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Abstract. M-estimators based on Huber and Andrews sine loss func-
tions were successfully used for approximation of heat capacities and 
heat contents of K-substituted natrolite and petalite by means of the 
weighted sum of Einstein functions. It automatically excluded outliers 
for petalite and narrow peak of lambda-transition for K-natrolite.
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1 Introduction

Evaluation of parameters of thermodynamic models from experimental data is
a very common problem of nonlinear optimization. It is usually based on the
weighted non-linear least squares method. Selection of the statistical weights is
a complex problem due to different accuracy of experimental data and possible
presence of systematic errors and outliers. Different schemes of their automatic
selection were suggested [8,9], but all of them are based on the least squares
method that is not robust to outliers. However, outliers may be excluded by the
robust regression, i.e. by replacement of the sum of squares by other objective
functions, e.g. by so called M-estimators:
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where n is the number of points, rk are residuals, ycalck and yexpk are calculated
and experimental values respectively, β is the model parameters column vector,
ρ(t) is the loss function, σ is the scaling factor, ωk are statistical weights.

However, minimization of eq. 1 requires special algorithms and much more
computational power than the least squares method.

The aim of this work is to demonstrate the applicability of M-estimators for
approximation of heat capacities and heat contents of individual substances. Ex-
perimental data for petalite LiAlSi4O10 and K-substituted natrolite (K-natrolite)
Na0.01K1.85Mg0.01Ca0.04Al1.96Si3.04O10 · 2.72H2O were be used as examples.
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2 Used Algorithm

In this work the the iterative reweighted least squares (IRLS) algorithm com-
bined with Levenberg-Marquardt type regularization technique was used for find-
ing eq. 1 minimum. IRLS for robust regression was suggested by Mudrov, Kushko
et al. [6]. This quasi-Newton method is based on the numerical solution of the
system of equations that express necessary condition for eq. 1 minimum:
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IRLS uses two simplifications to get rid of the second derivatives. The first one
is linearisation of the deviations rk near the initial approximation β◦:

rk(β) = rk(β
◦) +

m∑
j=1

∂rk
∂βj

(βj − β◦
j ) ⇒ r = r◦ + Jp; p = β − β◦ (3)

where J is Jacobian (n ×m matrix), m is the number of parameters, r is the
residuals column vector, The second step is exclusion of the ρ̈(t) function by
introduction of so called weight function w(t) = ψ(t)/t [4]. If we assume that
w(t) ≈ w(t0) then ρ̈(t) ≈ w(t0) and eq. 2 simplifies to:
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It gives the next matrix formula for the iteration (step) p and the covariance
matrix C for the model parameters:

β − β◦ = p = − (JWJ)
−1
J⊤Wr◦; C =

(r◦)⊤Wr◦

n−m
(JWJ)

−1
(5)

whereW is the n×n diagnonal matrix with theWkk = ω2
k ·w(ωkrk/σ) elements.

The IRLS algorithm was embedded into the CpFit program [11] designed for
approximation of heat capacities and heat contents of substances. It was used
as the replacement of the least squares method and included the next steps:

1. Find the initial approximation by the least squares method.
2. Estimate the scaling factor in eq. 1 using the robust estimation of standard

error based on median [10]:

σ = Φ−1(0.75) ·median |r| = 1.483 ·median |r| (6)

where Φ−1(x) is the inverse cumulative distribution function for standard
normal distribution.

3. Run the IRLS iterations combined with Levenberg-Marquardt type regular-
ization technique using the given data and the loss function ρ(t).

279



Table 1. Loss functions for M-estimators (see eq. 1) and their derivatives and weight
functions used in this work; a is the tuning constant for 95% asymptotic efficiency.

Function ρ(t) ψ(t) ψ̇(t) w(t) t ranges a

Square 0.5t2 t 1 1 t ∈ [−∞; +∞] —
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Fig. 1. (a) Loss functions ρ(t) (b) the corresponding weight functions w(t). Solid,
dashed, dash-n-dotted lines — square, Huber and Andrews functions respectively.

The ρ(t) = 0.5t2 (i.e. the least squares method), Huber and Andrews sine loss
function were used in this work, their ρ(t), ψ(t) and w(t) are given in Table 1
and at Figure 1. The tuning constants a for 95% asymptotic efficiency in the
case of normal distribution of errors were taken from Holland and Welsch [4].

Andrews sine and Huber functions are piecewise. They turn into AT 2 at
smaller t and to constant and linear functions respectively at larger t. This
reduces values of their weight functions w(t) at larger t and influence of outliers.
For Andrews sine function w(t) reaches 0 for finite values of t. It causes exclusion
of potential outliers from the optimization. In the case of Huber function w(t)
is always positive.

Huber function is convex and Andrews sine function is not (see Figure 1).
The latter one belongs to redescending M-estimators that have non-convex ρ(t),
ψ(t) with local extrema and limt→∞ ψ(t) = 0. They allow to totally exclude
outliers from the optimization but may lead to non-convex objective function
(see eq. 1) even in the case of linear regression. This increases the possibility of
reaching local minimum instead of global and requires more careful selection of
the initial approximation [1,5].
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3 Experimental Data

Experimental data for K-substituted natrolite and petalite heat capacity and
heat content were considered in this work. They are summarized in Table 2.

Table 2. Experimental data for K-natrolite and petalite; N is the number of points;
“ad.cal” — adiabatic calorimetry, DSC – differential scanning calorimetry, “up.lim.” –
upper limits, ”std.dev” — standard deviation; H was obtained by drop calorimetry.

Compound Data type N T / K Uncertainty Reference

K-natrolite Cp (ad.cal.) 71 7.4–302.1 5%, 2%, 0.5% for < 10,
10–20, > 20 K (up.lim.)

Paukov et al. [7]

Petalite Cp (ad.cal.) 83 5.6–381 < 10%, 0.3% for < 20 K,
T ≥ 20 K (up.lim.)

Hemingway et al. [3]

Cp (DSC) 17 340–500 1.0% (upper limits) Hemingway et al. [3]
Cp (ad.cal.) 41 10.7–302 2%, 0.5%, 0.2% for 10–

20 K, 20–50 K, 50-300 K
(std.dev.)

Bennington et al. [2]

HT −H298.15 17 403–1194 0.4% (std.dev.) Bennington et al. [2]

These data were already approximated earlier by Voskov et al. [10,11] using the
least squares method and the weighted sum of Einstein functions:
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wherem is the number of terms,R is the universal gas constant, CE(x) is Einstein
function, αi and θi are model parameters that are found by the minimization of
eq. 1. They may be considered as a crude approximation of phonon spectrum
but due to anharmonism and possible Schottky anomalies they are closer to ad-
hoc parameters. However the approximation based on the least squares method
required manual exclusion of low-temperature outliers for petalite [10] (at T =
4.57 and 5.27 K) and of heat capacity anomaly for K-natrolite [11] (at T =
210 − 300 K with a narrow peak at 250.32 K). The experimental data were
approximated by eq. 7 without manual exclusion of the outliers and Cp anomaly
using the ωk,C = 1/Cexp

p,k and ωk,H = 1/∆Hexp
k statistical weights, i.e. relative

deviations.

4 Results and their Discussion

The results of approximation for both substances are shown at Figure 2. Higher
uncertainties at T < 25 K are due to less accurate experimental data, see Table 2.
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The corresponding αi and θi values are given in Tables 3 and 4. Extra digits
are left intentionally: parameters confidence intervals because parameters are
correlated to each other, i.e. C from eq. 5 is not diagonal. This is typical for
linear and nonlinear regression. Number of terms for petalite is not equivalent
for different models because attempts to increase number of terms up to 5 in all
models caused ill conditioned optimization problems.
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Fig. 2. Relative error of Cp approximation vs T for models based on different M-
estimators for (a) K-natrolite and (b) petalite.

Table 3. Model parameters for K-natrolite based on different M-estimators.

Loss func. Parameters

Square α⃗ = [16.6747± 4.1; 6.80433± 1.3; 1.61822± 0.51; 0.139818± 0.46]

θ⃗/K = [784.343± 170; 216.143± 41; 84.9998± 26; 46.9228± 30]

Huber α⃗ = [15.7714± 8.0; 6.9136± 1.7; 3.29675± 1.2; 0.80118± 0.14]

θ⃗/K = [948.901± 460; 312.067± 150; 130.076± 38; 64.3238± 4.5]

Andrews α⃗ = [15.7097± 13; 7.02547± 5.8; 4.14298± 3.3; 1.05665± 0.31]

θ⃗/K = [1042± 810; 367.368± 270; 158.74± 46; 69.0627± 4.2]

The least squares method is sensitive to the Cp anomaly and outliers: the
obtained models are not accurate and undergo oscillations. M-estimators based
on Huber and Andrews sine function are much less sensitive to them. Standard
“baseline” (i.e. not taking into account Cp anomalies) entropies S◦,BL

298.15 were cal-
culated for all models, see Table 5. For K-natrolite uncertainties are 1.1%, 0.5%
and 0.3% for quadratic, Huber and Andrews loss functions; the reference value
S◦,BL
298.15 = 437.7 J · (mol ·K)−1 was taken from [11]. For petalite the uncertainties

are 2.2%, 0.2% and < 0.1%; the reference value S◦,BL
298.15 = 232.7 J · (mol ·K)−1

was taken from [10]. Andrews sine loss function leads to more accurate values
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Table 4. Model parameters for petalite based on different M-estimators.

Loss func. Parameters

Square α⃗ = [10.8013± 0.48; 1.98900± 0.19; 0.123494± 0.026]

θ⃗ / K = [564.984± 29; 122.377± 6.6; 43.0569± 2.4]

Huber α⃗ = [8.55870± 1.1; 5.40312± 1.2; 1.36527± 0.22; 0.119787± 0.030]

θ⃗ / K = [994.092± 160; 350.399± 46; 107.811± 8.1; 43.7175± 2.6]

Andrews α⃗ = [6.60117± 2.2; 6.83701± 2.0; 2.12692± 1.1; 0.834509± 0.35;

0.0661169± 0.035]; θ⃗ / K = [1339.72± 470; 517.876± 140; 201.653± 64;
88.2320± 13; 38.3133± 4.7]

Table 5. Relative standard errors of approximation, S◦,BL
298.15 values and results of 5-fold

cross-validation.

Compound Loss func. 102sCp 102stestCp
102strainCp

102s∆H 102stest∆H 102strain∆H
S
◦,BL
298.15

J·(mol·K)−1

K-natrolite LSQ 4.4 3.17 3.45 — — — 445.1
Huber 1.5 3.28 1.76 — — — 440.0
Andrews 0.87 2.60 1.49 — — — 438.9

Petalite LSQ 9.5 8.3 7.7 15 14 12 237.4
Huber 2.0 2.3 2.2 2.4 3.0 2.9 232.2
Andrews 0.51 0.85 0.45 0.29 0.47 0.21 232.6

of entropies, but during the optimization it sometimes manual tuning of initial
approximation for petalite. Further research is required for automatic selection
of initial approximation in the stepwise regression.

Although parameters confidence intervals were controlled to avoid overfitting,
k-fold cross-validation with k = 5 was made for all models. The results are
present in Table 5, all standard errors were estimated by means of eq. 6. s
were calculated for parameters from Tables 3 and 4 before cross-validation. stest

and strain were evaluated as mean standard errors for test and training sets
respectively; stest and strain were estimated by means of eq. 6.

For Andrews sine functions obtained sCp and s∆H are close to the standard
errors of existing models: for K-natrolite sCp = 0.68% (restored from model
parameters from [11]) and for petalite sCp

= 0.46%, s∆H = 0.091% [10]. In
the case of K-natrolite stest is about 2–3 times higher than s for Huber and
Andrews sine M-estimators. For petalite both stest and strain are close to s. Such
differences may be connected with presence of λ-transition of K-natrolite and
random fluctuations during sampling procedure may have stronger influence.
The cross-validation results show that the models are not overfitted.

5 Conclusion

Robust regression based on M-estimators and the IRLS algorithm were success-
fully applied for approximation of isothermal heat capacity and heat content
of K-substituted natrolite and petalite. This approach allowed to automatically
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exclude outliers. However, it is not designed for estimation of random and sys-
tematic errors of different data series, and may be combined with other schemes
of statistical weights assignment if required. It also can’t replace critical data
evaluation of available experimental data but may help to find anomalies and
outliers.

6 Data Availability

CpFit program is available at the site of Laboratory of Chemical Thermodynam-
ics (http://td.chem.msu.ru). Data files for K-natrolite and petalite are published
as Mendeley data set (http://dx.doi.org/10.17632/gbgnkr3f2x.1).
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