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Abstract. Surgery of glial tumors of the brain located in the motor
areas vicinity is associated with a high risk of increasing neurological
deficits. Motor deficit affects overall survival in this group of patients.
Nowadays, no method allows for an objective preoperative data-based
prognosis of the risk of neurological impairment in each particular case.
Objective: develop a convolution neuronal network that can predict mo-
tor worsening in patients with supranational gliomas using the preoper-
ative MRI-data. Materials and methods: the study included 527 patients
aged 18 years and older with newly identified supratentorial gliomas.
All patients underwent preoperative MRI and tumor removal based on
Burdenko National Center of neurosurgery in 2013-2019. Data on motor
status dynamics after surgery for these patients were obtained from the
electronic medical records using the original semiautomatic algorithm
for natural language processing. The T2FLAIR mode is used for train-
ing our model. The model demonstrates the following metrics of quality:
accuracy 91%, sensitivity 94%, specificity 89%, ROC AUC 91%, and F1
92%. Thus, machine learning methods predict the motor worsening with
relatively high accuracy in patients with supratentorial gliomas at the
preoperative stage, based on brain MRI data.

Keywords: Glioma · Machine learning · Corticospinal tract · Convolu-
tional neural network · Paresis.
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1 Introduction

Surgery of the brain’s glial tumors located in the motor areas vicinity is a truly
existing problem provoking several contradictions among neurosurgeons. The
surgery in this area is associated with a high risk of transitory and persistent
neurological disability [11, 28], which may interfere with the following treatment
process (chemo or radiotherapy) in this group of patients, and as such, may
directly affect not only the quality of life but also the overall survival. Patients
and their relatives should be preoperatively informed on a possible neurological
deficit that may develop, and it is them to decide whether to undergo surgery or
refuse it. Today, this type of information is subjectively provided by a physician,
based on personal experience and feelings. Meanwhile, no method allows for an
objective preoperative data-based prognosis of the risk of neurological impair-
ment in each particular case. Simultaneously, machine learning methods that
were widely used in various spheres of our life and were found to be especially
useful in predicting a neurological disorder have a limited application in neu-
rosurgery. The PubMed search by the keywords “glioma machine learning” has
resulted in 286 publications by May 1st, 2020. We found no paper describing ma-
chine learning methods in predicting motor deficit development or aggravation
in patients with glial tumors.

2 Objective

We aim to develop a convolution neuronal network (CNN) for predicting the risk
of motor deficit development or aggravation based on preoperative MRI-data in
patients with supratentorial brain tumors in the early postoperative period.

3 Materials and Methods

3.1 Inclusion Criteria

Patients aged 18 years and older, who underwent microsurgical brain tumor
removal at N.N. Burdenko National Medical Research Center of Neurosurgery
(the Center) from 2013 to 2020 entered this study. In all cases, there were verified
primary gliomas of different grades located supratentorial. Preoperative MRI
(T1, T2, T2 FLAIR, DWI, T1+C) was performed in all patients at the Center
not earlier than one month before surgery.

3.2 MRI Data Collection

Patient selection, defined by the inclusion criteria, was carried out by three
experienced radiologists based on the database of patients examined in the de-
partment of X-ray and radio-isotope methods of diagnosis at the Center. The
database has been stored since 2013 and contains details on more than 4500
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patients with brain lesions of different histological structures and locations, pri-
marily or secondarily operated. It contains DISCOM image files from the MRI
studies performed on 1,5 - 3 Tesla MRI scanners (GE Signa HDxt 3.0T, GE Signa
HDxt 1.5T, GE Optima 450w 1.5T (GE Healthcare, Milwaukee, USA) using 8-
channel imaging and an electronic list of patients (an Excel table) providing large
amounts of primary data (patient name, surname, personal identification num-
ber, age, case record No, date of preoperative MRI, date, and type of surgery,
and morphological diagnosis). The majority (70%) of patients had morphologi-
cally verified glial tumors of various locations. Other lesions like ependymomas,
meningiomas, neurinomas were excluded from the trial, as well as patients who
had no microsurgical tumor removal. To understand whether the rest of the pa-
tients met the inclusion criteria, their manually traced MRI data were estimated
by the Centre’s radiologists. Finally, 527 of the full 4500 MRI case recordings
were selected to enter the study group. All personal data were anonymized, and
each patient got a personal identification number.

3.3 Data on Patient Motor Status Before Surgery and in the Early
Postoperative Stage

Data on patients’ motor status were obtained via analysis of electronic case
records, which traditionally included information about the muscle strength from
the upper and lower extremities assessed by a 6-score grading scale (0-5) before
the operation and in the early postoperative period. Considering the large size
of the trial, the problem was solved using the original semiautomatic algorithm
for natural language processing (Algorithm) developed at the Center. The Algo-
rithm made up 91%, the logistic regression accuracy - 85%. All markup results
were additionally estimated by an expert using the special support program, thus
allowing sorting out the database fields of interest with their following check-up.
Simultaneously, an expert concluded paresis: whether it was present or absent
after surgery and its dynamics by the date of discharge from the neurosurgical
clinic. According to the performed analysis, pre-surgical paresis was marked in
23% of cases. Its aggravation or muscle weakness in the postoperative period
was observed in 14.3% of cases.

3.4 The Dataset Obtained

Thus, the dataset was formed comprising MRI datasets in different pulse se-
quences (T1, T2, T2 FLAIR, DWI, T1+C) in 527 patients, and data on the
motor status dynamics in the early postoperative period for this group of pa-
tients. The information about sex, age, histological diagnosis, and tumor location
was not used for CNN learning; it is listed in the Table 1.

It should be noticed that patients operated in all departments of the Center
(except for pediatric and spinal ones) were enrolled in this study. Different sur-
gical techniques were carried out by more than 20 surgeons, thus making this
study group universe.
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Table 1. The main characteristics of the group of patients selected for this study.

Parameter Value

total number of patients 527
mean age 39, 8± 17, 9 years
women/men 50,4%/49,6%
histology LGG – 25%, HGG – 75 %

localization

frontal lobe – 37,6%,
parietal lobe -– 25,5%,
temporal lobe – 18%,
occipital lobe – 13,5%,
more than one lobe – 5,4%

3.5 Neural Network for Predicting the Development or Growth of
Paresis in the Early Postoperative Period

Statement of the Problem. It is necessary to develop a method for predicting
the increase in pyramidal deficiency in the postoperative period in patients with
supratentorial glial brain tumors located near the motor zones of the cortex and
pyramidal tract, according to MRI studies of the patient’s brain at a level that
meets the specified quality criteria and is binary.

Formal Definition of the Problem. Let X be the set of preoperative MRI
slices of patients, and Y be the set of classes to which the elements of X may
belong, in our case Y ∈ {0, 1}. It is necessary to develop an algorithm A that
will allow classifying an arbitrary slice x ∈ X:

A:X → Y (1)

Data Preparation. The source dataset of different modalities X was the results
of MR-research of the brain carried out on 527 patients who were operated on
with a diagnosis of a supratentorial glial tumor. The data set contained informa-
tion on the increase in the pyramidal deficit in the postoperative period for each
research. Each research from the dataset consisted of MRI images performed in
the following modes: T1, T2, T2 FLAIR, DWI, T1+C.

The data preparation stage consisted of the following steps:

1. Markup. Radiologists match each slice, which was performed in a T2 FLAIR
regime, with a binary label. If a tumor was present on the slice, the label
was equal to 1, otherwise 0.

2. Converting. Marked slices were converted from DICOM format to PNG for-
mat.

3. Normalization. All data were centered and normalized (Figure 1).
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Fig. 1. Graphical representation of the data preparation process for CNN learning.

Model Architecture. In the course of work on the project, our architecture
of an artificial neural network (ANN) ”Shallow” was developed (Figure 2). Also,
experiments were carried out using popular ANNs pre-trained on the ImageNet
dataset, such as VGG16, VGG19, Inception v3, followed by their fine-tuning on
the MRI data.

Description of ”Shallow” ANN:

1. An input layer that takes into account the two-dimensional topology of the
image and accepts a normalized, black and white image of 100× 100 pixels
as input.

2. A convolutional layer contains 32 filters with a 3× 3 kernel.
3. Activation layer using ReLU

f(x) = max(0, x) (2)

4. Average pooling layer. The pool size is 2× 2.
5. Dropout layer with a rate equal to 0.2.
6. A convolutional layer contains 64 filters with a 3× 3 kernel.
7. Activation layer using ReLU.
8. Average pooling layer. The pool size is 2× 2.
9. Dropout layer with a rate equal to 0.2.
10. A convolutional layer contains 128 filters with a 3× 3 kernel.
11. Activation layer using ReLU.
12. Average pooling layer. The pool size is 2× 2.
13. Dropout layer with a rate equal to 0.2.
14. Flatten layer.
15. Dense layer with 128 units.
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16. Activation layer using ReLU.
17. Dense layer with 1 unit.
18. Activation layer using a sigmoid function

f(x) =
1

1 + ϵ( − x)
(3)

To prevent overfitting of the model, in addition to disabling random neurons,
L2-regularization is used.

Fig. 2. Graphical representation of the Shallow’s CNN architecture developed for this
research.
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Loss Function. The binary cross-entropy was chosen as the loss function:

L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ), (4)

where y – the class the slice belongs to, ŷ – predicted class.

Augmentations. In addition to common augmentations such as random hori-
zontal or vertical flips, scaling and rotation, it was suggested to use adversarial
training. Adversarial examples are images with addition of specially generated
noise, which is visually not distinguishable by the human eye, but causes the
model to make incorrect predictions. We used Fast Gradient Sign Method [12]
and Carlini-Wagner L2 algorithm [5] to generate two adversarial examples for
each sample in the training set. The model will be evaluated separately with the
use of adversarial examples and without them.

Models Evaluating. For models evaluating, we used the following metrics:

– Accuracy = TP+TN
TP+TN+FP+FN

– Sensitivity = TP
TP+FN

– Specificity = TN
TN+FP

– ROCAUC =
∫ 1

0
TPR dFPR, where TPR = TP

TP+FN , FPR = FP
TN+FP

– F1 = 2Precision×Recall
Precision+Recall , Precision = TP/(TP + FP ), Recall = TP/(TP +

FN), where TP – true positive, TN – true negative, FP – false positive,
FN – false negative.

Training and Evaluating. Model training and evaluating were carried out on
the following equipment:

– Intel Core i9-9900KF CPU 3.6
– RAM 32Gb
– GPU NVIDIA 2080Ti 11Gb

As a basic framework for developing the model, we used TensorFlow 2.0. The
prepared dataset was split into three parts. 70% of the total number of slices
was included in the training set, 20% in the validation set, and 10% in the test
set. The resulting datasets are class-balanced. The batch size was empirically
chosen equal to 64, the number of epochs was 70. AdamOptimizer was used as
an optimizer, and the learning rate coefficient was chosen as a piecewise constant
function with an initial value of 10−4, decreasing dynamically. After each epoch,
the model was validated on 10 batches of 64 elements from the validation dataset.
After training, the quality of the model was evaluated in an automatic mode on
test data. The model was then manually verified by a neurosurgeon who used
his dataset of MRI scans of 50 patients that were not present in the original
dataset.
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Results. The results of the experiments are presented in Table 2. According to
these results, the best model on the test sample showed Accuracy 91%, Sensitiv-
ity 94%, Specificity 89%, ROC AUC 91%, and F1 92% in predicting the increase
in hemiparesis in the early postoperative period in patients with supratentorial
gliomas of the brain.

Table 2. Results of experimental studies in determining the increase in motor deficits
for the developed CNN Shallow, as well as for other popular pre-trained on the Ima-
geNet data set CNNs, such as VGG16, and Inception v3.

Model Accuracy Sensitivity Specificity ROC AUC F1-score

Shallow 0.82 0.87 0.76 0.82 0.83
Shallow+adv.ex. 0.91 0.94 0.89 0.91 0.92
VGG16 0.71 0.69 0.73 0.71 0.71
Inception v3 0.50 0.44 0.57 0.51 0.48

Figure 3 shows examples of preoperative MRI data, based on which the CNN
correctly predicted the increase in motor deficits in the postoperative period (a-
b), the absence of deterioration in motor status after surgery (c), and made a
mistake in predicting the increase in motor deficits after surgery(d).

Fig. 3. a-b – MRI-data based on which the CNN (Shallow) correctly predicted motor
worsening in the postoperative period; c – MRI-data based on which the CNN (Shallow)
correctly predicted the absence of motor worsening in the postoperative period; d –
MRI-data based on which the CNN (Shallow) made a mistake in predicting motor
worsening in the postoperative period.
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4 Discussion

Methods of machine learning are of limited use in neurosurgery, and in brain
glioma surgery, in particular. The typical task spectrum that may be solved
using machine learning methods is presented in Table 3.

Table 3. Main directions of application of machine learning methods in brain glioma
surgery according to the literature analysis.

Task Examples of publications

determining the genetic
glioma profile

Zhao J2020 [35], Chen SC2019 [7], Matsui Y2019 [20],
Kocak B2019 [17], Aliotta E2019 [1], Ozturk-Isik
E2019 [24], Sun Z2019 [30], Huang RY2020 [14]

defining grades of brain
gliomas

Zhuge Y2020 [36], Rathore S2020 [27], Zhang Z2020 [34],
Cao H2002 [4], Nakamoto T2019 [22], Park YW2019 [25],
akahashi S 2019 [31]

defining grades of gliomas
based on intratumoral
heterogeneity

Hu LS2020 [13], Gates EDH2020 [10]

differential diagnosis with
other intracranial tumors

Jianhua Qin 2019 [26], Kaplan K2020 [16]

differential diagnosis with
post-radiation changes

Elshafeey N 2019 [9], Bacchi S2019 [3]

prognosis of the overall
patient survival

Mizutani T2019 [21], Jang K2020 [15], Choi YS2020 [8]
[26], Chang Y2019 [6]

automatic segmentation
of tumors

Shusharina N2020 [29], Wu Y2019 [33], Krivov
E2018 [18]

early detection of gliomas Amin J2019 [2]

prognostic prospects of
chemotherapy

Neves BJ2020 [23], Wu S2020 [32]

We failed to discover publications devoted to machine learning in pyrami-
dal insufficiency prognosis in patients with brain gliomas. As in the majority
of papers, our CNN has analyzed MR imaging data of patients. Our literature
survey analysis showed that most commonly conventional MR imaging (1, 2,
1+C, FLAIR) [17, 30, 22, 25, 8, 6, 33] was used as input data, rarely DWI [35, 31,
3], DTI [1] and MR perfusion [10, 26, 9] were additionally used. Besides, there
were some papers reporting on the use of proton MR-spectroscopy [24], kurto-
sis MRI [31], PET-CT [35, 20]. Alongside with neuroimaging data, some other
graphic information was applied (but considerably rarely): photos of histological
glioma slides [27], spectroscopic 5-ALA accumulation curves [19], as well as text
data: results of RNA sequencing [7], clinical data (such as sex, age, extent of re-
section etc.) [35, 20]. It stresses, that methods of machine learning can effectively
utilize different types of information (multimodal data), with the best sensitivity
and specificity effect being reached by their rational combination. Thus, multi-
modal data permitted increasing sensitivity and specificity from 83% to 90%
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and from 82% to 90%, respectively [35], and accuracy from 73, 14% to 91,48%,
sensitivity from 72,84% to 93,47%, specificity from 74,05% to 85,36% [27]. It
is also true when using different modalities of MR imaging or other additional
methods of neuroimaging. Thus, Matsui Y et al. reports the following accuracy
for different neuroimaging modalities: 58,5% - for MRI only, 60,4% - for MRI and
PET-CT, 59,4%, – for MRI and CT, and 96% - for combination of MRI, PET-
CT and CT [20]. During the first stage of study we have been using monomodal
data - T2 FLAIR impulse sequences - as the most sensitive mode for visualizing
glial tumors. In the future, we plan to include other MRI modalities and also the
clinical details allow us to improve our neural network results significantly. As
for machine learning instruments, the CNN and support vector machines have
proved to be the best ones, probably due to the input data’s character (MR –
imaging). Thus, Kocak B et al., in their study of the genetic glioma profile based
on MRI data have compared 5 different methods of machine learning [17]. Av-
erage AUC and precision ranged from 0,769 to 0,869 and from 80,1% to 84%,
correspondingly. Moreover, the neural network showed the best results: AUC –
0,869 and precision – 83,8%. Similar outcomes were achieved by Chang Y et
al. in 2019 [6]. In 2020 Zhuge Y et al. generated the automatic glioma grading
scale based on the preoperative MRI of deep neural networks, thus achieving
the sensitivity of 93,5% and specificity of 97,2% which may play a crucial role in
advising the adjuvant therapy without biopsy and histological verification [36].
Generally, all recent publications report good data of machine learning meth-
ods on accuracy, sensitivity and specificity: accuracy varied from 79,4% [25] to
98% [34], sensitivity – from 76,92% [24] to 98% [34], specificity – from 70% [25]
to 100% [34]. These statistical measures correspond to the metrics obtained by
machine learning in our study: accuracy was 91%, sensitivity - 94%, specificity
- 89%, thus demonstrating that our neural network maybe useful in predicting
motor deficit development or aggravation or in the early postoperative period,
and also corresponds to the international level.

5 Conclusions

Methods of machine learning allow us to predict the pyramidal symptom aggra-
vation with comparatively high accuracy after microsurgical resection based on
the preoperative brain MRI data in patients with primary supratentorial gliomas.
The neural convolutional network created during the study showed the following
metrics: accuracy - 91%, sensitivity - 94%, specificity - 89%. It gives objective
information about the risk of neurological deficit, thus being a significant factor
in informing patients at the pre-surgical stage and deciding about the treatment
tactics. Using machine learning methods for prediction, the motor worsening af-
ter surgery is an auspicious tool. This requires further study with the inclusion
of input data of various modalities and increasing patients’ number.
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