this problem in terms of
game theory allows us to take into account possible actions of the attacking side.

The goal of this paper is to provide an information security specialist with mathematical software,
that would take into account the importance degree of processed information and actions of the
attacking side, for justifying the choice of information security software.

The main tasks of the paper are: formulating mathematical game theory problem of choosing
software; proposing algorithms for solving it, carrying out computational experiments; deriving
conclusion.

2. Problem Description

Let us consider a distributed computer system comprising many servers and providing different
services on the network. Servers run some target tasks for which they are intended. Required software

24

including OS and applications is installed on the servers. There exists a minimal configuration of
application and system programs enabling each server to run its target tasks. These programs are
implemented as processes. Minimal configuration requires availability of certain computing resources
on server (cpu time, memory, disk space, networks).

Besides the main processes (required to run target tasks) maintenance processes are being
launched. These processes can be for example security enforcing processes such as antivirus software,
DDoS prevention tools, data integrity control programs, privacy programs, programs for protection
against unauthorized network connections, etc. Auxiliary or maintenance processes also have some
CPU time and memory requirements and cannot be all run at the same time due to lack of resources,
however usually there is no reason to run them all. The problem arises of choosing running processes
and installed programs.

Server information resources are subject to attacks, which implement threats with different
possible goals. Several types of attacks can be distinguished, for example DDoS attacks, confidential
information access attacks, data distortion attacks (integrity violation), etc. Estimates of potential
damage for server owner in case of attack success exist for each server depending on importance of
data stored and processed on a server. Using auxiliary processes can prevent damage to servers from
incoming attacks completely, or can partially mitigate their consequences (possible damage).

Let us consider the problem of choosing auxiliary processes from the standpoint of game theory.
There is a defender, whose solution to the problem consists choosing which auxiliary processes to run
on each server, and an attacker, whose solution consists of choosing attack types. Possible limitations
on attacker resources can also be considered, if such information is available. Let’s consider a game
of two players, we will regard defender damage estimate as an indicator of choice for both players,
therefore the game is a zero sum game.

The problem can be summarized as follows.

Given:
A set of servers running target tasks.
A set of auxiliary processes for enforcing information security.
A set of possible attack types that can be carried out on systems’ information resources.
A damage estimate in case of attack success is defined for each server and each attack type

depending on importance of data stored and processed on a server.
The following computational resource requirements are defined for each server and each auxiliary

process:
• CPU load ratio that depends on the servers’ computational power
• Memory usage
• Other resources are allowed
A “process cost” is defined in case a corresponding program has to be purchased.

For each server its memory size and computational power, which can be allocated to auxiliary
processes (while taking into account resources needed to run main processes), as well as total
defender funds for buying software are defined.

For each server and type of attack a damage estimate in case of attack success is defined.
For each auxiliary process and attack type the probability or possibilities of prevention (in terms of

fuzzy sets) of an attack or a possible damage mitigation value if the process is running are defined.
For each attach type financial burden on attacker for carrying it out are defined. Other attacker

resource (for example computational resources) costs estimates can be considered if such information
is available.

Limit on attackers’ financial resources is defined (limit on other types of resources can be
considered if such information is available).

Required:
In order to minimize possible damage for defender – determine which auxiliary processes should

be run on each server, considering possible attacker actions, while also meeting requirements on
servers’ computational power, memory and possibly other server resources, and on defenders’
financial resources needed for auxiliary software purchase.

25

3. Mathematical Formulation of the Problem

3.1. Initial data
1. 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} – set of servers on a distributed computer system, 𝑁𝑁 = {1,2, … ,𝑛𝑛} - set of
indices enumerating these servers.
2. 𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚} – set of attack types (implementations of security threats) on the system,
𝑀𝑀 = {1,2, … ,𝑚𝑚} - set of indices enumerating these attack types.
3. 𝛱𝛱 = {𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝜆𝜆} – set of auxiliary processes, which can be run on servers for security
enforcement, Λ = {1,2, … , λ} – set of indices enumerating these processes.
4. 𝑅𝑅(𝑑𝑑) = �𝑟𝑟1

(𝑑𝑑), 𝑟𝑟2
(𝑑𝑑), … , 𝑟𝑟𝑙𝑙(𝑑𝑑)

(𝑑𝑑)� – set of limited defender resources, 𝐿𝐿(𝑑𝑑) = {1,2, … , 𝑙𝑙(𝑑𝑑)} - set of
indices enumerating these resources.
Resource set 𝑅𝑅 is divided into two disjoint subsets 𝑅𝑅(𝑑𝑑) = 𝑅𝑅(𝑝𝑝𝑝𝑝) ∪ 𝑅𝑅(𝑠𝑠ℎ), 𝑅𝑅(𝑝𝑝𝑝𝑝) being a set of

private server resources (each server has its own resources), and 𝑅𝑅(𝑠𝑠ℎ) being a set of shared server
resources that are distributed among all servers. We introduce separate enumeration for private and
shared resources with two sets of resource indices 𝐿𝐿(𝑝𝑝𝑝𝑝) = {1,2, … , 𝑙𝑙(𝑝𝑝𝑝𝑝)} and 𝐿𝐿(𝑠𝑠ℎ) = {1,2, … , 𝑙𝑙(𝑠𝑠ℎ)}
respectively.

5. 𝑅𝑅(𝑎𝑎) = {𝑟𝑟1
(𝑎𝑎), 𝑟𝑟2

(𝑎𝑎), … , 𝑟𝑟𝑙𝑙(𝑎𝑎)
(𝑎𝑎)} – set of limited attacker resources. 𝐿𝐿(𝑎𝑎) = {1,2, … , 𝑙𝑙(𝑎𝑎)} - set of

indices enumerating these resources.

3.2. Set elements parameters and relations between them
1. 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑗𝑗 ∈ 𝑀𝑀 – estimate of damage to defender on i-th server if attacker was
successful in carrying out j-th type of attack.
2. 𝑝𝑝𝑖𝑖𝑗𝑗 ∈ [0,1],∀𝑗𝑗 ∈ 𝑀𝑀,𝑘𝑘 ∈ 𝛬𝛬 – probability (or possibility) of preventing j-th attack (threat
implementetion) if k-th process is running on any server or defender damage mitigation value.
3. 𝑣𝑣𝑖𝑖𝑖𝑖𝑗𝑗

(𝑝𝑝𝑝𝑝) ≥ 0,∀𝑗𝑗 ∈ 𝐿𝐿(𝑝𝑝𝑝𝑝),𝑘𝑘 ∈ 𝛬𝛬, 𝑖𝑖 ∈ 𝑁𝑁 – value of j-th private resource (performance or memory)
required to run k-th process on i-th server.
4. 𝑉𝑉𝑖𝑖𝑖𝑖

(𝑝𝑝𝑝𝑝) ≥ 0,∀𝑗𝑗 ∈ 𝐿𝐿(𝑝𝑝𝑝𝑝), 𝑖𝑖 ∈ 𝑁𝑁 – maximum value of j-th private resource on i-th server, that can
be spent on auxiliary processes, taking into account the ammount of the resource required to run
main processes running target tasks.
5. 𝑣𝑣𝑖𝑖𝑖𝑖𝑗𝑗

(𝑠𝑠ℎ) ≥ 0,∀𝑗𝑗 ∈ 𝐿𝐿(𝑠𝑠ℎ),𝑘𝑘 ∈ 𝛬𝛬, 𝑖𝑖 ∈ 𝑁𝑁 – value of j-th shared resource (for example, financial)
required to run k-th process on i-th server.
6. 𝑉𝑉𝑖𝑖

(𝑠𝑠ℎ) ≥ 0,∀𝑗𝑗 ∈ 𝐿𝐿(𝑠𝑠ℎ) – maximum value of j-th shared resource for all servers, that can be
used for auxiliary processes.
7. We will combine some computer processes (applications) into homogeneous groups, for each
group it makes sense to install only one of applications belonging to it. For example, There can be
several antivirus applications, etc. 𝐺𝐺 = {1,2, … ,𝑔𝑔} – indices of these groups. For their definition
let’s introduce a boolean matrix 𝐵𝐵< 𝜆𝜆 𝑥𝑥 𝑔𝑔> ‖𝑏𝑏𝑗𝑗𝑖𝑖‖,∀ 𝑘𝑘 ∈ Λ, 𝑖𝑖 ∈ 𝐺𝐺, 𝑏𝑏𝑗𝑗𝑖𝑖 = 1 if k-th application
belongs to i-th group and 𝑏𝑏𝑗𝑗𝑖𝑖 = 0 if otherwise.
8. 𝑣𝑣𝑗𝑗𝑖𝑖𝑖𝑖

(𝑎𝑎) ≥ 0,∀𝑘𝑘 ∈ 𝐿𝐿(𝑎𝑎), 𝑗𝑗 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁 - value of k-th attacker resource required for j-th attack type
on i-th server.
9. 𝑉𝑉𝑗𝑗

(𝑎𝑎) ≥ 0,∀𝑘𝑘 ∈ 𝐿𝐿(𝑎𝑎) - maximum quantity of k-th attacker resource, that he can use for all
attack types (only financial resource can be considered in the simplest case).

3.3. Parameters
Let’s introduce a boolean value 𝑥𝑥𝑗𝑗𝑖𝑖 ∈ {0,1},∀𝑘𝑘 ∈ 𝛬𝛬, 𝑖𝑖 ∈ 𝑁𝑁, for the defender, 𝑥𝑥𝑗𝑗𝑖𝑖 = 1 if k-th

process is running on i-th server and 𝑥𝑥𝑗𝑗𝑖𝑖 = 0 otherwise. These variables form the vector �⃗�𝑋.

26

Let’s introduce a value 𝑦𝑦𝑖𝑖𝑖𝑖 ∈ [0,1],∀𝑖𝑖 ∈ 𝑁𝑁, 𝑗𝑗 ∈ 𝑀𝑀 for the attacker. Its value can be interpreted as a
probability or a possibility (in terms of fuzzy sets) of carrying out j-th attack type on i-th server. These
variables form the vector 𝑌𝑌�⃗ .

3.4. Players indicators
During damage calculation we will assume that probability (safety degree in case of fuzzy

description) of defending i-th server from j-th attack type while using several auxiliary processes is
determined by a process with maximum probability: 𝑃𝑃𝑖𝑖𝑖𝑖(�⃗�𝑋) = 𝑚𝑚𝑎𝑎𝑥𝑥

𝑗𝑗∈𝛬𝛬
{𝑝𝑝𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑖𝑖},∀𝑗𝑗 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁.

Therefore, an estimate of mitigated damage on all servers is 𝑈𝑈пр(�⃗�𝑋,𝑌𝑌�⃗) = ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖(�⃗�𝑋)𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖∈𝑁𝑁 =
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥𝑗𝑗∈𝛬𝛬

{𝑝𝑝𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑖𝑖}𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑖𝑖∈𝑁𝑁 .
The estimate of the full damage to the defender is given by a difference of estimate of maximum

damage (without any defenses) and mitigated damage:
𝑈𝑈��⃗�𝑋,𝑌𝑌�⃗ � = ��𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖

𝑖𝑖∈𝑀𝑀𝑖𝑖∈𝑁𝑁

−��𝑤𝑤𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥𝑗𝑗∈𝛬𝛬
�𝑝𝑝𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖

𝑖𝑖∈𝑀𝑀𝑖𝑖∈𝑁𝑁

= ��𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑀𝑀𝑖𝑖∈𝑁𝑁

�1 −𝑚𝑚𝑎𝑎𝑥𝑥
𝑗𝑗∈𝛬𝛬

�𝑝𝑝𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑖𝑖��.

(1)

Defenders’ goal is to minimize this indicator, attackers’ – to maximize.

3.5. Limitations
Conditions for defender

Conditions on private resource usage on each server:
�
𝑗𝑗∈𝛬𝛬

𝑣𝑣𝑖𝑖𝑖𝑖𝑗𝑗
(𝑝𝑝𝑝𝑝)𝑥𝑥𝑗𝑗𝑖𝑖 ≤ 𝑉𝑉𝑖𝑖𝑖𝑖

(𝑝𝑝𝑝𝑝),∀𝑗𝑗 ∈ 𝐿𝐿(𝑝𝑝𝑝𝑝), 𝑖𝑖 ∈ 𝑁𝑁. (2)

Condition on shared resource usage for all servers:
��

𝑗𝑗∈𝛬𝛬

𝑣𝑣𝑖𝑖𝑖𝑖𝑗𝑗
(𝑠𝑠ℎ)𝑥𝑥𝑗𝑗𝑖𝑖

𝑖𝑖∈𝑁𝑁

≤ 𝑉𝑉𝑖𝑖
(𝑠𝑠ℎ),∀𝑗𝑗 ∈ 𝐿𝐿(𝑠𝑠ℎ). (3)

Condition limiting number of applications for each group to one on any server:
�
𝑗𝑗∈𝛬𝛬

𝑏𝑏𝑗𝑗𝑖𝑖𝑥𝑥𝑗𝑗𝑖𝑖 ≤ 1,∀𝑖𝑖 ∈ 𝑁𝑁, 𝑗𝑗 ∈ 𝐺𝐺. (4)

Conditions for attacker
Condition on usage of attackers resources required for carrying out attacks:

��
𝑖𝑖∈𝑀𝑀

𝑣𝑣𝑗𝑗𝑖𝑖𝑖𝑖
(𝑎𝑎)𝑦𝑦𝑖𝑖𝑖𝑖

𝑖𝑖∈𝑁𝑁

≤ 𝑉𝑉𝑗𝑗
(𝑎𝑎),∀𝑘𝑘 ∈ 𝐿𝐿(𝑎𝑎). (5)

Presented formulation of the problem with indicator given by (1) and conditions for defender (2)-
(4) and attacker (5) is a mixed discrete-continuous zero sum game. Defender is solving a boolean
programming problem with indicator (1) being non-linear for �⃗�𝑋 and conditions (2)-(4) assuming fixed
attackers’ solution 𝑌𝑌�⃗ , while attacker is solving a linear programming problem with indicator (1) (non-
linear for 𝑌𝑌�⃗) and conditions (5) assuming fixed �⃗�𝑋.

4. Saddle Point Search Algorithm

For a game of two players with zero sum equilibrium state is determined by games’ saddle point.
For a continuous game of two players, in the case where possible player choice sets are convex and
target function is linear, saddle point always exists for player indicator function [26]. In the discrete
case, if player choice sets are finite, the game can be reduced to a matrix game [27]. For a matrix

27

game a saddle point can both be present or not present for pure strategies, but always exists for mixed
strategies (a pure strategy is a special case of a mixed strategy).

4.1. Justification for saddle point existence in a discrete-continuous
problem
The defenders’ choices set is finite, while attackers’ choices set is continuous. Analogous to [27],

because attacker is solving a linear programming problem and this games’ solution lies on a vertex of
a polyhedron of possible choices with number of such vertices being finite, a continuous problem can
be reduced to discrete one, if one considers polyhedron vertices as solutions. In this case the problem
can be reduced to a matrix game in which a saddle point must always exist for mixed strategies.

4.2. Description of saddle point search algorithm using ideas from Brown-
Robinson method
The idea of Brown-Robinson method is based on each player solving consecutive problems, and

using total accumulated win or loss as the indicator. For multiple solutions of these problems a
probability of each solution is estimated, with combination of those estimates determining a mixed
strategy. Analogous to [26], the attacker with continuous solution set should calculate average Y��⃗
among set of obtained solutions. For the defender we get probability estimates of obtaining each
solution.

Let 𝑌𝑌�⃗ (1),𝑌𝑌�⃗ (2), … ,𝑌𝑌�⃗ (𝑔𝑔) be a sequence of solutions that the attacker obtains while optimizing
indicator (1), then the defender on (𝑔𝑔 + 1)-th step must solve the problem of minimizing indicator:

𝑈𝑈з
(𝑔𝑔+1)(�⃗�𝑋) = �𝑈𝑈(�⃗�𝑋,𝑌𝑌�⃗ (𝑒𝑒))

𝑔𝑔

𝑒𝑒=1

= ���𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖
(𝑒𝑒)

𝑖𝑖∈𝑀𝑀𝑖𝑖∈𝑁𝑁

(1 −𝑚𝑚𝑎𝑎𝑥𝑥
𝑗𝑗∈𝛬𝛬

{𝑝𝑝𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑖𝑖})
𝑔𝑔

𝑒𝑒=1

,
(6)

where 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑒𝑒) are components of vector 𝑌𝑌�⃗ (𝑒𝑒)
Let �⃗�𝑋(1), �⃗�𝑋(2), … , �⃗�𝑋(𝑔𝑔) be a sequence of solutions that the defender obtains while optimizing

indicator (1), then the attacker on (𝑔𝑔 + 1)-th step must solve the problem of maximizing indicator:

𝑈𝑈н
(𝑔𝑔+1)(𝑌𝑌�⃗) = �𝑈𝑈(�⃗�𝑋(𝑒𝑒),𝑌𝑌�⃗)

𝑔𝑔

𝑒𝑒=1

= ���𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑀𝑀𝑖𝑖∈𝑁𝑁

(1 −𝑚𝑚𝑎𝑎𝑥𝑥
𝑗𝑗∈𝛬𝛬

{𝑝𝑝𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗𝑖𝑖
(𝑒𝑒)})

𝑔𝑔

𝑒𝑒=1

,
(7)

where 𝑥𝑥𝑗𝑗𝑖𝑖
(𝑒𝑒) are components of vector �⃗�𝑋(𝑒𝑒).

The problem with indicator (6) is a boolean programming problem for the defender. As indicator
(6) is linear on components of 𝑌𝑌�⃗ (𝑒𝑒), therefore when optimizing we can use a middle point among
vectors 𝑌𝑌�⃗ (0),𝑌𝑌�⃗ (1), … ,𝑌𝑌�⃗ (𝑔𝑔) instead of their first sum. The problem with indicator (7) is a linear
programming problem for the attacker.

Let’s introduce a definition for the middle point, obtained on g initial algorithm steps. We denote
solutions obtained on each of g initial algorithm steps for defender as 𝑌𝑌�⃗ (1),𝑌𝑌�⃗ (2), … ,𝑌𝑌�⃗ (𝑔𝑔), then the
middle point for attacker can be written as:

𝑌𝑌�⃗ (𝑚𝑚𝑖𝑖𝑑𝑑) =
1
𝑔𝑔
�
𝑔𝑔

𝑒𝑒=1

𝑌𝑌�⃗ (𝑒𝑒),
(8)

28

4.3. Let’s Formulate the Saddle Point Search Algorithm
Step 0. We assume 𝑌𝑌�⃗ (𝑠𝑠𝑠𝑠𝑚𝑚) = ‖0,0, … ,0‖𝑇𝑇 (total vector for calculation sum ∑𝑔𝑔𝑒𝑒=1 𝑌𝑌�⃗ (𝑒𝑒)), �⃗�𝑋(0) =

‖0,0, … ,0‖𝑇𝑇 - initial solution of the defender, any solution can be chosen, vector map �⃗�𝑋 is empty. This
map has vector �⃗�𝑋(𝑗𝑗) as key, and number of �⃗�𝑋 occurrences in different steps of the algorithm as values.

Step k (k=1, 2, 3, …). We determine 𝑌𝑌�⃗ (𝑗𝑗) with �⃗�𝑋 vector map obtained on current step, by
searching linear programming problem for the attacker, maximize indicator (7) (for k=1 we maximize
indicator (1) for �⃗�𝑋 = �⃗�𝑋(0)). Attackers’ quality indicator value we denote as 𝑈𝑈н

(𝑗𝑗)(𝑌𝑌�⃗ (𝑗𝑗)), we assume
𝑌𝑌�⃗ (𝑠𝑠𝑠𝑠𝑚𝑚) = 𝑌𝑌�⃗ (𝑠𝑠𝑠𝑠𝑚𝑚) + 𝑌𝑌�⃗ (𝑗𝑗), 𝑌𝑌�⃗ (𝑚𝑚𝑖𝑖𝑑𝑑) = 𝑌𝑌�⃗ (𝑠𝑠𝑠𝑠𝑠𝑠)

𝑗𝑗
.

We determine �⃗�𝑋(𝑗𝑗) for fixed 𝑌𝑌�⃗ (𝑚𝑚𝑖𝑖𝑑𝑑) by solving a boolean programming problem for the defender
with indicator (6). Defenders’ quality indicator value we denote as 𝑈𝑈з

(𝑗𝑗+1)(�⃗�𝑋(𝑗𝑗)), obtained �⃗�𝑋(𝑗𝑗) we
include into defender’s solution map.

From second step onward we check the stopping criterion. If it is met, we stop the algorithm,
obtained attackers’ solution - 𝑌𝑌�⃗ (𝑚𝑚𝑖𝑖𝑑𝑑), using obtained map for �⃗�𝑋 vectors we calculate probability
estimates for each vector in map, this will be the defenders’ solution in mixed strategies. Pair of
defenders’ and attackers’ solutions comprises an approximated saddle point. If stopping criterion is
not met, we continue with the next step.

The condition | 𝑈𝑈н
(𝑘𝑘)(𝑌𝑌�⃗ (𝑘𝑘))
𝑗𝑗−1

− 𝑈𝑈з
(𝑘𝑘+1)(𝑋𝑋�⃗ (𝑘𝑘))

𝑗𝑗
| < 𝜀𝜀 can be used as a stopping criterion, where ε - some

relatively small positive value, determining algorithm error, ε can be chosen as a percentage of the

value 𝑚𝑚𝑖𝑖𝑛𝑛 �𝑈𝑈н
(𝑘𝑘)�𝑌𝑌�⃗ (𝑘𝑘)�
𝑗𝑗−1

, 𝑈𝑈з
(𝑘𝑘+1)�𝑋𝑋�⃗ (𝑘𝑘)�

𝑗𝑗
�.

If the need arises, the algorithm can be reformulated thus, that on each step the optimization
problem for the defender would be solved first, and for attacker – second.

4.4. Ways to reduce the required computing resources for algorithm and
increase its precision
The Described algorithm requires substantial computational resources starting from certain

dimension of the problem, because on each step the defender has to solve boolean programming
problem with exponential computational complexity.

As shown by computational experiments, obtained solutions start to repeat on certain step, i.e. for
a given relatively large step count no new solutions were obtained for both attacker and defender
(attackers’ solutions can also be saved in a map), similar approach was used in [27]. In this case we
can stop solving optimization tasks, and start looking for solutions among obtained ones using brute
force.

If there aren’t too many obtained solutions in maps, we can compose a usual game matrix from
them by filling it with indicator values for each solution pair for defender and attacker, and then solve
this problem precisely or approximately by using this matrix.

5. Example

Table 1 shows the initial data obtained by the pseudorandom number generator. In the example,
the number of objects is 5, the number of applications is 9, the number of threats is 3, for example,
integrity, availability, and privacy violations.

29

Table 1
Source data for the task obtained by the pseudorandom number generator

 Threats
Objects

Threat damage
Threat 1 Threat 2 Threat 3

Object 1 4580.43 3197.33 2444.14
Object 2 1205.57 4030.37 2383.47
Object 3 4378.77 4617.79 3061.22
Object 4 2747.12 3145.94 4061.98
Object 5 3529.50 2822.08 4833.49
Applications

Threats

Applications (threat prevention probabilities)

1 2 3 4 5 6 7 8 9

Threat 1 0.79 0.96 0.73 0.77 0.71 0.91 0.71 0.83 0.91
Threat 2 0.92 0.77 0.97 0.87 0.73 0.90 0.98 0.71 0.80
Threat 3 0.73 0.72 0.81 0.71 0.90 0.92 0.83 0.73 0.76
 Applications

Groups
Application groups

Application numbers
Group 1 1, 4, 7
Group 2 2, 5, 8
Group 3 3, 6, 9

Applications
Objects

Applications (defender shared resource consumption)
1 2 3 4 5 6 7 8 9

Object 1 10.55 29.69 23.07 38.00 25.58 13.02 38.19 26.11 14.26
Object 2 27.37 15.60 27.56 23.66 33.65 26.19 28.81 36.90 34.97
Object 3 23.34 21.67 22.60 33.16 18.23 22.43 42.60 10.81 18.94
Object 4 39.41 34.07 49.80 39.66 30.45 22.33 37.83 26.25 31.22
Object 5 20.69 34.03 44.32 15.93 13.37 24.97 16.15 31.53 38.03
Total resource 250.53

Defender's private resource (one resource)
Applica-

tions
Objects

Applications (private resource consumption for objects) Total
stock 1 2 3 4 5 6 7 8 9

Object 1 38.88 18.48 41.78 27.36 18.82 35.81 42.72 12.31 20.72 51.66
Object 2 39.64 43.36 11.90 23.73 46.27 33.48 40.73 12.30 37.69 62.34
Object 3 41.08 32.75 30.57 43.33 32.18 26.99 10.35 21.28 12.19 53.33
Object 4 28.28 13.78 15.12 20.27 29.39 32.05 42.84 47.70 20.65 61.30
Object 5 21.40 33.88 11.78 33.52 37.61 30.60 16.25 44.09 30.26 54.10

Threats
Objects

Threats, resource consumption of the attacker for the implementation
of threats

1 2 3
Object 1 13.67 38.20 18.03
Object 2 49.22 30.85 38.59
Object 3 42.70 32.79 22.24
Object 4 13.90 21.28 44.87
Object 5 38.48 39.61 24.97
Total resource 234.70

30

The results of solving the problem are presented in Table 2. The table shows the saddle point: one
solution for the attacker (the middle point found by the algorithm) and three solutions for the defender
with estimates of their probabilities (a mixed strategy). The estimate of the indicator value is 2719.71.

Table 2
Results of solving the task

Intruder's solution 1.00 0.39 1.00
0.00 0.00 0.00
1.00 0.00 1.00
0.47 1.00 0.71
1.00 0.00 1.00

Defender's solutions 0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 1 0 1
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 1 1 1
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 1 1
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 1 1 1
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Probabilities of
solutions

0.10 0.80 0.10

6. Conclusion

The report considers the mathematical formulation of the problem of choosing software protection
tools for a server system. The problem is a discrete-continuous zero-sum game of two players: a
defender and an intruder. The set of decisions of the defender is discrete and finite, the set of
decisions of the attacker is continuous, including the uncertainty of the actions of the attacker from
the point of view of the defender. The defender must solve the Boolean programming problem, and
the intruder must solve the linear programming problem. An algorithm for finding a saddle point for a
defender in mixed strategies, for an intruder in pure strategies is proposed. The algorithm is based on
reducing the continuous problem for the attacker to a discrete one and is based on the ideas of the
Brown-Robinson method. Computational experiments were carried out that demonstrated the
efficiency of the algorithm, and a method was proposed to reduce the computational complexity of the
algorithm by switching from solving optimization problems to finding solutions among previously
found ones, after the solutions are repeated at a given number of steps.

The use of the proposed algorithm allows using software protection tools in the case of restrictions
on various resources to significantly reduce the damage to the protection side from various types of
attacks.

The reliability of the obtained results is confirmed by the correctness of the mathematical
formulation of the problem, an explicit meaningful interpretation of both the problem statement and
the obtained solutions, as well as by experimental verification of the obtained solutions to meet the
required criteria.

31

7. References

[1] Fanyu Kong, Yufeng Zhou, Bin Xia, Li Pan, Limin Zhu. A Security Reputation Model for IoT
Health Data Using S-AlexNet and Dynamic Game Theory in Cloud Computing Environment.
IEEE Access, 2019, vol. 7, pp. 161822-161830. DOI: 10.1109/ACCESS.2019.2950731.

[2] Hengwei Zhang, Lv Jiang, Shirui Huang, Jindong Wang, Yuchen Zhang. Attack-Defense
Differential Game Model for Network Defense Strategy Selection. IEEE Access, 2018, vol. 7,
pp. 50618-50629. DOI: 10.1109/ACCESS.2018.2880214.

[3] Liang Xiao, Dongjin Xu, Narayan B. Mandayam, H. Vincent Poor. Attacker-Centric View of a
Detection Game against Advanced Persistent Threats. IEEE Transactions on Mobile Computing,
2018, vol. 17, iss. 11, pp. 2512-2523. DOI: 10.1109/TMC.2018.2814052.

[4] Shana Moothedath, Dinuka Sahabandu, Joey Allen, Andrew Clark, Linda Bushnell, Wenke Lee,
Radha Poovendran. A Game-Theoretic Approach for Dynamic Information Flow Tracking to
Detect Multistage Advanced Persistent Threats. IEEE Transactions on Automatic Control, 2020,
vol. 65, iss. 12, pp. 5248-5263. DOI: 10.1109/TAC.2020.2976040.

[5] Dayong Ye, Tianqing Zhu, Sheng Shen, Wanlei Zhou. A Differentially Private Game Theoretic
Approach for Deceiving Cyber Adversaries. IEEE Transactions on Information Forensics and
Security, 2020, vol. 16, pp. 569-584. DOI: 10.1109/TIFS.2020.3016842.

[6] Rui Zhang, Quanyan Zhu. FlipIn: A Game-Theoretic Cyber Insurance Framework for Incentive-
Compatible Cyber Risk Management of Internet of Things. IEEE Transactions on Information
Forensics and Security, 2019, vol. 15, pp. 2026-2041. DOI: 10.1109/TIFS.2019.2955891

[7] Boyu Gao;Libao Shi. Modeling an Attack-Mitigation Dynamic Game-Theoretic Scheme for
Security Vulnerability Analysis in a Cyber-Physical Power System. IEEE Access, 2020, vol. 8,
pp. 30322-30331. DOI: 10.1109/ACCESS.2020.2973030

[8] Makan Zamanipour. Fast-and-Secure State-Estimation in Dynamic-Control Over
Communication Channels: A Game-Theoretical Viewpoint. IEEE Transactions on Signal and
Information Processing over Networks, 2020, vol. 6, pp. 645-655. DOI:
10.1109/TSIPN.2020.3018327

[9] Lichun Li, Jeff S. Shamma. Efficient Strategy Computation in Zero-Sum Asymmetric
Information Repeated Games. IEEE Transactions on Automatic Control, 2020, vol. 65, iss. 7, pp.
2785-2800. DOI: 10.1109/TAC.2019.2933396

[10] Burhan Ul Islam Khan, Farhat Anwar, Rashidah Funke Olanrewaju, Bisma Rasool Pampori,
Roohie Naaz Mir. A Game Theory-Based Strategic Approach to Ensure Reliable Data
Transmission With Optimized Network Operations in Futuristic Mobile Adhoc Networks. IEEE
Access, 2020, vol. 8, pp. 124097-124109. DOI: 10.1109/ACCESS.2020.3006043

[11] Liang Xiao, Dongjin Xu, Narayan B. Mandayam, H. Vincent Poor. Attacker-Centric View of a
Detection Game against Advanced Persistent Threats. IEEE Transactions on Mobile Computing.
2018. Vol. 17, Iss. 11. P. 2512-2523. DOI: 10.1109/TMC.2018.2814052

[12] Jiaxing Qi, Jing Yu, Shunfu Jin. Nash Equilibrium and Social Optimization of Transactions in
Blockchain System Based on Discrete-Time Queue. IEEE Access, 2020, vol. 8, pp. 73614-
73622. DOI: 10.1109/ACCESS.2020.2986084

[13] Marcos V.O. De Assis, Matheus P. Novaes, Cinara B. Zerbini, Luiz F. Carvalho, Taufik Abrãao,
Mario L. Proença. Fast Defense System Against Attacks in Software Defined Networks. IEEE
Access, 2020, vol. 6, pp. 69620-69639. DOI: 10.1109/ACCESS.2018.2878576

[14] Sidi Ahmed Ezzahidi, Essaid Sabir, Mohamed El Kamili, El-Houssine Bouyakhf. A non-
cooperative file caching for delay tolerant networks: A reward-based incentive mechanism. 2016
IEEE Wireless Communications and Networking Conference, 2016. DOI:
10.1109/WCNC.2016.7565161

[15] Richeng Jin; Xiaofan He;Huaiyu Dai. On the Security-Privacy Tradeoff in Collaborative
Security: A Quantitative Information Flow Game Perspective. IEEE Transactions on Information
Forensics and Security, 2019, vol. 14, iss. 12, pp. 3273-3286. DOI: 10.1109/TIFS.2019.2914358

[16] Klyucharev P.G. Grafy Pajzera v zadachah kriptografii i obrabotki informacii [pizer graphs in
cryptography and in information processing]. Sbornik trudov desyatoj mezhdunarodnoj

32

nauchno-tekhnicheskoj konferencii «Bezopasnye informacionnye tekhnologii» (BIT-2019),
Moscow, MGTU im. N.E.Baumana, 2019, pp. 176-179. (In Russ).

[17] Ponomarenko G.S., Klyucharyov P.G. Opredelenie obfuskacii JavaScript-programm s
pomoshch'yu raskrasok na abstraktnyh sintaksicheskih derev'yah [detection of obfuscated
javascript code based on abstract syntax trees coloring]. Matematika i matematicheskoe
modelirovanie, 2020, no. 2, pp. 1-24. DOI: 10.24108/mathm.0220.0000218.

[18] Vishnevskij A.S., Klyucharev P.G. Obnaruzhenie celenapravlennyh atak veb-orientirovannoj
obmannoj sistemoj, osnovannoj na algoritme antiklassifikacii [Anticlassification algorithm for
targeted computer attack detection in web-oriented honeypot]. Nejrokomp'yutery: razrabotka,
primenenie, 2020, vol. 22, no. 3, pp. 5-17. DOI: 10.18127/j19998554-202003-01.

[19] Andrey Vishnevsky, Petr Klyucharev. The Sound User Interface of Honeypot. CEUR Workshop
Proceedings. 2019. Vol-2603. P. 83-87. URL: http://ceur-ws.org/Vol-2603/short18.pdf.

[20] Grigory Ponomarenko, Petr Klyucharev. JavaScript Programs Obfuscation Detection Method
that Uses Artificial Neural Network with Attention Mechanism. CEUR Workshop Proceedings.
2019. Vol-2603. P. 100-104. URL: http://ceur-ws.org/Vol-2603/paper21.pdf.

[21] A. Varfolomeev. Strengthening the password authenticated key exchange protocols due to the
use of asymmetric execution of cryptosystems. CEUR Workshop Proceedings. 2019. Vol-2603.
P. 79-82. http://ceur-ws.org/Vol-2603/short17.pdf.

[22] M. Basarab, T. Buldakova, K. Smolyaninova, M. Sokolov. User Identification Based on the Vein
Pattern in Biometric Immobilizer. CEUR Workshop Proceedings. 2019. Vol-2603. P. 1-5. URL:
http://ceur-ws.org/Vol-2603/short1.pdf.

[23] A. Chilikov, A. Zhukov, A. Verkhovsky. The Research of Reversible Cellular Automata with a
Finite Lattice. CEUR Workshop Proceedings. 2019. Vol-2603. P. 12-15. URL: http://ceur-
ws.org/Vol-2603/short3.pdf.

[24] А. Markov, I. Sheremet. Enhancement of Confidence in Software in the Context of International
Security. 2019. Vol-2603. P. 88-92. URL: http://ceur-ws.org/Vol-2603/paper19.pdf.

[25] A. Kalashnikov. Example of Using of Game-Theoretic Approach in Problems of Ensuring Cyber
Security of Information Systems. Voprosy kiberbezopasnosti, 2014, No 1(2), pp. 49-54.

[26] Bykov A.Yu., Krygin I.A., Grishunin M.V., Markova I.A. Ob odnom algoritme poiska sedlovoj
tochki dlya nepreryvnyh linejnyh igr primenitel'no k zadacham zashchity informacii [One saddle
point search algorithm for continuous games applied to information security problems]. Vestnik
Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya:
Priborostroenie [Herald of the Bauman MSTU. Ser. Instrument Engineering], 2020, no. 4 (133),
pp. 58-74. DOI: 10.18698/0236-3933-2020-4-58-74.

[27] Bykov A.Yu., Grishunin M.V., Krygin I.A. Igrovaya zadacha vybora zashchishchaemyh
ob"ektov i issledovanie algoritma poiska sedlovoj tochki na osnove modifikacii metoda Brauna-
Robinsona [THE game problem of selection of assets to protect and research of saddle point
search algorithm based on Brown-Robinson method modification]. Voprosy kiberbezopasnosti,
2019, no. 2 (30), pp. 2-12. DOI: 10.21681/2311-3456-2019-2-2-12.

http://ceur-ws.org/Vol-2603/paper19.pdf

	1. Introduction
	2. Problem Description
	3. Mathematical Formulation of the Problem
	3.1. Initial data
	3.2. Set elements parameters and relations between them
	3.3. Parameters
	3.4. Players indicators
	3.5. Limitations

	4. Saddle Point Search Algorithm
	4.1. Justification for saddle point existence in a discrete-continuous problem
	4.2. Description of saddle point search algorithm using ideas from Brown-Robinson method
	4.3. Let’s Formulate the Saddle Point Search Algorithm
	4.4. Ways to reduce the required computing resources for algorithm and increase its precision

	5. Example
	6. Conclusion
	7. References

