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Abstract 

The paper studies the application of sequential pattern mining techniques to medical data 

from MIMIC-IV, a large healthcare dataset. Sequences of prescribed drugs to a large 

number of patients are analyzed in order to find out if there are patterns or temporal 

relationships which are general or specific to a particular disease. The PrefixSpan and 

Spade algorithms were applied to mine sequential patterns on all sequences or on a subset 

of them. The extracted patterns could be used to suggest the next prescribed drug. The 

experimental results show that the predictions obtained have a good accuracy for some 

diagnoses. 
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1. Introduction 

The correct use of a drug is dependent upon several conditions. Each drug has some characteristics, 

such as indications, possible risk factors and contraindications, like the use with other drugs or the 

existence of certain medical conditions. The improper use of drugs and self-medication can be 

dangerous [1]. 

The advancement of technology has made it possible to digitally collect and store patient data for 

their subsequent use. The manipulation of this large amount of data could bring new knowledge to 

the medical field [2]. Medications prescribed by specialists can be used to identify the optimal treatment. 

The order of the prescriptions could provide important information. Frequent subsequences or predictions 

of the next drug can help a doctor in making a quick decision when there are too many medication 

options. They can be used to make automatic recommendations in routine cases, or to verify the correctness 

of unusual orders. 

Sequential pattern mining can be a solution to this problem because it can identify patterns of 

ordered events [3]. A survey of the approaches proposed for sequential pattern mining is given in 

[4], [13]. Sequential pattern mining was applied in different areas of research, also including the 

medical domain. For example, to identify temporal relationships between drug prescription and 

medical events or between prescriptions of different drugs [5], or to identify if a person is susceptible 

to a future illness [6]. 

In this paper, we used sequential pattern mining to predict the next medication for a patient. Other 

existing studies in the literature are based on machine-learning methods. In [8], the prescription data 
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is transformed into a stochastic time series for prediction. Various machine-learning approaches were 

used and analyzed in order to predict prescription patterns. A different approach is presented in [9]. 

The authors used neural networks and word2vec representations to predict the medication order 

prescribed during hospitalization, which could be used to assist pharmacists. Good results were 

obtained for obstetrics and gynecology patients and newborn babies. The paper [10] predicts 

prescriptions for the next period of time based on the disease status, laboratory results and the previous 

treatment of the patient through a framework of machine learning. The authors used three Long Short-

Term Memory models. The experiments were performed on data from the MIMIC-III ICU and other 

data from hospitals in China. The results obtained reveal the effectiveness of the methods. Another 

study [11] uses probabilistic topic modelling to predict clinical order patterns. 

A similar study to ours is presented in [7]. The authors describe an approach based on sequential 

pattern mining to identify the next prescribed medication for patients with diabetes. The CSPADE 

algorithm is used to mine sequential patterns at the drug class and generic drug level. The dataset 

used in our research is different from the one considered in [7]. We used a larger real-world 

dataset, MIMIC-IV, on which sequential pattern mining has not been applied before. The 

preprocessing step of identification of drugs and the construction of sequences are specific to this 

dataset. Two mining algorithms, PrefixSpan and SPADE, were considered. Although the 

predictions are made in a similar way by constructing some rules from the frequent patterns, the 

analysis of the mining algorithms on the MIMIC-IV dataset and the evaluation of the results on 

several diagnoses such as "heart attack" are two other elements that distinguish the current paper 

from the existing works. 

The paper is organized as follows. A formal description of the problem of mining sequential 

patterns and the algorithms used to solve the problem is given in Section 2. In Section 3 we present 

the dataset used and in Section 4 the experimental settings and results. We conclude with a summary 

and future improvements in Section 5. 

2. Sequential Pattern Mining 

The problem that sequential pattern mining is trying to solve can be described as follows: knowing 

that many events occur in time, can we learn more about this data if we analyse any ordered sequence 

encountered? [13] 

In the following we formally describe the problem. Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛} be a set of elements, also 

called an alphabet. An event (𝑖𝑥1
, 𝑖𝑥2

, … , 𝑖𝑥𝑘
), 1 ≤ 𝑥𝑗 ≤ 𝑛, ∀ 𝑗 ∈ {1, … , 𝑘} is a nonempty subset of 𝐼 and 

an unordered collection of elements. A sequence 〈𝑒1, 𝑒2, … , 𝑒𝑞〉 is an ordered collection of events. A 

sequence that contains k elements is known as a k-sequence. A sequence 𝑠𝑒 =  〈𝑒1, 𝑒2, … , 𝑒𝑛〉 is a 

subsequence of the sequence 𝑠𝑓 =  〈𝑓1, 𝑓2, … , 𝑓𝑚〉 if there exist integers 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 ≤ 𝑚 such 

that 𝑒1 ⊆ 𝑓𝑖1
, 𝑒2 ⊆ 𝑓𝑖2

, … , 𝑒𝑛 ⊆ 𝑓𝑖𝑛
. A sequence database is a set of sequences that have associated 

identifiers. The support of a sequence s, denoted sup(s), in a sequence database represents the number 

of sequences containing s, i.e., for which s is a subsequence. Giving a value for the minimum support, 

denoted 𝑚𝑖𝑛𝑠𝑢𝑝, a sequence is considered frequent in a database if its support is at least equal to the 

𝑚𝑖𝑛𝑠𝑢𝑝. Sequential pattern mining aims to find these frequent sequences. 

2.1. SPADE 

SPADE (Sequential PAttern Discovery using Equivalence classes) [14] is an Apriori-based 

algorithm, making use of the Apriori property that claims that  any subsequence of a frequent 

sequence is also a frequent sequence. SPADE works with data organized in vertical format, by 



 
transforming the initial sequence database into a table composed of all events where a row is an event 

linked with the corresponding sequence identifier (SID) and its position in the sequence (EID). 

At each step k, the algorithm searches for k-sequences that have the chance to be frequent, by 

generating id-lists. The first step is to find the 1-frequent sequences. Support is calculated for each 

element of the alphabet, counting the entries in the vertical formatted table that contains it. Those 

entries will be included in its id-list. Subsequently, only items that reach the minimum support are 

frequent and will be considered for finding 2-frequent sequences. In the general case, candidate k-

sequences are found by joining the id-lists of any two frequent (k-1)-sequences, that have the same 

SID and have ordered sequential positions (EIDs). The algorithm stops when no more frequent 

sequences have been found or no more candidate sequences have been constructed. 

2.2.  PrefixSpan 

PrefixSpan (Prefix-Projected Sequential Patterns Mining) [15] is a Pattern-Growth-based algorithm, 

because it does not generate candidate sequences, but instead uses partitioning of the data set into 

projections, which will be explored separately to extend the already known frequent sequences. 

The PrefixSpan algorithm includes the following steps: 

1. Find 1-frequent sequences in the dataset that will later be concatenated to the current frequent 

sequence (or the current frequent prefix) to form new frequent sequences. Initially, the current frequent 

sequence is an empty sequence, 𝑠 =  〈_〉 . 
2. The search space is partitioned according to the sequences found in the previous step. For each 

new, frequent sequence obtained, a projection is created, considering that sequence as a prefix. 

3. For each projection, look for the elements with support at least equal to 𝑚𝑖𝑛𝑠𝑢𝑝 which will be used 

to extend the previous frequent sequences. 

These steps are repeated recursively, the algorithm operating on a divide et impera strategy. 

3. MIMIC-IV dataset 

MIMIC (Medical Information Mart for Intensive Care) is a relational database, publicly accessible 

which documents the hospitalizations of patients at Beth Israel Deaconess Medical Center (BIDMC) 

in Boston, MA, USA. MIMIC-IV [12] is the latest version of the MIMIC database and represents an 

improvement of MIMIC-III, with a modular structure and more recent patient data from 2008 to 2019. 

MIMIC-IV contains five modules that reflect the origin of the data: core,  hosp, icu, ed and cxr. 

We used the hosp module which provides information from the electronic medical records that 

include laboratory tests, medications, and diagnoses. From this module, the following tables were 

used: prescriptions, diagnoses_icd and d_icd_diagnoses. The prescriptions table contains information 

about the prescribed medications. The drug type field has three possible values: MAIN, BASE, or 

ADDITIVE. The diagnoses_icd table records the diagnoses for which a patient was billed. Each 

diagnosis has associated a seq_num which represents the importance of the diagnosis. The lower the 

seq_num is, the more significant the diagnosis is. The official name of a diagnosis can be identified 

using the table d_icd_diagnoses. 



 

 
Figure 1: Distribution of the number of drugs per hospitalization 

 

The prescriptions table contains 17008053 records, i.e., drugs that were individually prescribed. In 

most prescriptions, the drug type was in the MAIN category. Prescriptions were made for 232064 

patients, with 452115 hospitalizations. A distribution of the number of drugs per hospitalization is 

available in Figure 1. In most cases, this number falls in the range [0,400], although there are also 

much higher values (a maximum of 2156). 

There are 5280351 diagnoses in the associated table diagnoses_icd, established for 255106 patients 

who had 521111 hospitalizations. A patient may have several hospitalizations, and for each 

hospitalization, several diagnoses. The distribution of the number of diagnoses per hospitalization is 

given in Figure 2. 

 

 
Figure 2: Distribution of the number of diagnoses per hospitalization 

 

The d_icd_diagnoses table contains 109775 lines, or possible diagnoses. Table 1 shows the ranking 

of the most common diagnoses. 

 

 

 



 
Table 1 
Distribution of the number of diagnoses per hospitalization 

No. Diagnosis No. of occurrences 

1 Unspecified essential hypertension 104080 
2 Other and unspecified hyperlipidemia 68215 
3 Essential (primary) hypertension 54696 
4 Hyperlipidemia, unspecified 51097 
5 Esophageal reflux 49593 
6 Diabetes mellitus without mention of complication, type II or 

unspecified type, not stated as uncontrolled 
43705 

7 Personal history of nicotine dependence 40803 
8 Atrial fibrillation 37337 
9 Depressive disorder, not elsewhere classified 36905 

10 Congestive heart failure, unspecified 36891 
11 Coronary atherosclerosis of native coronary artery 36404 
12 Gastro-esophageal reflux disease without esophagitis 35610 
13 Need for prophylactic vaccination and inoculation against viral 

hepatitis 
32686 

14 Personal history of tobacco use 32225 
15 Major depressive disorder, single episode, unspecified 30398 
16 Acute kidney failure, unspecified 29276 
17 Unspecified acquired hypothyroidism 29051 
18 Encounter for immunization 27146 
19 Atherosclerotic heart disease of native coronary artery without 

angina pectoris 
26706 

20 Tobacco use disorder 26340 

 

4. Experimental results 

This section describes the steps followed in generating predictions using Sequential Pattern Mining 

algorithms on the MIMIC-IV dataset, as shown in Figure 3. The steps are the following: finding the list of 

distinct drugs, filtering hospitalizations by diagnoses, building sequences of drugs, running sequential 

pattern algorithms and building rules.  

 

 
Figure 3: Pipeline for the strategy used 

 



 
The cases where the predictions are relevant and the parameters that influence their accuracy are 

analyzed. 

 

4.1. Preprocessing 

The same drug may appear in prescriptions in several forms, such as various abbreviations (‘hepa’, 

‘hepar’, ‘hepari’, ‘heparin’), some of the letters are capitalized (‘acetaZOLAMIDE’, ‘Acetazolamide’, 

‘AcetaZOLamide’), more or less spaces and special characters (’Dextromethorphan-’, 

’Dextromethorphan’), additional words, such as ’pain’, ’bulk’, ’extended release’ (’vancomycin’, 

’vancomycin (bulk)’). Another, more complex problem, is that medicines may appear under completely 

different names, i.e. with the generic name, or with the name used by the brand. A solution to all these 

inconsistencies is the usage of the gsn field, which contains one or more 6 digit Generic Sequence Number 

(GSN) codes. GSN identifies a product based on its formula, dose, method of administration and 

concentration and can be used to group generally equivalent products, which may differ only through the 

manufacturer. In order to reduce the existence of several equivalent elements, we created a list of drugs 

with a unique id associated with the help of the GSN codes. Since a drug or other equivalent drugs can be 

associated with several GSN codes, groups of GSN codes will be established so that one group contains all 

codes that have been mentioned together directly or indirectly. Two drugs will be considered equivalent if 

at least one of their GSN codes (not necessarily identical) is found in the same group of GSN codes. Thus, 

starting from a list of 16970 pairs (drug, gsn), we obtained a list of 3398 drugs with a unique id after 

preprocessing. 

4.2. The construction of sequences 

A sequence is an ordered list of events of the form 〈𝑒1, 𝑒2, … , 𝑒𝑛〉 and initially the events are empty 

subsets of the alphabet I. In our case, the alphabet is the set of drugs ids 𝐼 = {0,1,2, … ,3397}. A sequence 

corresponds to a hospitalization and is represented by the list of ids of the drugs prescribed, grouped and 

sorted by time. For example, the sequence 〈(2624), (2624), (2769, 539, 1100)〉 specifies that in the case 

of a hospitalization, the drug with id 2624 was prescribed first, then again, the same drug, and then followed 

by a group of three drugs. 

We considered two cases for the generation of sequences: the sequences are built for all 

hospitalizations, or only on a subset of hospitalizations. In the first case, the list of distinct 

hospitalizations that have at least one prescription can be easily found by querying the prescriptions 

table. For each element of the list, the events of the corresponding sequence are considered. Given that 

there are 452 115 distinct hospitalizations, the number of generated sequences is high, fact which limits 

the competence of mining algorithms. Consequently, for the second case, we considered filtering the 

hospitalizations after one or more diagnoses. Given a set of keywords, we will search for 

hospitalizations that have diagnoses that contain all the keywords. For example, for the words ‘heart’ 

and ‘pneumonia’, hospitalization with the following diagnoses ‘Pneumonia due to adenovirus’, 

‘Aneurysm of heart’, ‘Other and unspecified hyperlipidemia’ will be selected. In addition to this 

filtering, when constructing sequences, only prescriptions with a drug type equal to MAIN will be 

considered. 

This filtering is meant to facilitate the use of fewer resources (time and memory) by algorithms and to 

obtain better results, because the selection of hospitalizations by diagnoses can increase the chance of 

finding more common patterns. 



 

4.3. Sequence pattern mining 

The frequent sequences of prescribed drugs were extracted using two sequential pattern mining 

algorithms, SPADE and PrefixSpan, available in the open-source Java library SPMF [16]. We run the 

algorithms on an instance based on Windows 10 Pro that has an Intel(R) Core (TM) i7-8550U CPU 

@ 1.80GHz processor with 8 GiB of memory. 

 
SPADE cannot be applied to the entire dataset due to the additional memory the algorithm 

requires to transform the sequence database into a vertical format. SPADE is suitable to be used for a 

subset of hospitalizations. The results of SPADE are given in Table 2. 

 

Table 2  
The results of SPADE 

Diagnosis  diagnoses 𝑚𝑖𝑛𝑠𝑢𝑝 sequences 
(hospitalizations) 

Avg no. 
of 

events 

 frequent 
sequences 

Time 
(s) 

Memory 
(mb) 

Heart failure 73 0.025 52086 21.04 80983 86.94 1556.81 
Born in 
hospital 

21 0.008 37113 2.77 44020 41.21 407.844 

Acute kidney 
failure 

15 0.025 48255 24.92 68860 162.21 906.58 

Need for 
prophylactic 
vaccination 

and 
inoculation 
against viral 

hepatitis 

1 0.0001 29177 1.44 96546 44.98 329.158 

Circumcision 2 0.0001 13269 2.05 262264 45.61 329.158 
Encounter for 
immunization 

1 0.0011 20149 1.88 73801 51.04 415.74 

 

We considered six use cases, i.e., hospitalizations that had the following diagnoses: Heart failure, 

Born in hospital, Acute kidney failure, Need for prophylactic vaccination and inoculation against viral 

hepatitis, circumcision and Encounter for immunization. We selected the hospitalizations for a 

diagnosis based on some terms. The chosen terms are contained in or represent the names for the most 

common diagnoses. We consider diagnoses with 𝑠𝑒𝑞_𝑛𝑢𝑚 ≥ 5 because of the higher chance that they 

will be the main reason for the hospitalization. For example, there are 73 different diagnoses containing 

the term 'heart failure' and for which this diagnosis is important (𝑠𝑒𝑞_𝑛𝑢𝑚 ≥ 5). One of the most 

common diagnoses is Congestive heart failure, unspecified, according to Error! Reference source not 

found.. The number of resulted sequences is 52086, with an average of 21,04 events. A number of 80983 

frequent sequences were found by applying the algorithm on the sequences. The selected values for 

the minimum support are specified in Table 2. The value of 𝑚𝑖𝑛𝑠𝑢𝑝 is empirically chosen for practical 

time limits. A lower number of events means that fewer medications are prescribed for those 

hospitalizations, which allows the choice of a lower minimum support. 

 



 
PrefixSpan The parameters of the algorithm are the value of the minimum support and, optionally, 

the maximum length of the sequences. 

We tested the algorithm for all hospitalizations, using a minimum support of 0.025 (10891 

sequences) and a maximum length of a sequence of 20. The number of frequently found sequences is 

equal to 9771. Some of the most frequently used drugs are: lactated ringers (Ringer’s Lactate 

Solution), hydralazine (Hydralazine), tylenol (Paracetamol), 0.9% sodium chloride, potassium 

chloride, heparin flush, etc. 

A small decrease in the minimum support can significantly increase the number of sequences and 

thus the execution time. For example, for a minimum support of 0.02 (8713 sequences), the number 

of frequent sequences increases to 20968. 

Next, we repeated the tests made with SPADE, but using the PrefixSpan algorithm instead. 

The results are given in Table 3. 

 

Table 3 
The results of PrefixSpan 

Diagnosis 𝑚𝑖𝑛𝑠𝑢𝑝 Frequent sequences Time (s) Memory (mb) 

Heart failure 0.025 101517 319 662.53 
Born in hospital 0.008 44601 29.59 241.61 

Acute kidney failure 0.025 86110 726.23 555.51 
Need for 

prophylactic 
vaccination and 

inoculation against 
viral hepatitis 

0.0001 99975 0.77 100.57 

Circumcision 0.0001 268516 1.68 95.39 
Encounter for 
immunization 

0.0011 93614 6.4 114.12 

 

PrefixSpan finds more frequent sequences and uses less memory than SPADE. However, the 

execution time is significantly shorter for SPADE when we have long sequences, and shorter for 

PrefixSpan in case of short sequences. 

We next analyzed the frequent sequences that resulted from the application of the algorithms. We 

considered two cases: with a high minimum support (for example, hospitalizations with heart failure 

diagnosis) and with a low minimum support (for example, hospitalizations with Need for prophylactic 

vaccination and inoculation against viral hepatitis diagnosis). 

Some frequent sequences found for hospitalizations with Need for prophylactic vaccination and 

inoculation against viral hepatitis diagnosis are given in Table 4. 

 

Table 4  
Sequential patterns 

Sequential patterns Support 

‘erythromycin ophthalmic’ 27346 

’erythromycin ophthalmic’ ’phytonadione (vitamin k1)’ → ’erythromycin ophthalmic’ 
’hepatitis b vaccine’ ’phytonadione (vitamin k1)’ 

 

11 

’triple dye’ ’erythromycin ophthalmic’ ’hepatitis b immune globulin’  37 



 
’phytonadione (vitamin k1)’ 27347 

’hepatitis b vaccine’ 7876 

’phytonadione (vitamin k1)’ → ’gentamicin’ 1324 

’phytonadione (vitamin k1)’ → ’acetaminophen’ 2356 

’lidocaine’ ’acetaminophen’ → ’hepatitis b vaccine’ 189 

’triple dye’ → ’hepatitis b vaccine’ 2525 

’triple dye’ ’erythromycin ophthalmic’ ’hepatitis b immune globulin’ 37 

’erythromycin ophthalmic’ ’phytonadione (vitamin k1)’→’phytonadione (vitamink1)’ 7428 

 
We analyzed the sequential patterns in order to identify the most commonly used medications. For 

heart failure diagnoses, the most common drugs among the frequent sequences are: tylenol, senna 

laxative, aspirin, docusate sodium, dextrose, furosemide, metoprolol tartrate, glucagon, etc. Most of 

these drugs are also common in all hospitalizations, making difficult to say whether  they are 

specific to these types of hospitalizations or not. Consequently, we manually searched for drugs 

known to be common for the treatment of heart failure2. We give next some of the results: 

• from the class Angiotensin-Converting Enzyme (ACE) Inhibitors: lisinopril is often found, being 

contained in over 400 sequences, captopropyl is found in 6 sequences, with support in the range [1000-

2200] 

• from the Beta Blockers class: carvedilol appears in over 100 sequences; metoprolol is one of the 

most frequently found drug 

• from the class of Vasodilators: hydralazine is found in many different forms, nitroglycerin 

is found in over 500 sequences 

• from the class of Diuretics: furosemide is one of the most common drugs, torsemide is found in 

over 500 sequences, metallozone is found only individually 

For patients diagnosed with Need for prophylactic vaccination and inoculation against viral 

hepatitis, the drugs prescribed are less varied, most of them being hepatitis b immune globulin (bayhep 

b), hepatitis b vaccine, vitamin k, gentamicin, erythromycin ophthalmic, tylenol, heparin, triple dye. 

In addition to the vaccine itself (current diagnosis indicates the need for hepatitis vaccination), usual 

drugs are found, or drugs specific to newborns, because the hepatitis B vaccine is administered to 

them immediately after birth. 

4.4. Make predictions using frequent sequences 

As we previously specified, the frequent sequences can be utilised to identify drugs used for 

different diagnoses. But when the number of sequences is huge, this approach becomes less relevant 

and time expensive. Frequent drug sequences can reveal which drugs or combinations of drugs are 

more likely to be recommended when we know the previous prescriptions. We will predict the most 

likely drugs to be prescribed and compare the result with the real values to determine the accuracy 

of the predictions. 

Rules construction To describe the links between the drugs from frequent sequences, we will 

generate rules of form (antecedent, consequent, support) with the following meanings: 

 
2 https://www.nhs.uk/conditions/heart-failure/treatment/, 

           https://www.heart.org/en/health-topics/heart-failure/treatment-options-for-heart-failure/medications-used-to-treat-heart-failure 

https://www.nhs.uk/conditions/heart-failure/treatment/


 
• For a sequence 𝑠 =  〈𝑒1, 𝑒2, … , 𝑒𝑛〉, the antecedent will contain the first (n−1) events 

〈𝑒1, 𝑒2, … , 𝑒𝑛−1〉, and the consequent will be the last event 𝑒𝑛. Only sequences containing at least two 

elements are considered. 

• The support of the rule will correspond to the sequence support. 

Some examples of rules generated from frequent sequences for Need for pro phylactic vaccination 

and inoculation against viral hepatitis diagnosis are given in Table 5. 

 

Table 5 
Rules generated for the Need for prophylactic vaccination and inoculation against viral hepatitis diagnosis 

Antecedent Consequent Support 

{’erythromycin ophthalmic’, 
’phytonadione (vitamin k1)’} 

{’erythromycin ophthalmic’ ’hepatitis b vaccine’ 
’phytonadione (vitamin k1)’} 

11 

{’phytonadione (vitamin k1)’} {’gentamicin’} 1324 
{’phytonadione (vitamin k1)’} {’acetaminophen’} 2356 

{’lidocaine’, ’acetaminophen’} {’hepatitis b vaccine’} 189 

{’triple dye’} {’hepatitis b vaccine’} 2525 

{’erythromycin ophthalmic’, 
’phytonadione (vitamin k1)’} 

{’phytonadione (vitamin k1)’} 7428 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Predictions using rules Before making any predictions, the list of rules is sorted using a multi-

level approach: first, descending by the number of events from the antecedent and then descending 

by support. To narrow the search space, we also created a threshold dictionary as follows: for each 

length of the antecedent that exists in the previously sorted list, store the index of the first 

corresponding rule. For example, the following threshold dictionary, denoted  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 =  {8: 0, 7: 97, 6: 1178, 5: 6174, 4: 17020, 3: 29901, 2: 39094, 1: 43006, 0: 43908} reveals 

that there are eight distinct lengths of the rules’ antecedent. The rules that have an antecedent 

containing x events, 1 ≤ 𝑥 ≤ 8, will be found in the list starting with position 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑥] and up 

to position 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑥 − 1] − 1. 

Having a patient’s prescribed medication sequence during a hospitalization  𝑠 =  〈𝑒1, 𝑒2, … , 𝑒𝑛〉 
and a sorted list of rules, the predictions will be made as follows: 

1. If 𝑛 ≥ 1, iterate through the rules with the number of events from the antecedent equal to the number 

of events in s. The threshold list will be used. 

2. For each rule, check if there is a match between the antecedent and the sequence s. If a match is 

found, the event from the consequent is added to a list. 

3. If five matches are found, the search ends. Otherwise, the first event from the sequence s is removed 

and the previous steps are repeated. Deleting the first item from s means, in fact, that we are trying to 

test on the patient’s more recent history. 

At the end, the list of maximum five events represents the predictions of drugs for the patient with 

the sequence s as history. 

To test the accuracy of the predictions, we used the hospitalizations for which the frequent sequences 

were found and which, implicitly, were used to generate the rules and the dictionary of thresholds. 

Denote by 𝑝𝑚𝑎𝑥 the maximum value of a key in the threshold dictionary, or the maximum length of 

an antecedent for the current rules. The sequences of each hospitalization are divided into segments 

of length 𝑝𝑚𝑎𝑥. If they are not divided exactly, the last segment will be considered if its length is 

at least two. The last event is removed from each segment, as it will be used to verify the correctness 

of the predictions. Predictions are made based on these segments, and if at least one of the drugs 



 
contained in the predicted events is found in the event set aside, then we will consider the prediction 

is correct. Accuracy is computed as the percentage of correct predictions out of the total predictions 

made. 

 

Predictions results The prediction results are given in Table 6. 

 

Table 6  
Predictions results 

Diagnosis Algorithm Support 𝑝𝑚𝑎𝑥 Sequences Segments Accuracy Runtime 
(sec) 

Heart failure SPADE 0.025 12 25% 22139 25.83% 2914.35 
Born in 
hospital 

SPADE 0.008 8 100% 18165 65.15% 858.18 

Need for 
prophylactic 
vaccination 

and 
inoculation 
against viral 

hepatitis 

PrefixSpan 0.0001 13 100% 9962 80.14% 106.96 

Circumcision PrefixSpan 0.0001 13 100% 10854 89.32% 37.07 
Encounter for 
immunization 

PrefixSpan 0.0011 7 50% 3965 55.88% 266.22 

 

For the heart failure diagnosis, for example, for 5718 sequences at least one correct prediction was 

obtained, meaning an accuracy of 25.83%, and for 4704 we could not find any prediction. If we take into 

account only the sequences on which predictions were found, then the accuracy would be 32.79%. 

For certain diagnostics, like Need for prophylactic vaccination and inoculation against viral hepatitis 

and Circumcision the accuracy is high, while for other diagnoses like Heart failure it is small. Statistically, 

the number of prescriptions increases with age [17]. Intuitively, a diagnosis that contains the term ‘born in 

hospital’ refers to newborns, in which case certain standard medicines are required. The number of allowed 

drugs is lower (many drugs have age restrictions). In this case, it is easier to identify which drugs are 

more likely to be prescribed. The diagnoses Need for prophylactic vaccination and inoculation against 

viral hepatitis and Encounter for immunization indicate that a person needs administration of a 

vaccine. The person is not necessarily ill, so the number of drugs is not expected to be high. Instead, 

diagnoses that contain ’heart failure’ indicate a serious, complex condition that is often found in the 

population over the age of 65. 

To better clarify the possible reasons that affect the accuracy of predictions, we analysed other 

measures detailed in Table 7. The second column contains the total number of different drugs 

encountered in the sequences. The next column contains the average number of drugs per sequence. 

The last column contains the average difference between the date of the last prescription and the date 

of the first prescription. 

 



 
Table 7 
Measures that can influence the accuracy of predictions 

Diagnosis Total drugs Drugs per sequence Time diff (days) 

Heart failure 2155 45.82 6 
Born in hospital 305 4.92 3 

Need for prophylactic 
vaccination and 

inoculation against viral 
hepatitis 

200 2.96 1 

Circumcision 112 3.76 1 
Encounter for 
immunization 

864 3.84 1 

 

According to Table 7, when there is a wider range of drugs to choose from, the accuracy tends to 

decrease. The average number of drugs per sequence influences the sequential pattern mining algorithms: 

it is necessary to usually choose a larger support, so as not to use too much memory, fact which also 

influences the accuracy. Another parameter that could influence the results is the length of the period 

in which prescriptions were made. This may indicate complex diagnoses or, conversely, less severe 

cases. 

The choice of the minimum support can influence the accuracy of the predictions, and indirectly 

the runtime and the memory. Table 8 exemplifies the way the support influences the accuracy. The 

last column is the time needed to compute the predictions. 

 

Table 8 
The influence of support on the accuracy of predictions 

Diagnosis Support Frequent sequences Accuracy Time (sec) 

Circumcision 0.01 246 85.54% 0.39 

0.001 2505 88.50% 1.38 

0.0001 268516 89.32% 37.07 
     

Need for 
prophylactic 

vaccination and 
inoculation against 

viral hepatitis 

0.01 132 71.36% 0.12 

0.001 1413 77.13% 0.45 

0.0001 99975 80.14% 6.97 

 
As the minimum support decreases, the accuracy increases slightly, and the runtime also increases. 

Lowering the support is useful up to a certain limit, for which a reasonable execution time is obtained 

5. Conclusions 

Sequential Pattern Mining represents an effective technique to make predictions of medications 

based on the patient’s past prescription history. This paper studies in particular the application of 

two algorithms, SPADE and PrefixSpan, as a  means to find frequent sequences that reveal temporal 

relationships between medications. The resulting frequent sequences are general or specific to one or 

more diseases and are used to construct rules. Predictions are made by finding matches of a patient’s 



 
medication history in the list of rules. According to the experimental results, there are situations in 

which the predictions made can reach a satisfactory accuracy. Such a solution is especially useful for 

routine cases, for instance, immunizations, or for the treatment of newborns. Instead, for more complex 

diagnoses, additional study is needed to optimize the results. 

Some improvements that can be made are the addition and the usage of supplementary patient 

information, such as laboratory results, age and supplementary medication details, like the dose, the 

method of administration. 
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