
Searching for an Optimal Data Platform for Relevant

Information Search in Inorganic Chemistry and

Materials Science

Victor A. Dudarev1, 2[0000-0001-7243-9096] and Sergey S. Babikov1[0000-0002-3856-2231]

1 National Research University Higher School of Economics, Moscow, 109028, Russia
2 A.A. Baikov Institute of Metallurgy and Materials Science of RAS (IMET RAS), Moscow,

119334, Russia

vdudarev@hse.ru

Abstract. Choosing the most suitable database management system is one of the

most critical challenges in developing any information system operating on big

data. When selecting, as a rule, the overall system speed is considered the main

criterion regarding certain data structures due to the subject area specifics. In the

current article, using the example of searching for relevant information on inor-

ganic compounds, an attempt is made to analyze the possibility of using relational

and graph database management systems (DBMSs) to build a data storage sub-

system. Graph-based database implementations, powered by SQL Graph and

Neo4j, are considered and compared with a relational version based on SQL

Server. Typical query execution speed comparative analysis is carried out when

searching for relevant information in the field of inorganic chemistry and mate-

rials science. It’s shown that, due to the graph nature of relevance definition,

graph DBMS outperforms relational.

Keywords: DB, DBMS, Neo4j, SQL Server, SQL Graph, inorganic chemistry,

relevant information search.

1 Introduction

This work is devoted to studying ways to solve the relevant chemical objects search

problem in the metabase – a database (after this referred to as DB) containing infor-

mation on the contents of integrated information systems in the field of inorganic chem-

istry and materials science. On three different DBMSs, a data structure is developed

and filled with data to search for relevant chemical objects; and the typical search que-

ries execution speed is analyzed. The study is essential since the query execution time

for relevant information search in the current system version is unsatisfactory (the av-

erage request time to the Metabase, serving the imet-db.ru, is up to 1.5-2 seconds in the

worst cases). Moreover, although currently, it’s possible to find chemical objects with

a relevant chemical system from integrated sources, it’s necessary to improve system

capabilities so to extend the relevant chemical entities search to the chemicals sub-

stances and modifications level.

250

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Relational DBMSs are a popular solution for creating storage subsystems and, in

fact, are classic. With their help, a massive number of information systems have been

built, the strengths of which include the ability to work with a reasonably large amount

of data, the rigor of data representation in the form of a relational relationship, ensuring

referential integrity, and support for transaction processing. Thus, when properly de-

signed, many domain models can easily fit into a set of interrelated relationships with

a clear, easily perceived structure. However, when trying to create M:N (many-to-

many) type relationships between stored entities, one must introduce additional tables

to define such relationships. This approach, in it’s turn, clutters the data schema

аdditionaly; moreover, it entails the need to use additional relational join to build up

the desired query result. This, in turn, not only complicates the writing of SQL queries

but also contributes to a decrease in the efficiency of their execution.

Thus, if the objects stored in the database are associated with the same type of objects

by M:N relations, relational systems experience rather significant difficulties in pro-

cessing such queries. In work [1], it is shown that the relevant information concept in

an integrated IS on the properties of inorganic substances is associated with a variety

of connections between chemical objects of the same type, which are represented by a

graph. Consequently, the search for relevant information is formulated through the

search in the graph. Obviously, with this formulation, a relational database containing

chemical objects list becomes less effective.

For such search queries, a graph database should be the most suitable medium for

storing information and providing quick access to it. In this sense, graph databases have

the advantage in relevant information search - the objects and relationships stored in

them can natively represent the relevance graph [2], simplifying access to it and, con-

sequently, increasing query efficiency compared to relational databases. Due to the

amount of data on chemical objects and their presentation methods, the problem arises

to develop optimal, from the DBMS features point of view, data structures for repre-

senting information in the subject domain and studying their effectiveness in various

situations.

To search for optimal storing and processing data ways, it was decided to implement

pilot versions of search subsystems for relevant information based on graph DBMS:

Neo4j, as the most popular graph DBMS [3], and SQL Graph [4], as an extension of

SQL Server, on which the Metabase is implemented. It is interesting to compare the

operation speed of two graph databases based on different platforms with the speed of

a relational Metabase running SQL Server [5] (from now on SQL) on the problem of

finding relevant chemical objects. This paper discusses SQL, Neo4j, and SQL Graph

database structures and evaluates queries using various metrics.

2 Problem Domain Objects and Relations

In current research we discuss the Metabase part only which contains chemical objects

described elsewhere within the integrated information systems. For simplicity we do

not consider data structures containing information about which information sources

and which chemical object properties are described.

251

2.1 Chemical Objects Hierarchy

According to [1], the Metabase describes chemical objects of three types:

 System – a set of chemical elements representing the qualitative substance compo-

sition.

 Compound – is determined not only by chemical elements set but also by each ele-

ment quantitative content in the composition of substance, solution, or mixture (de-

scribed by the chemical formula).

 Modification – is determined not only by a chemical formula but also by crystal

structure type designation.

Chemical objects hierarchy, illustrating in detail the above definitions, is shown be-

low (see Fig. 1).

Fig. 1. Chemical objects hierarchy [1].

2.2 Relationships Between Chemical Objects

Given three levels in the chemical objects hierarchy, three relationship types would be

required to characterize relationships between entities (see Fig. 2):

 SUPERSYSTEM – it is a relationship between child and a parent chemical systems.

A system is designated as a child or relevant if and only if the system contains all

the chemical elements contained in the parent system and the number of elements in

the system is precisely one element more than in the parent (i.e. parent system’s

chemical elements are a subset of a child).

 COMPOUND – it is a relationship between a chemical system and a compound be-

longing to the same system. A compound is associated with this relationship with

the system if and only if the set, representing the qualitative substance composition,

is equivalent to the chemical elements set of the system.

252

 MODIFICATION – it is a relationship between a substance and its crystal modifi-

cations. A crystal modification is a child node for a substance if it has the same

qualitative and quantitative composition as the parent substance.

Fig. 2. Relationships between nodes in metabase structure.

According to the graph theory terminology, the connections between chemical ob-

jects are called edges. The types of relationships between chemical entities are the

names of the edges. Further we will analyze data structures and queries that search for

relevant objects only at the system level since the complexity of their implementation

is no different from similar queries at substances or modifications level.

3 Revevant Information Search Implementation in SQL

Server

3.1 Structure

Since a normalized relational data structure with a list of chemical elements in a partic-

ular relationship will make SQL queries extremely ineffective, it was decided to use

denormalized relations. So, for example, the system is specified as a string consisting

of chemical elements designations, placed lexicographically in ascending order and

separated by the "-" symbol. Moreover, a data attribute is added that specifies the chem-

ical system length, i.e. the power of chemical elements set (ElemNumber – the number

of elements). However, it is worth to note that this value can be calculated from the list

of elements. Thus, for the sake of speed, strictly speaking, even the first normal form

(1NF) is not satisfied for the DB structure. However, as a performance gain, we get a

quick search through the system (thanks to the indices) and the elements it contains.

Note that even with a normalized version of the database, a view similar in functionality

to the existing table can be easily obtained using materialized views (a view with a

clustered index).

Three attributes define a main relation structure, i.e. Meta_Systems table (see Fig. 3).

 Elements – list of the system chemical elements (primary key, varchar(32) type);

253

 ElemNumber – the elements count in the chemical system (int type);

 IsInHierarchy – an auxiliary column used to incrementally populate the rele-

vant objects list (it is used in the relational version of metabase only; int type).

Fig. 3. Chemical systems table fragment (SQL Server).

Thus, to obtain chemical systems, it is enough to query the Meta_Systems table:

SELECT * FROM Meta_Systems;

A similar structure is possessed by tables with chemical substances and modifications

with the addition of information on the quantitative composition and crystal modifica-

tion.

3.2 Search for Relevant Chemical Systems

Some scalar and table functions have been added to the database to facilitate search for

relevant chemical objects.

Below is a query using the GetSystemsFromRelationalMetabase table function to

get all the relevant systems for hydrogen:

SELECT [Elements], [SuperElements] as ‘Child systems’

FROM dbo.GetSystemsFromRelationalMetabase(‘-H-’);

The query result (see Fig. 4) is presented as two column relation indicating the parent

and corresponding child systems.

Fig. 4. Search result for relevant chemical objects for hydrogen system "H" in SQL Server.

Consider the GetSystemsFromRelationalMetabase function code:

254

SELECT s.[Elements], s.ElemNumber, superS.[Elements] AS

SuperElements, superS.ElemNumber AS SuperElemNumber
FROM Metabase.dbo.Meta_Systems AS s

CROSS APPLY Metabase.dbo.GetSuperSystem([Elements], El-

emNumber) AS superS WHERE s.[Elements] = @supersystem;

First, the function finds the system passed as a parameter in the Meta_Systems table.

The GetSuperSystem function is called for the corresponding @supersystem

parameter value only, and its execution result is appended to the system record by the

CROSS APPLY operator. So for the parent system passed as a @supersystem pa-

rameter value one can get a list of child chemical systems .

Consider the code for GetSuperSystem function, which is used in the Get-

SystemsFromRelationalMetabase function:

SELECT [Elements], ElemNumber from dbo.Meta_Systems WHERE

ElemNumber=@ElemNumber+1 AND @ElemNumber=(select

count(value) as cnt from (

select value from dbo.STRING_SPLIT(@Elements, '-') WHERE

value<>''

 INTERSECT

select value from dbo.STRING_SPLIT([Elements], '-') WHERE

value<>'') as tab);

The function returns children for the system passed as a parameter. The WHERE

clause specifies the number of chemical elements in child systems (it should be one

more than the number of chemical elements in the parent system). Further, the subquery

inside this function takes the [Elements] column from the main query and, using

the INTERSECT operator, removes those systems that do not contain the parent sys-

tem. Since this subquery is correlated, the [Elements] value correlates with the outer

query, leaving only child systems as a result.

3.3 Search for Relevant Chemical Systems on the Current System

The current version of imet-db.ru Web site uses a different query form to search for

relevant chemical systems. Since the above search query (section 3.2) takes an unac-

ceptably long time (up to 11 seconds in the worst case), it was decided to create a special

cache table of correspondences between parent chemical systems and children. The

structure of the table is quite simple (see Fig. 5) and the query for obtaining the relevant

systems for the hydrogen ('H') could the following:

DECLARE @supersystem VARCHAR(256) = 'H'

DECLARE @cnt INT = Metabase.dbo.GetElementsCountFrom-

String(@supersystem)

SET @supersystem = '-' + @supersystem + '-'

SELECT @supersystem 'ParentSystem', H.[Elements]

'ChildSystems'

255

FROM Metabase.dbo.Meta_SystemsHierarchy AS H

INNER JOIN Metabase.dbo.Meta_Systems AS S

ON H.[Elements]=S.[Elements]

WHERE H.ParentElements=@supersystem AND S.El-

emNumber=@cnt+1

 UNION

SELECT @supersystem, ParentElements

FROM Metabase.dbo.Meta_SystemsHierarchy as H

INNER JOIN Metabase.dbo.Meta_Systems AS S

ON H.ParentElements=S.[Elements]

WHERE H.[Elements]=@supersystem AND S.ElemNumber=@cnt-1

Fig. 5. Parent-children correspondence table structure in SQL Server.

The @supersystem variable represents the parent hydrogen system ('H'), the

@cnt variable represents the number of elements in the @supersystem. When as-

signing a value to @cnt, the GetElementsCountFromString function calculates

the number of elements in the system passed as a parameter by splitting the system

formula string by the '-' symbol and counting the number of rows received. Further, in

the SELECT query, those systems are selected whose parent formula is @supersys-

tem and the number of elements in which is greather by one. Then, using the UNION

operator, the child systems found in the same way are joined, but the number of chem-

ical elements is less by one. In the further development of the graph database, the func-

tionality associated with the UNION operator was decided to remove and leave only

child systems with a large number of elements of the parent system per one. Using such

an implementation of the relevant objects search, the query duration was reduced to

appropriate values (hundreds of milliseconds).

This query type is not considered in the current study for comparison of search speed

since the database uses pre-prepared data (pre-calculated relevancy lookup table), mak-

ing the further search query execution time comparison with graph databases incorrect.

So we are going to compare the execution speed of query from section 3.2.

256

mailto:S.ElemNumber=@cnt-1

4 Revevant Information Search Implementation in SQL

Graph

4.1 Structure

The metabase implementation in SQL Graph DBMS consists of three tables with chem-

ical objects of all types and three tables with the corresponding relationships described

in section 2.

Chemical Objects

Each object type table contains the information about chemical objects of a particular

type and a column with unique object ID in the table. The query to get information

about systems and the execution result can be seen on a figure (see Fig. 6):

SELECT * FROM Systems;

Fig. 6. A part of query result for getting all systems in SQL Graph.

Relationships

Relationship tables have a different structure. They always contain at least three col-

umns:

 $edge_id that denotes the ID of the edge that connects two chemical entities.

 $from_id containing the IDs of the first chemical objects.

 $to_id containing the ID of the second chemical objects.

The table also contains several additional attributes to store developer-defined edge

properties. The query code for getting all the edges in the SUPERSYSTEM relation-

ship table and the result of its execution could be seen at figure (see Fig. 7):

SELECT * FROM SUPERSYSTEM;

Fig. 7. Query result for taking all SUPERSYSTEM edges (SQL Graph).

In addition to the required columns, the Weight column has been added, which is the

only optional property for the edge, which at the current development stage contains a

257

constant. But in the future it will store a measure reflecting the strength of the bond

between chemical objects (edge weight) [1].

4.2 Search for Relevant Chemical Systems

So let's consider the query code for obtaining relevant systems for the hydrogen sys-

tem ('H') and the corresponding execution result (see Fig. 8):

SELECT * FROM GetSystems(‘H’);

Fig. 8. A part of the search result for related chemical system objects for hydrogen system "H"

in SQL Graph.

Call to the GetSystems function returns a table with three columns: the first column

is the parent system (“H” in our example), the second column – the Weight (constant

value in the current version), and the third column – the child systems. The GetSystems

function code is the following (using MATCH predicate for SQL Graph):

SELECT s1.Formula 'SUPERSYSTEM', e.Weight , s2.Formula

'System'

FROM Systems AS s1, SUPERSYSTEM AS e, Systems AS s2

WHERE MATCH(s1-(e)->s2)

AND s1.Formula = @supersystem

The function is a simple SELECT query that takes a parent system as a @super-

system parameter. The MATCH predicate for the SQL Graph is used in WHERE clause

to find the relevant chemical objects for the parent system with SUPERSYSTEM rela-

tionships.

5 Revevant Information Search Implementation in Neo4j

5.1 Structure

The conceptual metabase structure in Neo4j is quite similar to that in SQL Graph. But

since the data on edges in Neo4j, together with the chemical objects data, can be stored

at the individual records level, the search should be performed even more efficiently.

The developer does not need to create tables for graph structure as in SQL Graph. It is

enough to define all types of edges and chemical objects. To manipulate data and run

queries in Neo4j DBMS, Cypher language has been developed [6].

258

The graph's vertices represent chemical objects in Neo4j DB. The edges reflect the

relationship between the vertices. The stored vertex and edge types are described in

section 2.

Chemical Objects

All vertices in Neo4j are depicted by circles, the circle color changes depending on the

vertex type. Systems and substances have four properties:

 Identity – vertex ID;

 Labels – vertex type;

 Formula – vertex formula;

 Num – the number of chemical elements in the vertex formula.

A query in Cypher [7] is shown below. It returns (see Fig. 9) a vertex for the Ba-Ga-Si

chemical system and illustrates the above mentioned properties:

MATCH (s:System) RETURN s LIMIT 1;

Fig. 9. Cypher query result to get the properties for Ba-Ga-Si chemical system in Neo4j.

Substances contain only the first three properties from the systems and do not contain

the Num property. Modifications have the same properties as systems, but the Num

property is replaced with the Modification property (see Fig. 10). The query code

for receiving modification data in Cypher could look like:

MATCH (m:Modification) RETURN m LIMIT 1;

259

Fig. 10. Query result to get the H6I6O20Pt hexagonal modification properties in Neo4j.

Relationships

An edge in Neo4j has five properties:

 Identity – edge ID;

 Start – ID of the first chemical object;

 End – ID of the second chemical object;

 Type – edge type;

 Weight – edge weight.

The edges differ from each other only in the Type and ID properties. A query example

to illustrate (see Fig. 11) the properties of an edge in Cypher could look like:

MATCH ()-[e:SUPERSUSTEM]->() RETURN e LIMIT 1

Fig. 11. Query result to get the edge properties in Neo4j.

5.2 Search for Relevant Chemical Systems

In Cypher query code to search adjacent systems for the hydrogen system ('H') could

be formulated in the following way:

260

MATCH (s1:System {formula: 'H'})-[]->(s2:System) RETURN

s1.formula as supersystem, collect(s2.formula) as system

LIMIT 1

In this query, we should specify the parent system s1 formula and use the MATCH

operator to find the s2 children. The query returns a table (see Fig. 12), in the first

column of which is the parent system name ('H'), and in the second – an array of all

child chemical systems.

Fig. 12. Query result to search the relevant chemical system objects for 'H' system in Neo4j.

6 Query Performance Comparison

6.1 Query Type Definition

To compare queries execution speed in different DBMS correctly, it is necessary to use

the same test data, i.e. database contents, and formalize the data structure they should

return. So the query answer structure should be identical for all DBMS.

The query should search for child systems and return a list/table with two attributes

and one row (not counting the headers). The first attribute should designate the parent

chemical system, the second attribute – the number of child systems found that are

considered to be relevant for the current system. The Table 1 shows the returned struc-

ture and data using hydrogen ('H') as an example of parent system.

Table 1. Query result for finding the relevant chemical objects for the hydrogen system (the same

for all databases).

SuperSystem Child systems count

H 85

Considering that the query performance is highly dependent on the analyzed data

volume and distribution, several measurements were carried out on data sets corre-

sponding to chemical systems with different numbers of elements: 1, 2, 3, and 4. For

each of the four groups, 10 chemical systems were determined (the same for all data-

bases). Further, for each set, measurements were carried out in every database imple-

mentations, after that the results were averaged over each group. Thus, queries were

tested on 40 chemical systems (10 for each group) for every database implementation.

261

6.2 Measuring Time

To measure the query execution time in the SQL DBMS and SQL Graph, SQL Pro-

filer was used – a tool for monitoring query execution statistics. To calculate the query

execution time in the Neo4j DBMS, the query execution timer was built into the client

software was used due to the absence of a regular query profiler in Neo4j.

The results of query execution time measurement (on a 4-core computational node)

are shown at Fig. 13.

Fig. 13. DBMS comparison сhart by average query execution time in inorganic chemistry rele-

vant information search.

Here you can see a sharp decrease in the queries execution time in SQL for a length

equal to 4. This is due to the fact that the number of chemical systems containing 5

different elements, for which systems of length 4 are parents, is much less than the

number of systems containing 4 different elements, which are children for systems of

length 3. Keeping in mind the fact that no optimization was made to relational SQL

database to perform correct comparison with other DBMS types to anwer the query,

direct table scan is used in execution plan as shown by SQL Server Management Studio.

Thus it’s quite understandable that table scan for 3810 rows is faster than the table scan

for 23929 rows (linear dependency). A graph illustrating the number of objects with

their corresponding length is shown at Fig. 14. So our attempt to explain relatively

small execution time for chemical systems with length of 4 is quite fair although we

should be carefull with our guesses since we do not have full information about the

internal query optimization mechanisms in SQL Server (SQL Server is not an open-

source product).

Length 1 Length 2 Length 3 Length 4

Neo4j 14.9 4.3 2.8 3.7

SQL Graph 29.6 22.5 30.5 243.2

SQL 318.9 6083.2 11090.2 2687.4

0

2000

4000

6000

8000

10000

12000

Average query execution time for objects
of different length

262

Fig. 14. Systems comparison by number of objects of their corresponding length

7 Conclusion

Given the graph nature of relevance definition in the field of inorganic chemistry and

materials science, the leadership of graph versions of the database seems to us quite-

natural and beyond doubt. However, the results obtained require some comments, given

the relatively significant differences in the query execution time.

The relational models inefficiency for representing inherently graph information

about relevant chemical systems inevitably puts SQL Server-based implementation at

a loosing position. However, the scale of these differences is impressive: the relational

implementation indicators are dozens of times worse than those in graph databases in

the most uncomplicated cases (with one element in the parent set and, therefore, two

elements in the children) and about three orders of magnitude worse than the best indi-

cators of graph databases on objects with four elements in systems.

The lag of SQL Graph from Neo4j is quite noticeable, especially when the number

of elements in chemical system increases, the gap reaches significant values. At the

same time, it should be noted that the graph extension for SQL Server, in general, copes

well with its tasks. Considering that this extension appeared only in 2017 and is now

being developed by Microsoft, there is no doubt about increasing the functionality and

processing speed, and deep integration with SQL Server, including transactional level,

makes the data subsystem under the control of this DBMS quite flexible.

At the moment Neo4j is the best in terms of speed and functionality from all the

DBMS when working with graph databases. Considering that Neo4j was being devel-

oped since 2003 [8], the technology can be regarded as mature enough for industrial

Length 1 Length 2 Length 3 Length 4 Length 5

Systems count 106 2704 22101 23929 3810

0

5000

10000

15000

20000

25000

30000

Number of systems corresponding to
their length

263

deployment. Additionally, it is worth noting, that the specialized query language Cy-

pher used for Neo4j and its data format also contributes to the query execution speed

and an opportunity to use additional optimization techniques.

Complete information and measurement results obtained in the current study are

available in appendix [9]. The authors are very grateful to N.N. Kiselyova who inspired

the current research and made significant contribution to the relevant search idea re-

garding to inorganic chemistry. This work was supported in part by the Russian Foun-

dation for Basic Research, project no. 18-07-00080. The study was carried out as part

of the state assignment (project no. № 075-00328-21-00).

References

1. Dudarev V.A., Kiselyova N.N., Temkin I.O. On Information Search Measures and Metrics

Within Integration of Information Systems on Inorganic Substances Properties. In: Elizarov

A., Novikov B., Stupnikov S. (eds) Data Analytics and Management in Data Intensive Do-

mains. DAMDID/RCDL 2019. Communications in Computer and Information Science,

2020, vol. 1223, p. 47-58. Springer, Cham. https://doi.org/10.1007/978-3-030-51913-1_4

2. Robinson I., Webber J., Eifrem E. Graph Databases - Second Edition. O'Reilly, 2015. ISBN

978-1-491-93089-2

3. DB-Engines Ranking of Graph DBMS, https://db-engines.com/en/ranking/graph+dbms, last

accessed 2021/04/25.

4. Graph processing with SQL Server and Azure SQL Database, https://docs.mi-

crosoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-

ver15, last accessed 2021/04/25.

5. Strate J. Expert Performance Indexing in SQL Server 2019: Toward Faster Results and

Lower Maintenance Paperback. Apress, 2019. ISBN 978-1484254639.

6. Neo4j Desktop, https://neo4j.com/docs/operations-manual/current/installation/neo4j-desk-

top/, last accessed 2021/04/25.

7. Baton J., Bruggen R Learning Neo4j 3.x - Second Edition. Packt Publishing Ltd, 2017. ISBN

9781786466143.

8. Sonal Raj. Neo4j High Performance. Packt Publishing Ltd, 2015. ISBN 978-1-78355-516-

1.

9. Supplementary material, https://drive.google.com/drive/folders/1PZiM-

KPjhInfldudrrO9pzNsScuGknjo?usp=sharing, last accessed 2021/04/25.

264

https://doi.org/10.1007/978-3-030-51913-1_4
https://db-engines.com/en/ranking/graph+dbms

