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Abstract. Modeling complex system dynamics traditionally is implemented 

with the use of differential equations, which requires hand-crafted work of a 

qualified expert and significant amount of time. The advent of data-driven ap-

proaches allows to overcome these difficulties and substitute traditional models 

with models built in automated way directly from observations. This paper 

compares several data-driven approaches to modeling 2D liquid simulator. Da-

taset is generated from it for both training and testing with fixed simulator pa-

rameters. Local and global types of models are evaluated with metrics, describ-

ing different aspects of liquid behavior (spatial, spatio-temporal and worst-case 

settings). Other metrics introduced allow to capture differences not only in dis-

tances, but also in distributions, which is more natural for human perception 

and enables to quantitively compare similar pictures. From the model evalua-

tion, it is inferred that the use of decomposition improves overall accuracy and 

the trajectories figures, though at the same time model generalizability decreas-

es. On the other hand, utilizing locality leads to more generalizable models at 

the cost of accuracy. Model training and inference times are provided and main 

directions for further research are outlined. 

Keywords: 2D liquid simulation, dynamic mode decomposition, neural ODE, 

graph neural networks. 

1 Introduction 

The problem of modeling complex systems dynamics has been of great interest to 

scientists and engineers for a long time. Classical approach to this task involves using 

calculus and partial differential equations. The main advantage of it is that equations 

can be treated from analytical point of view, enabling researcher to describe behavior 

of solution completely and either apply the model to practical tasks or develop anoth-

er one based on the original model. However, most of equations obtained are rather 

complex, and their properties can only be described using highly non-trivial methods 

of different branches of mathematics. Developing differential equations requires 
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hand-crafted work of a qualified expert and requires significant effort and amount of 

time. 

Another approach to modeling complex systems has become possible with data 

deluge coming from sensors and simulators. Bottom-up data-driven approach requires 

little or no expert knowledge and is aimed at extracting the dynamics of complex 

system, usually in a form of system of equations. This approach has multiple benefits, 

including the huge decrease in computational time for modeling and no prior domain 

expertise [1]. Data-driven methods allow orders of magnitude faster inference without 

losing accuracy in several domains [2]. 

Prominent example of complex system are liquid simulators. There exist two main 

simulator types based on Eulerian grids and Lagrangian particles. Simulators can 

produce both three-dimensional and two-dimensional datasets. In [3] a two-

dimensional liquid simulator is implemented with JavaScript and Python. Simulator is 

based on smoothed particle hydrodynamics, particularly double density relaxation. 

First, the velocity of each particle is updated according to Newton’s Second Law: 

accelerations are computed by summing up forces which impact the particle. The 

second step consists of calculating a kind of local density around each particle: the 

coordinates of its nearest neighbors are convolved with a kernel and summed. If the 

resulting quantity in a given point is higher than average, extra impulses are added to 

neighbors, thus lowering the density in current region. Similarly, if the quantity turns 

out to be lower than average, the simulator tends to increase it. After these two steps 

particle coordinates are updated by adding infinitesimal movement vectors, that is the 

product of velocity and given length of time step. Simulator enables to tune multiple 

liquid parameters, such as viscosity, gravity, density, and stiffness. There can be mul-

tiple emitters with adjustable frequency, angle and angle velocity, emission strength. 

Particle coordinates (up to 1500 particles) for consecutive time steps are extracted 

from the simulator. It is also worth noting that that simulator has a tunable noise pa-

rameter, that is, one can add stochasticity to particle movement, thus obtaining more 

complex dynamic patterns. Absolute values of all the particle coordinates do not ex-

ceed 150. 

To achieve generalizability initial and boundary conditions were changed from 

simulation to simulation, so that dataset consists of multiple runs with different 

boundary and initial conditions. A configuration with two emitters is chosen since it 

allows to observe multiple particles collisions and nonlinearity in change of their 

directions while not making the system too complicated to simulate (see Fig. 1). The 

four parameters of the liquid are fixed, their values chosen in a way that allows one to 

obtain complex patterns in liquid. Emitters’ coordinates 𝑥𝑖 , 𝑦𝑖 , angle 𝜃𝑖  and initial

particle velocity 𝜆𝑖  were randomly generated, and configurations with the most com-

plicated particle patterns have been chosen manually. The total of 100 tuples of condi-

tions were formed, and each simulation computed for total length of 15 seconds. After 

training the model on one simulation, its performance has been measured on all the 

others. 

There are three possible ways one can state the problem of behavior simulation. 

The first one, which is referred to as basic, is one-step prediction. That is, one aims to 

reconstruct particle coordinates in moment T+1 using data for moments 1, …, T. After 
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this, in order to predict coordinates in T+2 moment, true data samples for 1, …, T+1 

are used. Usually, one does not need all the past data, and correct prediction can be 

made from timesteps T-p, …, T. Thus, for each time step model works only with data 

obtained from simulator and is not using its own predictions. 

Fig. 1. Configuration parameters (on the left) and experiment example with two emitters (on 

the right) 

The second problem statement, namely rollout prediction, is formulated as follows. 

The model tries to recover system dynamics for timesteps T+1, … T+l using data 

samples collected for timesteps 1, …, T. This is a much more complex task: even 

small disturbances of predicted coordinates may lead to exponentially fast deviations 

from true trajectories even after few steps. The possible solution proposed for this 

problem consists of adding noise to the training samples, thus forcing the model to 

produce more stable predictions, which are not as sensitive to small disturbances. An 

example for these two ways of stating the problem is depicted in Fig. 2. Although 

usually the one-step prediction model produces the trajectory close to the true one, the 

same model applied in rollout way leads to large deviation from the target. 

Fig. 2. Single particle trajectories computed with for the first and second problem statements 

Finally, the third class of problems one can state is the inverse modeling. Possible 

problems statements for inverse modeling involve reconstruction of the emitter con-
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figuration and strength from data available. However, this problem cannot be solved 

in general, as one can construct two configurations that would result in very similar 

particle patterns after few timesteps. Therefore, the problem is restricted to the task of 

predicting particle coordinates just for one step backwards: from data for T+1, …, T+l 

the aim is to obtain coordinates for the moment T. 

This paper is aimed at working with basic problem for predicting one step and does 

not tackle rollout and inverse problem statements. The rest of the paper is organized 

as follows. In section 2 related works are presented. In section 3 a brief introduction 

into theoretical aspect of approaches to simulation and their combinations is provided. 

In section 4 accuracy metrics are discussed. Section 5 presents simulation results and 

their evaluation, as well as their metrics dependency on data and hyperparameters. In 

the last section conclusions are presented and way forward is outlined. 

2 Related Works 

Data-driven approaches are widely applied in physics, climatology, epidemiology and 

other highly computational branches of science. All the methods chosen for this paper 

either belong to a class of most modern, or have recently been rediscovered, and thus 

are in the focus of research across many disciplines. The main directions of studies 

are model accuracy, computational speed and generalizability. Various results are 

obtained by combining different models, thus incorporating benefits and reducing 

drawbacks of individual approaches. Another direction of research is the increase in 

interpretability of models, development of data-driven methods based on general 

principles of complex systems behavior. 

In [4] the problem of simulating liquid behavior is studied. In this work Proper Or-

thogonal Decomposition (POD) is used for extracting temporal patterns and Neural 

Ordinary Differential Equations (NODE) are applied to predicting spectral coeffi-

cients. The performance of NODE is compared to LSTM, and superior accuracy of 

the method proposed by authors is detected. However, the border and initial condi-

tions of the system studied lead to emergence of stationary flow and no generalization 

attempts have been made. 

In [5] NODE is applied to the problem of forecasting turbulence in liquid. The per-

formance of data-driven model I compared to those of direct numerical simulation 

based on Navier-Stokes equations. It is demonstrated that different kinds of transient 

phenomena are captured accurately and forecast for a long time period is possible. 

However, the generalization properties of the method proposed are not studied, since 

the system of interest is fixed, and parameters of simulation varied only slightly 

across different runs. 

In [6] Graph Neural Networks (GNN) are applied to the problem of modeling liq-

uid behavior. The encoder-processer-decoder architecture is implemented, and special 

mechanism of message-passing between different parts of the system is used. Com-

plex mixtures of materials are studied, and results are measured by MSE and distribu-

tional metrics. It is stated by the authors that performance of GNN is close to that of 
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classical methods (such as convolutional), but better generalizability is achieved in 

case of different materials interacting. 

In [7] decomposition method is combined with predictive model. Ensemble Empir-

ical Mode Decomposition (EEMD) is used for extracting spectral patterns in data, and 

Time Convolutional Neural Networks (TCN) are applied to the resulting amplitudes. 

The performance is measured by Root Mean Squared Error (RMSE) and Pearson 

Correlation Coefficient (PCC), and the results are compared to those obtained by 

TCN without decomposition, Long Short-Term Memory (LSTM) and LSTM with 

EEMD. It is outlined that the combined model performs better in cases with low-

variance data but fails in accounting for high-amplitude local disturbances, which 

usually can be found in real-world oscillatory data. 

In [8] various applications of GNN to particle physics are studied. It is outlined by 

authors architectural choice is task-specific, and different mechanisms of local sub-

system update are described. Some methods, such as attention mechanism, are formu-

lated in terms of GNN, which leads to higher physical interpretability of models. The 

mechanism used in our paper is much simpler, since the system of interest does not 

contain non-homogeneous parts. However, future research may be focused on the 

effect of incorporating other protocols of interaction between individual subsystems. 

In [9] CNN are used for the problem of flow-field decomposition. The neural net-

work-based approach is compared to POD, which may be considered classic in the 

field of hydrodynamics. The main conclusion stated by authors is that CNN-based 

decomposition models can capture complex patterns and transient phenomena, which 

are usually misrepresented by POD. The main reason DMD has been chosen for simi-

lar purposes in our paper is that it possesses an ability to accurately extract complicat-

ed dynamical patterns in the data, same as CNN, but is usually much faster to com-

pute. 

In [10] NODE model is applied to the study of ecological system, consisting of 

hares and lynxes. It is demonstrated that one can describe time dynamics of the popu-

lation with high accuracy, capturing seasonal and cyclic phenomena. However, it is 

noted by authors that NODE is computationally expensive in this case because of 

non-linear character of equations and strong coupling between variables. This draw-

back might have been crucial for the problem studied in our paper because of the high 

number of particles with coupled dynamics. However, the simplicity of individual 

behavior and locality of interaction enables one to reduce the number of model pa-

rameters. Decomposition methods simplify the data even further, enabling one to 

reduce computational time drastically. 

The contribution of this paper is the following. First, a complex multi-agent system 

is successfully simulated by means of data-driven methods. Second, these methods 

are compared in precision (by means of different metrics), generalization capabilities 

and by training and working time. Third, two novel method combinations (namely 

NODE with DMD and CNN with DMD) are introduced, and their properties studied. 

Detailed explanation of results obtained is provided and main benefits and drawbacks 

of all the methods is provided, together with physical and geometrical interpretation 

of performance nuances. 
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3 Data-driven Approaches to Modeling Complex 

Behavior of 2D Liquid Simulator 

The system dynamics can be predicted globally for all particles at once and locally for 

selected particles. Five data-driven approaches to the problem of modeling liquid 

behavior are utilized. Three of them are directly taken from the related works, while 

the last two are proposed by the authors. Model comparison is summarized in Table 1. 

Models are described in detail below. 

Table 1. Comparison of surveyed approaches. 

Model Type Advantages Disadvantages 

Dynamic Mode 

Decomposition 

Global Simple and Fast 

Interpretable 

Accurate only for a small 

class of systems 

Non-applicable for highly 

non-linear systems 

Graphical Neural 

Networks 

Local Based on physical 

principles 

Generalizable 

Requires less timesteps 

than other methods 

Requires additional step of 

extracting graphs from data 

Graphs are recomputed at 

each step 

Requires system to be 

homogenous 

Neural Ordinary 

Differential 

Equations 

(NODE) 

Local Strong theoretical 

foundations 

Expressive power 

Theoretical limits 

Computationally intensive 

NODE/CNN 

with DMD 

Local/ 

Global 

Faster compared to 

similar models without 

decomposition 

Small number of 

hyperparameters 

Not generalizable 

3.1 Dynamic Mode Decomposition 

The first one, Dynamic Mode Decomposition (DMD) [1] stems from the apparatus of 

linear algebra. Each time snapshot is flattened into a vector, which is composed of 

coordinates of each particle in corresponding moment (see Equation 1). The idea be-

hind DMD is developed from the Koopman theory [11]. First one may note that any 

dynamical system can be viewed as a linear one in an appropriate basis. Each function 

studied is an element of Hilbert space, therefore the manifold of all the solutions is 

some subspace. Hence for a wide class of systems one can represent the governing 

differential operator as a linear one with domain in the original space. Although the 

choice of the suitable space is a complex problem, sometimes by combination of fea-

ture engineering and decomposition appropriate description of the system in terms of 

Equation 1 can be obtained. 
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𝑋 = (
| |  |

𝑥0 𝑥1 … 𝑥𝑛−1

| |  |
) , 𝑌 = (

| |  |
𝑥1 𝑥2 … 𝑥𝑛

| |  |
) (1) 

𝐴𝑋 = 𝑌 

The DMD searches for a linear shift operator A. That is possible since as the num-

ber of time steps grows large enough and most important physical features are cap-

tured, vectors from Equation 1 become linearly dependent. Decomposition may be 

viewed as a variation of singular value decomposition (SVD) problem. Similarly, 

SVD is calculated for A, and small singular values are omitted to keep the size of the 

operator small. Singular values large enough are called modes, and the dynamics thus 

described is much easier to compute than the original one but is usually not much less 

accurate. The main disadvantage of this approach is that not any system can be ap-

proximated by linear operator in finite spaces. However, in most practical cases DMD 

turns out to be extremely useful. 

3.2 Graph Neural Networks 

The second approach, Graph Neural Networks (GNN), utilizes geometrical methods 

[6] and is based on assumption that system dynamics is determined by local behavior.

In case of liquid to describe dynamics, one needs to obtain description of individual

particles and their interactions, which may be thought of in terms of directed graph

(see the example in Fig. 3) with predefined number of neighbors k.

Fig. 3. Liquid graph for particle number n = 6 and neighbor number k = 3 

One can notice that all the particles in the liquid have the same behavior under 

same circumstances (homogeneity), and that the dynamics of each particle depends 

only on the characteristics of those which are located in some neighborhood of it, 

typically small in comparison with the size of the whole liquid space [12]. Hence only 

one update function is needed, which would be applied iteratively to each of local 

clusters of particles. One may write the following equation in order to show this pro-

cess: 

𝑆𝑖
𝑡+1 =  𝑓(𝑆𝑡

𝑖, { 𝑆𝑡
𝑗
}), 𝑓𝑜𝑟 𝑗 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑖) (2) 

where 𝑆𝑡
𝑖 denotes the state of ith particle in a time moment t. In this study only par-

ticle coordinates were included into state vector, however in case of liquid mixtures 

more complex vectors (e.g., adding liquid properties) would be used. It is important to 
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note that the function 𝑓 does not depend on i, which comes from assumption of liquid 

homogeneity. 

The main disadvantage of this approach is that it is not clear without experiments 

how to choose the number of neighbors k and what architecture of individual network 

to use. However, it is easy to obtain huge training dataset utilizing liquid homogeneity 

(we can get N training samples out of every snapshot, where N is the number of parti-

cles). Utilizing these two facts, graphs are formed for each particle and its k nearest 

neighbors, which would predict behavior of only one particle conditional on behavior 

of its k nearest neighbors for some k. Later, to obtain the exact value of k when liquid 

is simulated globally as a whole, k nearest neighbors of each particle are computed for 

k in range from 1 to the number of particles, local dynamics is simulated from data 

and next the global behavior of the liquid is reconstructed. The optimal value is cho-

sen based on reconstruction error. 

3.3 Neural Ordinary Differential Equations 

The idea behind the Neural Ordinary Differential Equations (NODE) stems from the 

fact that the equation governing the dynamics of residual neural network looks much 

like the one describing Euler’s method of solving ODE: 

𝑧𝑡+1  = 𝑧𝑡 + ℎ ∗ 𝑓(𝑧𝑡 , 𝜃, 𝑡) (3) 

where 𝑧𝑡 denotes the output of t’th layer, 𝑓 is an activation function, depending on

some parameters. This recurrent equation leads to the differential one: 

𝑧′(𝑡) = 𝑓(𝑧(𝑡), 𝜃, 𝑡) (4) 

Therefore, instead of teaching networks one can solve and optimize ODEs with re-

spect to parameter. The authors of [13], who were the first to introduce this approach, 

suggest using the adjoint sensitivity method. While the residual networks have been 

constructed as those having adaptive depth, NODE can be thought of as having infi-

nite depth. Therefore, the expressive power of this class of models is rather high. 

However, few theoretical limitations exist. The main drawback of ODE of any kind 

is that under assumption of smoothness of right-hand side f (which is typically the 

case) the trajectories of solutions cannot intersect. Hence, many functions possessing 

mixing property are not approximated by them. The solution to this problem consists 

of adding extra dimensions to data, thus enabling trajectories to move “one below the 

other”. However, the choice of optimal augmentation dimension is a complex prob-

lem itself. In this paper no augmentation is used, since particle dynamics is smooth 

and there are no mixing effects as a result. 

3.4 Combinations of Decomposition and Continuous Models 

Related works suggest that very high dimensional systems can be reduced to the latent 

space of much smaller size without severe loss of information. Authors propose a 

novel approach which combines both DMD and NODE and is called NODE with 
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Decomposition (NODEwD). Namely, data have been decomposed by means of DMD, 

and spectral coefficients were predicted with NODE. Thus, under assumption that 

global patterns of particle organization do not change over time (which is typically the 

case for stationary dynamics) the evolution of the system has been studied. 

There exist several attempts to combine decomposition with predictive models, 

however, not many of them devoted to the problem of modelling liquid behavior. The 

authors of the paper [7] use Ensemble Empirical Mode Decomposition for extracting 

patterns in data and make predictions by means of Temporal Convolutional Networks. 

However, the paper deals with the real-world data, thus the noise in the measurement 

must be accounted for. In case of noiseless data, DMD may provide more accurate 

and stable results, since longer time dependencies are extracted by this algorithm.  

This approach resulted in dynamics very similar to the true one. Since the configu-

ration of emitters did not change over time, the model was able to reconstruct liquid 

behavior from global patterns, represented by vectors of DMD. 

In order to study whether the success of this approach was due to NODE properties 

or the decomposition, the comparison has been drawn between performance of this 

model and the similar one but using another class of neural networks – convolutional 

neural networks [14] (CNN) for predicting spectral coefficients and combined with 

decomposition is called in this paper CNNwD. The results clearly indicated that per-

formance metrics of this modified model were not much different from the NODE 

approach. 

The main drawback of this approach is its low generalization abilities. If the initial 

conditions of the original simulator are significantly changed, patterns of particle 

organization are changed also, hence making the learned model nearly useless for the 

task of predicting liquid behavior in this changed environment. That drawback can be 

overcome with increasing the dataset with other configurations which also results in 

training time increase. 

4 Metrics 

Main metrics used in this paper are from the [6]. The basis of all the studies is mean 

squared error (MSE), calculated for different data clusters. Possible approaches to the 

problem of evaluating model performance are summarized below in Table 2. 

The first metric, MSE, is widely applied for data-driven models. Two other types 

of MSE, row-wise and uniform, are specific to 2D time-series data. They are regular 

MSEs, calculated for each timestep and for each particle in each timestep respective-

ly. They are used for more detailed study of particle distribution and are depicted by 

means of histograms. The supremum metric represents the maximal error the model 

makes while predicting particle coordinates in each moment. 

Two metrics, Optimal Transport (OT) [15] and Maximum Mean Discrepancy 

(MMD) [16], are widely applied in statistics. They both concern probability distribu-

tions and measure the distance between them. If one treats probability density func-

tions as mass distributions, OT metric would represent the minimal value one must

pay in order to re-distribute all the mass of first probability density function and ob-
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tain the second one. Precise mathematical definitions are provided in Table 2. OT 

allows to treat a case where, for example, the model has swapped two particles, which 

would not alter the picture but will lead to increase in MSE. MMD is another proba-

bilistic metric, and it is closely connected to the theory of weak convergence [17]. Its 

properties are similar to OT. It is important to note that in this work distances between 

empirical distribution functions are measured, that is the mass of any subset of the 

plane equals the portion of particles contained in it. 

The last metric chosen is the Hausdorff distance, a common topological similarity 

measure. It allows one to calculate the distance between two compact subsets of a 

space, which is exactly the case with particle simulation. This paper does not focus 

the MMD and Hausdorff distance, since they are quite similar in properties to the 

others studied. 
Table 2. Proposed metrics 

Metric Type Formula Pros Cons 

MSE Number 1

𝑛
∑(𝑦𝑖 − 𝑦�̂�

2)

𝑛

𝑖=1

Differentia-

ble 

Widely ap-

plied 

Does not cap-

ture all the as-

pects of liquid 

behavior 

Optimal 

transport 

Number/ 

Histogram 
inf

𝛾
∫ 𝑐(𝑥, 𝑦)𝑑𝛾(𝑥, 𝑦) 

where c is a cost 

function 

Captures the 

effect of 

particle 

swapping 

Not easy to 

compute 

Equivalent to 

MSE between 

true positions 

and some per-

mutation of 

predicted coor-

dinates, thus all 

the cons of 

MSE 

Maximum 

mean dis-

crepancy 

(MMD) 

Number/ 

Histogram 
sup
f∈F

𝐸𝑝(𝑓(𝑥))

− 𝐸𝑞(𝑓(𝑦))

F is some class 

functions 

Captures the 

effect of 

swapping 

Exceeds supre-

mum metric, 

thus quite high 

Row-wise 

MSE 

Histogram MSE for each row More accu-

rate than 

simple MSE 

Sensible only 

for relatively 

good and 

smooth predic-

tions 

Uniform 

MSE 

Histogram MSE for each parti-

cle in each moment 

Captures 

global mod-

el precision 

Difficult to 

compare two 

models 

Supremum Histogram Maximal error in 

particle prediction 

for a given timestep 

Allows to 

study worst-

case perfor-

mance 

Always very 

large 
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5 Application and Results 

5.1 Restoring Simulator Dynamics 

In Fig. 4 whole system dynamics is depicted for multiple models. Trajectory of each 

particle is depicted with different color. Particles are emitted in two places and are 

shot in different directions.  

One can notice that the DMD result is the worst – all the complex patterns are lost, 

and only main directions of movement can be seen. However, this model may be 

useful for brief description of dynamics when details do not matter much. It is worth 

mentioning that the rank of DMD was chosen to be 20 – lower ranks resulted in a 

worse picture, and higher did not bring much better precision with them. 

NODE and GNN results look quite similar to each other. One may notice that tra-

jectories of individual particles, fluctuating along the path, do not let researcher to see 

the details in the picture. However, as metrics indicate, these predictions are rather 

precise. 

Fig. 4. Particle trajectories generated by simulator and by different models 

The results computed by NODEwD and CNNwD also do not differ much. Alt-

hough fluctuations in regions with complex dynamics can be noticed, they do not 

affect the picture much, thus making predictions close to the true data. 

In order to demonstrate the idea behind distributional metrics in Fig 5. the shift 

from source to target samples is depicted for the best (NODEwD) and worst (DMD) 

model. The first row provides an example of calculation of OT metric for DMD and 

NODEwD for a chosen time moment. A calculation of OT metric for DMD and 

NODEwD for a chosen time moment. Blue crosses represent true positions of parti-

cles, while red ones denote results of model predictions. In order to compute the cost 

of empirical distribution deformation, for each particle its neighbor is searched for 

such that the total distance (sum of lengths of blue lines) is minimized. The total dis-

tance of shifts for the DMD model significantly exceeds respective total distance for 

the NODE with decomposition, which coincides with other proposed metrics. NODE 

with decomposition, which coincides with other proposed metrics. 
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Fig. 5. OT for a given timestep, DMD (on the left) and NODEwD (on the right) 

In the second row yellow dots correspond to pairs of neighbors (that is, if particles 

i and j were considered neighbors after the minimization step, the intersection of ith 

row and jth column is yellow). As one can notice, in case of NODEwD most of the 

dots are located near the diagonal, which leads to conclusion that this model does not 

mix particles much, thus the swapping situations do not occur. DMD, in contrast, has 

many mixing occurrences, which supports the assumption that local dynamics is not 

captured well. 

5.2 Models Performance 

In the test dataset the configuration of emitters is the same as in train dataset. For 

validation dataset the position and direction of emitters were changed. Liquid proper-

ties remained the same for train, test and validation datasets. 

Uniform MSE for DMD has its tail not exceeding 60. The row-wise MSE does not 

exceed 1.5, however, it has two distinct peaks, the second one close to the maximal 

value. The supremum metric is bounded by 80, and each timestep has outliers with 

deviations from true data comparable to the upper bound for coordinates. DMD li-

brary [18] used in the project does not provide the researcher with means on testing 

the model on validation data. When DMD is used, the shift operator A, described in 
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section 2.1, must be recomputed each time new data is added, it is senseless to speak 

about validation on new dataset – it would impact the model and make any compari-

son incorrect. 

For GNN uniform MSE has a tail longer than for DMD, indicating the presence of 

particles with coordinates deviating from true ones up to 160. Row-wise MSE has a 

distinct peak biased to the right, hence errors for timesteps are distributed less uni-

formly than for DMD. Supremum metrics indicates the presence of deviations of size 

up to 160. Although the performance of GNN on validation dataset is worse than that 

on the test one, metrics do not increase as much as for other models. The length of the 

tail for Uniform MSE increases by a factor of two, the same for supremum metric. 

And row-wise MSE loses its double-peaked structure, remaining bounded by 1.7 

Uniform MSE for NODE has a tail much shorter than for GNN and DMD, upper-

bounded by 7. Row–wise MSE does not exceed 0.06, which is about 100 times small-

er than for the two models described earlier. The supremum metric has two distinct 

peaks and is bounded by 7. The Row-wise MSE for validation dataset is significantly 

worse: it increases by a factor of 10. The supremum metric, along with the Uniform 

MSE, is upper bounded by 300. Notice that this increase in metrics exceeds that for 

GNN. 

Although NODEwD has a tail for uniform MSE stretching up to 160, it is lighter 

than for the first three models. Row-wise MSE is upper-bounded by 0.35, thus ex-

ceeding the one for NODE. The supremum metric indicates performance similar to 

that of GNN. However, after validating the model on new dataset one obtains more 

peaked structure of histograms, which indicates the presence of significant part of 

particles deviating from their true positions. 

CNNwD has characteristics similar to those of NODEwD. Thus, Uniform metric 

has the same upper bound and tail mass. Row-wise MSE, again, does not exceed 0.35, 

and the supremum metric is bounded by 160. The validation results indicate that the 

increase in Uniform MSE and supremum metrics is larger than that for the previous 

model. However, the Row-wise MSE is only multiplied by a factor of 2, which is two 

times smaller than for NODEwD. 

The results for the regular models’ MSE are summarized in Table 3. For each 

model the average performance for different boundary and initial conditions is meas-

ured, along with margin of error. However, it is easy to notice that the MSE is compa-

rably small to the absolute values of the particle coordinates, hence the data-driven 

predictions are robust to perturbations of the system. 

Table 3. MSE for different models with margin of error based on all configurations 

DMD with rk NODEwD, rk CNNwD, rk 
NODE GNN 

5 20 5 20 5 20 

MSE 
1.45 

±0.35 

0.72 

±0.25 

0.64 

±0.14 

0.19 

±0.10 

0.58 

±0.20 

0.23 

±0.15 

0.21 

±0.10 

0.35 

±0.05 

One can see that results presented in the Table 3 correspond to those described in 

the paper earlier. DMD has the worst indicators of performance for all decomposition 

ranks. The lowest MSE is obtained by NODEwD, which is followed by NODE and 
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CNNwD. However, the decomposition models require higher ranks for this level of 

accuracy. The MSE for GNN is comparable to this of CNNwD and NODEwD, being 

much lower than that of DMD. 

The best picture of particle trajectories is provided by NODEwD and CNNwD. All 

the directions are preserved, and only small fluctuations can be noticed. This is not 

unexpected, as these two approaches operate with global data, omitting small details 

of dynamics which can affect picture if poorly reconstructed. The GNN and NODE 

generate pictures which may look similar to each other. Here fluctuations of individu-

al particles do not allow one to discern the global movement patterns, thus hiding 

main directions of dynamics. The trajectories generated by DMD is smoother than the 

true one. Even though some main patterns in movement are preserved, smaller fluctu-

ations are not taken into account. However, for some problems this may be useful, 

since main directions of movement may be most important for qualitative analysis of 

the system. 

The last thing to mention when comparing results obtained by our models is train-

ing and inference time. The fastest model is DMD, both in training and in inference, 

both times do not exceed quarter of second. This is not unexpected, as only matrix 

operations are needed for this model. Of all the other model the fastest one is GNN. It 

requires about 10 minutes for training and 2 minutes for inference. However, in order 

to use it one needs to construct a neighbor graph, which is a computationally exten-

sive procedure. NODE and CNN are the slowest models, requiring 10 minutes for 

training and 5 for inference. The inclusion of decomposition reduces this time to like 

that of GNN, which results from data preprocessing applied on the decomposition 

step. With the graphical processing unit with 32GB of video RAM used for neural 

networks training and inference, the decrease in training and inference time for all the 

applicable models by a factor of 5 was achieved. 

6 Conclusions 

Modeling complex systems even as simple as 2D liquid simulator is a daunting task, 

which requires significant expertise, hand-crafted work and major time investment. 

The advent of data-driven approaches enables to overcome some of these issues. In 

this paper results of comparison of data-driven models for 2D liquid simulation were 

provided. There exist three possible problem statements, which are one-step predic-

tion, rollout prediction and inverse modeling. Data-driven methods were split into 

global and local approached. The first one measures overall model performance, ne-

glecting large deviations in behavior of individual particles as soon as they don’t af-

fect the whole system. The local approach was concerned with movement of individ-

ual particles. It may be viewed as the measure of worst-case performance, or just the 

only possible way of comparing models when the highest precision possible is need-

ed.  

Several types of metrics were introduced to evaluate the models’ performance. 

First category of metrics deals with MSE, and evaluates the performance uniformly, 

row-wise, supremum and for the whole system at once. The second category of met-
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rics deal with distributions and allows to work with situations when particles inter-

change their position, so that the whole picture does not change, but MSE is large. 

Also, trajectories for models were depicted together. Metrics of performance for data-

driven model are better to be used together, since categories outline different aspects 

of performance. The results for a model can be better for first metric and often turn 

out to be much more modest for another metric compared to another model perfor-

mance. 

For the one-step prediction problem NODE with decomposition provide best over-

all results. The application of decomposition significantly reduces the complexity of 

the system studied, although some effects (such as emergence of new patterns) are 

sometimes missed. Combining continuous models with decomposition provides best 

overall results for one-step prediction problem. 

Extrapolating model trained on a system with one set of parameters for liquid and 

emitters to a different case is not accurate and additional procedures need to be ap-

plied to improve performance. This happens due to the fact methods which give high-

er precision use decomposition, which is very sensitive to changes in parameters. 

Methods which provide better generalization abilities are not the most precise ones. 

Although, the problem of rollout prediction is out of scope of this work, required 

model accuracy needs to be higher than for one-step prediction, as even small devia-

tions in predictions result in system destabilization after few timesteps. Main direc-

tions of further research include the survey and application of new metrics, which 

fully describe different aspects of liquid behavior. Another important step for model 

generalization is the study of noise impact, which would be important for production 

use of simulators and working with real noisy data. Since models have their own 

weaknesses, the construct of an aggregated model can lead to better performance 

combining benefits of different approaches and eliminate their weaknesses. 
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