
193

Topical Issues Related to Certification Tests of Information
Security Tools

Vitali V. Varenitca1,2, Alexey S. Markov 1,2 and Pavel A. Naschokin2

1 Bauman Moscow State Technical University, 5/1 2nd Baymanskay ul., Moscow, 105005, Russia
2 NPO Echelon, 24 2nd Electrozavodskaya ul., Moscow, 107023, Russia

Abstract
This paper studies various methods and techniques used to identify defects and
vulnerabilities during the certification tests of information security tools. The
conclusion was drawn on the relevance and priority of the examination of open source
web applications. The paper cites the study and demonstrates the drawbacks of
directive methods used to find the vulnerabilities and undocumented features in
software products. The author’s detailed statistics was provided demonstrating the
identified vulnerabilities by the classes of computer attacks, information security tool
manufacturers, programming environments and vulnerability identification procedures.
Original test methods were compared with well-known directive test procedures. The
relevance of introducing the concept of secure software development is shown.
Recommendations are given on improving the security of software tools used for
information protection.

Keywords
Certification tests, information security tools, vulnerability identification methods,
secure software code

1. Introduction

The issue of identifying vulnerabilities in software is certainly not new, but it has not been
solved definitively and is extremely topical at the present time [1]. The very presence of
vulnerabilities in software creates the main class of threats in contemporary computer systems
and networks (e.g. refer to [2-8]). However, the issues of vulnerability identification take on
particular importance in the course of certification tests of information security tools (IST)
because this procedure is mandatory [9-13]. Moreover, the vulnerability analysis of IST
software (SW) is now becoming one of the main activities in the development and support of
secure software products [14-21].

As for IST certification, this work is performed both during certification for compliance with
the requirements of security profiles approved by the Russian Federal Service for Technical and
Export Control (FSTEK), which explicitly include the requirements of trust family
Vulnerability Analysis, and during the tests for compliance with the requirements of
specifications or traditional regulatory documents [13]. The conceptual approach to
vulnerability analysis recommended at the present time by FSTEK of Russia suggests the
combined use of approaches described in ISO/IEC 18045 and ISO/IEC TR 20004 [22-24]. In
general, the procedure involves the following steps [25]:

BIT-2021: XI International Scientific and Technical Conference on Secure Information Technologies, April 6-7, 2021, Moscow, Russia
EMAIL: www@cnpo.ru (A.1); a.markov@bmstu.ru (A. 2); pavel-vivos@yandex.ru (A. 3)
ORCID: 0000-0003-0111-7377 (A. 2)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

194

 1. Identification of known (confirmed) vulnerabilities of the object to be certified. During this
step the experts of test laboratory search for any known (confirmed) vulnerabilities in public
information sources such as the Data Bank of Information Security Threats of FSTEK of Russia
or CVE list [26, 27].

2. Identification of vulnerabilities of the object to be certified not published previously.
During this step the experts of test laboratory analyze the data on the object to be certified
(source code, available documentation, information from open sources) to define the list of
potential vulnerabilities of the object to be certified and to develop and perform the penetration
test for each identified vulnerability in order to determine the assumption accuracy.

Considering that the requirements to perform the vulnerability analysis is relatively new to
Russian certification systems for information security tools, currently there are almost no
procedural guidelines for test laboratories which could be used to perform an effective analysis
of web application vulnerabilities. This determines the relevance of the task of developing and
improving the procedures for vulnerability analysis during certification tests for compliance
with the information security requirements and during the assessment of compliance with the
requirements of modern security standards.

2. Adapted procedure for web application vulnerability analysis

The scope of this study included the approbation of combined procedure for software
vulnerability analysis based on the methods suggested in studies [25, 28] and the requirements
of modern information security (IS) standards, as well as formulation of recommendations for
experts certified by the test laboratory.

The figures below (Figure 1 – Figure 3) demonstrate the main stages of the suggested
procedure.

Figure 1: Stages 1 and 2 of the procedure for web application vulnerability analysis

The stages and steps of the adapted procedure for software vulnerability analysis are briefly
described below.

Stage 1. Acquisition of data to perform the vulnerability analysis.
Step 1. Identification of the minimum set of initial data:
• Documentation for the assessed object;
• Test-cases developed by the manufacturer to perform internal tests at the stages of
assessed object life cycle.

195

Step 2. Analysis of identified data. Based on the available data, the expert shall analyze the
documentation for the assessed object. Examination of the documents makes it possible to
understand what technologies and software tools were used to design the product under
consideration and allows forming a minimum set of conditions required for correct operation of
the assessed technical tool. The investigation can be divided into the components described
below.

1. Search for identification attributes of assessed object.
2. Search for information about the applied third-party technical tools which are necessary

for the assessed object operation.
3. Search for information about the borrowed components of the assessed object.
4. Identification of the list of the assessed object configurations and operational

environments.
5. Identification of the protection mechanisms used for the assessed object.
Step 3. Examination of publicly available information sources. The expert uses the

information obtained at the previous steps to analyze the open information sources (regulatory
database) for availability of attack patterns for known vulnerabilities in the software
components of operational environment and products similar to the assessed object,
vulnerabilities in configurations that enable the assessed object operation, information about any
errors during interaction of third-party technical tools with the assessed object or similar
products. The analysis results serve as the basis for preparation of vulnerabilities list defined as
potential vulnerabilities of the assessed object.

Step 4. Identification of the set of source texts used to compile the object to be certified.
During this step, the experts of test laboratory check the software source texts presented for
certification for completeness and lack of redundancy in order to define the exact set of source
texts involved in the software compilation. While performing this step, the experts of test
laboratory use the information generated by the building system and various tools (file system
monitors, file system audit programs, etc.). The main purpose of this step is to document the list
of source text files used to compile the certified object.

Step 5. Static signature analysis [30, 31] with respect to the set of source texts documented at
step 4. The static analyzer used shall be able to search for potentially hazardous constructs in the
source texts and form this list while assigning the CWE database identifier to each potentially
hazardous construct identified.

Step 6. Preliminary analysis of the assessed object. The preliminary analysis is carried out to:
• Clarify the data obtained during the documentation examination;
• Assess the documentation submitted to perform tests for compliance with the actually
studied product;
• Perform test actions that allow identifying incorrect operation of the assessed object;
• Perform the test actions directed to the assessed object which allow identifying special
attributes of the assessed object demonstrating the potential presence of certain varieties of
code defects (vulnerabilities);
• Define any additional undocumented ways of action on the assessed object which are
potentially able to compromise the data integrity/availability/confidentiality.
The preliminary analysis allows the expert to define the product purpose more accurately and

understand which of the available skills might be of use in the further product analysis, as well
as to develop the higher quality penetration tests. The data acquired during the preliminary
analysis can influence the results obtained during the analysis of the assessed object
documentation and sets of texts provided by the developer. While examining the information
available in the open sources (regulatory database) the expert shall use the data obtained during
the preliminary analysis and form the additional list of potential vulnerabilities in the assessed
object. Moreover, in the course of preliminary analysis the expert shall use the data obtained
from the static analysis of assessed object code and the results of security scanner operation.
While performing the preliminary analysis, the expert shall analyze the results of static analyzer
and security scanner operation thus minimizing false operations. The expert shall use the results

196

of preliminary analysis and documentation analysis to develop the data required for the second
stage of this procedure.

Stage 2. Preparation of the original list of potential vulnerabilities in the assessed object
Step 7. Evaluation of the data obtained at stage 1.
Step 8. Preparation of the list of potential vulnerabilities in the assessed object based on the

findings of stage 1.
Step 9. Identification of suspicious operations performed by the assessed object. Assessment

of identified incidents for potential impact on the web application security (e.g. [10, 25, 32,
33]).

Step 10. Preliminary fuzzing tests. This is a nonintelligent type of fuzzing tests aimed to
obtain specified inputs for dynamic tests [20, 35].

Step 11. Processing of the obtained list of potentially hazardous constructs using the
filtration criteria defined in section 6.1.2.1 of standard ISO/IEC TR 20004.

Step 12. Preparation of the list of attack patterns relevant for the software under study using
the sequence of actions defined in section 6.1 of ISO/IEC TR 20004.

Stage 13. Creation of potential vulnerability/attack pattern pairs. Processing of the lists of
potential vulnerabilities and attack patterns created at stage 2 using the sequences in section
6.1.2.2 of ISO/IEC TR 20004.

Stage 3. Dynamic analysis of the assessed object code.
Step 14. Identification of the code sections required to perform the code instrumentation.
Step 15. Writing of instrumentation and profiling functions, embedding of the

instrumentation and profiling functions into the code.
Step 16. Development of the test set of input data.
Step 17. Dynamic analysis of the code. Identification of suspicious operations of the

functions tested. Preparation of the list of potential vulnerabilities.
Step 18. Processing of the obtained list of potentially hazardous constructs using the

filtration criteria defined in section 6.1.2.1 of ISO/IEC TR 20004. Comparison with the list
created at stage 2 of this procedure.

Stage 4. Update of the penetration test set based on the completed dynamic analysis of the
assessed object.

Step 19. Preparation of the list of attack patterns relevant for the software under study using
the sequence of actions defined in section 6.1 of ISO/IEC TR 20004. Update of the tests
obtained in step 10 of this procedure.

Figure 2: Stages 3 and 4 of the software vulnerability analysis methodology

Stage 5. Penetration testing.

197

Step 20. Analysis of the tests performed by the web application developers. Test
optimization and improvement.

Step 21. Development of penetration tests based on the developed list of potential
vulnerabilities and attack patterns.

Step 22. Installation of the test bench and performance of penetration tests using the
developed tests. If new potential vulnerabilities are identified during the tests, new tests should
added to the list of penetration tests. If it is found out during the test that it is necessary to
specify the penetration test or extend it with any additional activities, the test should be
corrected and repeated.

Step 23. Correction of the test set taking into account the changed set of input data. Repeated
performance of corrected tests, as necessary.

Step 24. Determination of the relevant software vulnerabilities based on the penetration test
results and preparation of reports.

Figure 3: Stage 5 of the software vulnerability analysis methodology

3. Experimentation

Experimental research of the adapted procedure for software vulnerability analysis was
performed by the experts of certified test laboratory in 2019-2021 using the research facilities of
NPO Echelon.

The following objects were tested:
• The software subject to theme-based and certification tests in a certified test laboratory
(group N1, 157 assessed objects);
• Open-source software (group N2, 91 assessed objects out of 157).
The experts of test laboratory performed the signature analysis of source texts using

AppChecker (developed by NPO Echelon). The experts of test laboratory carried out the
penetration tests using the recommendations provided by various thematic resources (CAPEC,
OWASP) and the tool Scanner-VS (developed by NPO Eсhelon) [35]. The test benches used for
penetration tests (step 7) were installed and set up by the experts of test laboratory in strict
compliance with the requirements of operation and technical documents for the study objects.

4. Results of experimental studies

In the course of procedure approbation the experts of test laboratory identified 235 software
vulnerabilities in the study objects of group N1. The relevance of all identified software
vulnerabilities was confirmed by the software developer. Figure 4 shows the distribution of

198

identified vulnerabilities by types of successful attacks involving the identified vulnerability. A
number of defects were found which can hardly be identified as intentional, though they can be
used during cyber-attacks such as SQL code injection and incorrect operation of the access
control mechanisms. The research has shown that the software includes explicit implants
disguised as debugging tools such as embedded accounts and master passwords. Category
Others includes less popular types of vulnerabilities such as XML injections or session fixation.

Figure 4: Distribution of identified vulnerabilities by types of Web application attacks

On average, it took the software developer one month to eliminate the vulnerability.
It should be noted that modern software complexes include open-source software modules.

The research of group N2 (open-source software) has shown that such programs also include
vulnerabilities. The research findings include 328 software defects (confirmed by the
developers), of which 112 are the defects causing the software vulnerability. The software
defects were found both using the static signature analysis of the software source code and by
the dynamic analysis of the software code. The distribution of identified vulnerabilities is shown
in Figure 5. The most popular types of identified software defects are the errors in DBMS
queries (CWE-89, Improper Neutralization of Special Elements used in an SQL Command) and
improper work with input data used for web page generation (CWE-79 Improper Neutralization
of Input During Web Page Generation) (e.g. [36]).

Figure 5: Software vulnerabilities distribution (open-source software) by the types of CWE
defects

199

5. The problem state in foreign certification systems

It should be reminded that due to the innovations in foreign certification systems, reports of
test laboratories, which provide an overview of the vulnerability analysis, are published on the
official websites of the certification systems. The reports of test laboratories over the period of
2019-2021 were analyzed (sample group included 43 reports3) published on the website of
NIAP, the regulating agency of the US certification system. The analyzed reports mostly
included reports on the tests for compliance with the requirements of security profiles for
network devices (28 reports). The rest of reports (5 reports) reflected the findings of tests for
compliance with the security profile requirements for application software, operating systems,
controls of access privileges policy and mobile device security tools.

The main findings of the completed analysis are given below.
1. In the course of all works, the test laboratories searched for the information about known

vulnerabilities of the object to be certified in publicly available databases. Some test laboratories
searched for known vulnerabilities not only by the key words directly relating to the object to be
certified (the software name and version, software developer’s name) but also by the
identification data relating to borrowed components.

2. Only in half of the studies the test laboratories carried out additional penetration tests.
Most works use the standard set of tests applicable to almost all types of certification objects
working with web applications (e.g. network port scanning). Only one study included the
information about penetration tests performed on the basis of potential vulnerabilities of the
object to be certified formulated considering the analysis of the developer’s evidence.

3. All studies related to the certification based on the security profile requirements for
network devices included fuzzing tests. As a rule, automation software developed in-house was
used in such cases. At the same time, the full-fledged dynamic analysis was not performed.

4. In their research, the test laboratories did not follow the guidelines of ISO/IEC TR 20004
pertaining to the development of the list of potential vulnerabilities based on CWE and CAPEC
database analysis. This is due to the fact that the requirement to provide access to the source
code of certified software is not mandatory in foreign certification systems. The analysis is
carried out only within the scope compliant with the requirements of explanatory note;
additional studies are performed only by a small number of test laboratories.

6. Conclusions

Based on the results of this study, it can be concluded that the combined software
vulnerability analysis is effective and should be implemented in daily activities of experts in
certified test laboratories. The analysis of web application vulnerabilities should be the first
activity performed within the scope of certification tests, as part of the software analysis the
developer carries out before marketing the product, and as part of the check for compliance with
modern security standards because identification of vulnerabilities in the assessed object at later
stages (e.g. after the start of certification tests or at the product support stage) implies the
repetition of complete cycle of product tests and significant costs incurred by the developer. It
should be noted that in case of certification tests it is recommended that known (confirmed)
vulnerabilities of the object to be certified should be identified both at the initial and at the final
stages of certification tests.

The following brief conclusions can be drawn based on the procedure approbation results:
• The number of identified vulnerabilities depends a lot on the processes of secure
software development cycle existing in the software development company.
• The most critical vulnerabilities were found only if the access to software source code
was provided.

3 Reports on the products working with web applications or containing web applications were analyzed.

200

• The major part of vulnerabilities identified during the study could have been identified
by the software developer at early stage of the software development using the methods of
static and dynamic analysis of the software source code.
In order to reduce the number of vulnerabilities, it is recommended that web application

developers should enhance the life cycle processes with the main activities aimed to develop
secure software such as modeling of information security threats, static analysis of source texts,
penetration tests. We believe that practical application of such procedures by Russian software
developers will improve the security of created software and, consequently, will reduce
significantly the number of information security incidents.

7. References

[1] P. M. Parker. The 2022 Report on Software Security Testing: World Market Segmentation
by City. ICON Group International, 2021, 502 p.

[2] Petrenko S.A., Makoveichuk K.A., Olifirov A.V. Concept of cyber immunity of Industry
4.0. In: CEUR Workshop Proceedings. Selected Papers of the X Anniversary International
Scientific and Technical Conference on Secure Information Technologies (BIT 2019).
2019. V. 2603. P. 93-99.

[3] Petrenko S. La Administraciуn de la Ciberseguridad. Industria 4.0. Oviedo, Asturias.
University of Oviedo, 2019, 294 p.

[4] Petrenko A.A., Petrenko S.A., Makoveichuk K.A., Olifirov A.A. Methodological
recommendations for the cyber risks management. In: CEUR Workshop Proceedings. 5.
Ser. Selected Papers of the 5th International Scientific and Practical Conference Distance
Learning Technologies - DLT 2020, 2021. V. 2914. P. 234-247.

[5] Korneev, N., Merkulov, V. Intellectual analysis and basic modeling of complex threats.
CEUR Workshop Proceedings. 2019, vol. 2603, pp. 23-28.

[6] Dmitry P. Zegzhda, Igor Y. Zhukov. Aspects of information security of computer systems.
In: CEUR Workshop Proceedings. Selected Papers of the XI Anniversary International
Scientific and Technical Conference on Secure Information Technologies (BIT 2021).
2021.

[7] Demidov R.A., Pechenkin A.I., Zegzhda P.D. An approach to vulnerability searching of
integer overflows in the executable program code. Automatic Control and Computer
Sciences. 2018. V. 52. No 8. P. 1022-1028.

[8] A. Mazuera-Rozo, A. Mojica-Hanke, M. Linares-Vásquez and G. Bavota, "Shallow or
Deep? An Empirical Study on Detecting Vulnerabilities using Deep Learning," 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC), 2021, pp.
276-287, doi: 10.1109/ICPC52881.2021.00034.

[9] Y. Benslimane, Z. Yang and B. Bahli, "Information Security between Standards,
Certifications and Technologies: An Empirical Study," 2016 International Conference on
Information Science and Security (ICISS), 2016, pp. 1-5, doi:
10.1109/ICISSEC.2016.7885859.

[10] P. Stephanow and K. Khajehmoogahi, "Towards Continuous Security Certification of
Software-as-a-Service Applications Using Web Application Testing Techniques," 2017
IEEE 31st International Conference on Advanced Information Networking and
Applications (AINA), 2017, pp. 931-938, doi: 10.1109/AINA.2017.107.

[11] J. L. Hernandez-Ramos, S. N. Matheu and A. Skarmeta, "The Challenges of Software
Cybersecurity Certification [Building Security In]," in IEEE Security & Privacy, vol. 19,
no. 1, pp. 99-102, Jan.-Feb. 2021, doi: 10.1109/MSEC.2020.3037845.

[12] G. Ferreira, "Software Certification in Practice: How Are Standards Being Applied?," 2017
IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C),
2017, pp. 100-102, doi: 10.1109/ICSE-C.2017.156.

201

[13] Barabanov A., Markov A. Modern Trends in the Regulatory Framework of the Information
Security Compliance Assessment in Russia Based on Common Criteria. In Proceedings of
the 8th International Conference on Security of Information and Networks (Sochi, Russian
Federation, September 08-10, 2015). SIN '15. ACM New York, NY, USA, 2015, pp. 30-
33. DOI: 10.1145/2799979.2799980.

[14] S. Dupont et al., "Incremental Common Criteria Certification Processes using DevSecOps
Practices," 2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), 2021, pp. 12-23, doi: 10.1109/EuroSPW54576.2021.00009.

[15] M. Andrea, M. Philippe, D. Sbastien and G. Jeremy, "Towards Incremental Safety and
Security Requirements Co-Certification," 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), 2020, pp. 79-84, doi:
10.1109/EuroSPW51379.2020.00020.

[16] K. Li et al., "Tool support for secure programming by security testing," 2015 IEEE Eighth
International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2015, pp. 1-4, doi: 10.1109/ICSTW.2015.7107462.

[17] C. Weir, I. Becker and L. Blair, "A Passion for Security: Intervening to Help Software
Developers," 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), 2021, pp. 21-30, doi: 10.1109/ICSE-
SEIP52600.2021.00011.

[18] Barabanov A., Grishin M., Markov A., Tsirlov V. Current Taxonomy of Information
Security Threats in Software Development Life Cycle. In: 2018 IEEE 12th International
Conference Application of Information and Communication Technologies (AICT). IEEE
(17-19 Oct 2018, Almaty, Kazakhstan). 2018, pp. 356-361.
DOI: 10.1109/ICAICT.2018.8747065.

[19] Barabanov A., Markov A., Tsirlov V. On Systematics of the Information Security of
Software Supply Chains. Advances in Intelligent Systems and Computing. 2020. V. 1294.
P. 115-129. DOI: 10.1007/978-3-030-63322-6_9.

[20] Barabanov A., Markov A., Fadin A., Tsirlov V., Shakhalov I. Synthesis of Secure Software
Development Controls. In Proceedings of the 8th International Conference on Security of
Information and Networks (Sochi, Russian Federation, September 08-10, 2015). SIN ‘15.
ACM New York, NY, USA, 2015, pp. 93-97 DOI: 10.1145/2799979.2799998.

[21] R. Trifonov, O. Nakov, G. Pavlova, S. Manolov, G. Tsochev and P. Nakov, "Analysis of
the Principles and Criteria for Secure Software Development," 2020 28th National
Conference with International Participation (TELECOM), 2020, pp. 125-128, doi:
10.1109/TELECOM50385.2020.9299567.

[22] Taubenberger, S., Jürjens, J., Yu, Y. and Nuseibeh, B. (2013), "Resolving vulnerability
identification errors using security requirements on business process models", Information
Management & Computer Security, Vol. 21 No. 3, pp. 202-223.
https://doi.org/10.1108/IMCS-09-2012-0054.

[23] H. Chen, D. Bao, H. Gao and J. Cheng, "A Security Evaluation and Certification
Management Database Based on ISO/IEC Standards," 2016 12th International Conference
on Computational Intelligence and Security (CIS), 2016, pp. 249-253, doi:
10.1109/CIS.2016.0064.

[24] D. Bao, W. Sun, Y. Goto and J. Cheng, "Development of Supporting Environment for IT
System Security Evaluation Based on ISO/IEC 15408 and ISO/IEC 18045," 2018 IEEE
SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2018,
pp. 204-209, doi: 10.1109/SmartWorld.2018.00070.

[25] Varenitca V. V., Markov A. S., Savchenko V. V. Recommended Practices for the Analysis
of Web Application Vulnerabilities. CEUR Workshop Proceedings. 2019. Volume 2603,
pp. 75-78.

202

[26] V. Mounika, X. Yuan and K. Bandaru, "Analyzing CVE Database Using Unsupervised
Topic Modelling," 2019 International Conference on Computational Science and
Computational Intelligence (CSCI), 2019, pp. 72-77, doi: 10.1109/CSCI49370.2019.00019.

[27] V. Yosifova, A. Tasheva and R. Trifonov, "Predicting Vulnerability Type in Common
Vulnerabilities and Exposures (CVE) Database with Machine Learning Classifiers," 2021
12th National Conference with International Participation (ELECTRONICA), 2021, pp. 1-
6, doi: 10.1109/ELECTRONICA52725.2021.9513723.

[28] Varenitsa V., Markov A., Savchenko V., Tsirlov V. Practical Aspects of Vulnerability
Detection During Certification Tests of Information Security Software. Voprosy
kiberbezopasnosti [Cybersecurity issues]. 2021. No 5 (45), pp. 36-44. DOI:
10.21681/2311-3456-2021-5-36-44.

[29] Barabanov A., Markov A., Fadin A., and Tsirlov V. 2015. A Production Model System for
Detecting Vulnerabilities in the Software Source Code. In Proceedings of the 8th
International Conference on Security of Information and Networks (SIN '15). ACM, New
York, NY, USA, 98-99. DOI: http://dx.doi.org/10.1145/2799979.2800019.

[30] Borzykh S., Markov A., Tsirlov V., Barabanov A. Detecting Code Security Breaches by
Means of Dataflow Analysis. CEUR Workshop Proceedings, 2017. Vol. 2081. P. 15-20.

[31] Markov A.S., Fadin A.A., Tsirlov V.L. Multilevel Metamodel for Heuristic Search of
Vulnerabilities in the Software Source Code, International Journal of Control Theory and
Applications, 2016, vol. 9, No 30, pp. 313-320.

[32] F.M.Tudela and etc. On Combining Static, Dynamic and Interactive Analysis Security
Testing Tools to Improve OWASP Top Ten Security Vulnerability Detection in Web
Applications. Appl. Sci. 2020, 10(24), 9119; https://doi.org/10.3390/app10249119

[33] Barabanov A.V., Markov A.S., Tsirlov V.L. Information Security Controls Against Cross-
Site Request Forgery Attacks On Software Application of Automated Systems. Journal of
Physics: Conference Series. 2018. V. 1015. P. 042034. DOI :10.1088/1742-
6596/1015/4/042034

[34] Reber, G., Malmquist, K., Shcherbakov, A. 2014. Mapping the Application Security
Terrain. Voprosy kiberbezopasnosti [Cybersecurity issues]. 2014. N 1(2). P. 36-39. DOI:
10.21681/2311-3456-2014-2-36-39.

[35] Markov A., Fadin A., Shvets V., Tsirlov V. The experience of comparison of static security
code analyzers. International Journal of Advanced Studies. 2015. V. 5. No 3. P. 55-63.
DOI: 10.12731/2227-930x-2015-3-9

[36] D. Gonzalez, F. Alhenaki and M. Mirakhorli, "Architectural Security Weaknesses in
Industrial Control Systems (ICS) an Empirical Study Based on Disclosed Software
Vulnerabilities," 2019 IEEE International Conference on Software Architecture (ICSA),
2019, pp. 31-40, doi: 10.1109/ICSA.2019.00012.

	1. Introduction
	2. Adapted procedure for web application vulnerability analysis
	3. Experimentation
	4. Results of experimental studies
	5. The problem state in foreign certification systems
	6. Conclusions
	7. References

