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Abstract  
The study of the mechanisms of epidemic spread is an important way of controlling the disease. 

Reducing damage from a coronavirus epidemic is linked to the use of methods and tools for 

mathematical modelling of Covid-19 spread. Epidemic wave representations are used to 

characterize the spread of Covid-19, which is highly visual and informative. However, this 

"wave" representation places increased demands on Covid-19 spread models.  

For mathematical modelling of the spread of the Covid-19 epidemic, is considered the 

application of specific Covid-19 propagation functions, based on constrained growth functions. 

The Covid-19 spread functions show high accuracy in approximating statistical data, which 

demonstrates the good adequacy of these functions in principle. Application of the Covid-19 

propagation functions makes it possible to quantitatively describe the basic concepts of the 

epidemic and conduct a comparative parametric analysis of the epidemic's spread and predict 

the development of the epidemic. Comparison of parameter values makes it possible to identify 

differences in indicators and growth rates, based on which the results of epidemic control can 

be assessed.  
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1. Introduction 

Mathematical modelling of epidemic spread makes an important contribution to disease control. 

Modelling the mechanisms of epidemic spread and predicting its evolution can significantly reduce the 

damage caused by a pandemic [1-5]. Quantitative model simulations can provide comparative analysis 

and predictive modelling of temporal descriptions of key epidemic categories such as the number of 

people who became ill, recovered and died [6-9]. Covid-19 propagation models are therefore subject to 

increasing demands, not only for consistency with statistical data but also for the adequacy and accuracy 

of the underlying concept descriptions. 

As we know from [10-11], the SIR model developed by Kermack and McKendrick in 1927-1933 is 

widely used to describe epidemics, which is based on a scheme of epidemic transition of basic variables 

from one category to another. The variables used as basic variables are those that denote the number of 

individuals: those susceptible (S) become infected (I), then recover (R). The SIR model is represented 
by a system of 1st order coupled differential equations that describe the time dependence of the 

underlying concepts, where the coupling is given by conditions that stipulate the sum of the variables 

and their derivatives.  
Models which implement the concept of epidemic transition have gained wide popularity and 

development, so the SIR class of models today also contains varieties: SIRS, SEIR, SIS, MSEIR, etc. 

However, the experience of applying SIR class models for mathematical modelling of Covid-19 spread 

[10, 12-15] has shown insufficient consistency of the calculations of basic variables with statistical data. 
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The desk review [15] noted that “An attempt to apply these models (SIR class) to the case of a 

coronavirus pandemic in Ukraine showed that they fail when heterogeneous populations, different 

routes of transmission and the presence of randomization factors are present”. Therefore, the project 

team concluded that any projections derived for Ukraine, with its characteristic heterogeneity, using 

SIR models and their derivatives cannot be considered correct and certain coincidences of projected 

data may have a random nature. Therefore, the team of the “FORSAIT COVID-19” project applied a 

group of methods of different nature and class to conduct a series of studies of the coronavirus 

propagation process in Ukraine, based on the consideration that if the results obtained using different 

methods are close, the plausibility of the studies is increased. 

Thus, the problem with mathematical modelling of the spread of Covid-19 is the lack of adequacy 

of SIR models, preventing the accuracy of description, analysis and prediction. The fundamental 

shortcoming of SIR models, in our opinion, is that in the epidemic transition concept, the dynamics of 

the main variables (ill 𝐼, recovered 𝑆) are defined through the concept of “contact”, which is defined by 

the product of the variables. This representation of the interaction of variables severely limits the 

modelling capability of the epidemic. The lack of accuracy of SIR models necessitates new approaches 

for mathematical modelling of Covid-19 spread. New approaches that can improve the adequacy consist 

of having models of the underlying concepts formed as independent constructs. 

The nature of the statistics of the Covid-19 coronavirus epidemic shows that they are highly like 

logistic functions. Therefore, we note the application of logistic functions to approximate a piece of 

given statistical information. A mathematical model of the spread of the Covid-19 coronavirus epidemic 

is considered in [16], which uses a simplified logistic model of the form describing the growth in the 

number of cases. However, the application of this logistic equation has shown that this model is of low 

accuracy. To improve the accuracy, it is suggested that the study range should be divided into regions 

with partial logistic functions, which cause significant computational difficulties. 

In the article [17], the authors note: “Having realised the complexity of the forecasting task, the 

authors decided to restrict themselves to the simplest logistic model”. The low accuracy of the 

calculation results obtained in [16, 17] can be attributed to the fact that simplified representations of 

logistics models were used for modelling. 

The article [18] considers the wave structure of an epidemic, which is represented by a set of 

elementary epidemic flows (waves) shifted along the time axis and differing in parameter values. A 

constrained growth function based on a generalized logistic model with extended description 

capabilities due to additional conditions were used for mathematical modelling of Covid-19 

propagation. Based on this model, an analytical description of the epidemic in the form of a complex 

flow of epidemic events was obtained, which can be seen as a solution to an approximation problem for 

a piece of given statistical information. However, the content of the article is limited to the 

approximation task for statistical information describing the flow of events. Since the generalized 

logistic model in mathematical modelling of epidemic event fluxes has shown increased adequacy and 

a high degree of compliance of the calculations with the original statistical data, it seems appropriate to 

apply this model to modelling epidemic propagation functions.   

This article aims to develop mathematical models of epidemics in the form of basic event 

propagation functions for key epidemic concepts based on a generalised logistic function and to use 

these models for analysis and forecasting. 

2. Mathematical models of epidemic spread 
2.1. Non-linear differential equations of epidemic spread 

Review the following basic concepts of the Covid-19 epidemic. Statistics use the following basic 

categories to refer to the spread of an epidemic: 

1. The number of individuals who became ill (infected). 

2. The number of individuals who died (deaths).  

The statistics by category are set on an accumulative basis, where intermediate totals are used to 

show the total amount of data as it grows over time. By modelling Covid-19 prevalence statistics using 

regression relationships, we obtain a representation of the epidemic prevalence functions, which have 

the following properties 



• the functions are monotonically increasing; 

• the growth of the functions is limited to a certain value (threshold, plateau) to which the 

function tends asymptotically. 

Thus, the epidemic spread functions are S-shaped logistic curves. Therefore, to describe the 

epidemic spread functions, we will use the constrained growth functions that have proved themselves 

in conflict interaction models [18-21]. In general, constrained growth functions are defined in 

algorithmic form as solutions to a 2-nd order nonlinear differential equation [18, 19]: 

• for the number of infected individuals 𝑥(𝑡) 

𝑎2𝑥(𝑡)
𝑑2𝑥(𝑡)

𝑑𝑡2
+ (1 + 𝑎1𝑥(𝑡))

𝑑𝑥(𝑡)

𝑑𝑡
+ (𝑎0𝑥(𝑡) − 𝜑)𝑥(𝑡) = 0; 

(1a) 

• for the number of fatal cases 𝑦(𝑡) 

𝑏2𝑦(𝑡)
𝑑2𝑦(𝑡)

𝑑𝑡2
+ (1 + 𝑏1𝑦(𝑡))

𝑑𝑦(𝑡)

𝑑𝑡
+ (𝑏0𝑦(𝑡) − 𝜙)𝑦(𝑡) = 0, 

(1b) 
 

where 𝑥(𝑡), 𝑦(𝑡) are epidemic variables; 𝜑, 𝜙 – growth rates;{𝑎2; 𝑎1; 𝑎0}, {𝑏2; 𝑏1; 𝑏0} –
phenomenological coefficients, which are treated as epidemic parameters. 

Since the epidemic spread functions are monotonically increasing, to represent them we restrict 

ourselves to a 1st order nonlinear differential equation at  𝑎2 ≈ 0, 𝑏2 ≈ 0: 

• for infected individuals 

𝑑𝑥(𝑡)

𝑑𝑡
+
𝑎0𝑥(𝑡) − 𝜑

1 + 𝑎1𝑥(𝑡)
𝑥(𝑡) = 0; 

(2a) 

• for fatal cases 
𝑑𝑦(𝑡)

𝑑𝑡
+
𝑏0𝑦(𝑡) − 𝜙

1 + 𝑏1𝑦(𝑡)
𝑦(𝑡) = 0, 

(2b) 

Equations (2a) and (2b) can be considered as a generalised representation of the Verhulst logistic 

equation [22-25], to which equations (2a) and (2b) can be reduced with the parameters 𝑎1 = 1 and  

𝑏2 = 1. 

2.2. Functions of the spread of the Covid-19 epidemic 

Solutions to equations (2a) and (2b) specify the epidemic spread functions in the form of constrained 

growth functions, which are used to describe the spread of Covid-19. The epidemic propagation 

functions 𝑥(𝑡) = 𝑓(𝑡, 𝜑, 𝑎0, 𝑎1),  𝑦(𝑡) = 𝑓(𝑡, 𝜙, 𝑏0, 𝑏1) have two equilibrium states: 

1. Initial equilibrium – unstable, 𝑥(0) when 𝑡 = 0; 

2. Final equilibrium – stable, 𝑋(𝑡) → 𝑋 when 𝑡 → ∞. 

A characteristic element of the epidemic propagation functions are expressions for the equivalent 

growth rate coefficients: 

• for infected individuals 

�̃�(𝑡) =
𝜑 − 𝑎0𝑥(𝑡)

1 + 𝑎1𝑥(𝑡)
; 

(3a) 

• for fatal cases 

�̃�(𝑡) =
𝜙 − 𝑏0𝑦(𝑡)

1 + 𝑏1𝑦(𝑡)
; 

(3b) 

Expressions (3a) and (3b) for equivalent growth rates describe an important property of epidemic 

spread functions, namely that equivalent growth rates are not a constant but a function of primary 

variables. 

The epidemic spread functions vary over a range bounded by equilibrium states. A final steady-state 

equilibrium corresponds to the conditions that the derivatives 
𝑑𝑥(𝑡)

𝑑𝑡
≈ 0, 

𝑑𝑦(𝑡)

𝑑𝑡
≈ 0 and expressions for 

the coefficients of the equivalent growth rates �̃� ≈ 0 and  �̃� ≈ 0,  are zero. 



An important characteristic of epidemic spread functions is the plateau (the upper limit of the 

constrained growth function) – the threshold value towards which the constrained growth function tends 

to move in a finite steady-state equilibrium.  To determine the plateau of the epidemic's spread function, 

we formulate equations corresponding to the zero values of the equivalent growth rate  

• for infected individuals 

𝑎0𝑋 − 𝜑 = 0; (4a) 

• for fatal cases 

𝑏0𝑌 − 𝜙 = 0. (4b) 
where 𝑋, 𝑌 – plateau values. 

Plateau values are defined as solutions to equations (4a) and (4b): 

• for infected individuals 

𝑋 =
𝜑

𝑎0
; (5a) 

• for fatal cases 

𝑌 =
𝜙

𝑏0
. 

(5b) 

The plateau of the epidemic spread functions is characterized by the ratio of the growth rate to the 

phenomenological coefficient.  

Note that the equivalent growth rate of infected individuals (3a) varies in the range from the 

exponential growth rate of �̃�(0) = 𝜑, when 𝑡 = 0, to zero �̃�(0)𝑡→∞ ≈ 0 when 𝑡 → ∞. 

Correspondingly, the equivalent growth rate of lethal cases (3b) varies in the range from the exponential 

growth rate value of �̃�(0) = 𝜙, when 𝑡 = 0, to zero �̃�(0)𝑡→∞ ≈ 0  when 𝑡 → ∞. 

2.3. Discrete Covid-19 spreading function 

Let us use the Covid-19 spreading function representations as to the solutions to equations (2) for a 

discrete-time as our computational expressions: 

• for infected individuals 

𝑥𝑘+1 = (1 + �̃�(𝑥𝑘))𝑥𝑘; (6a) 

where �̃�(𝑥𝑘) =
𝜑−𝑎0𝑥𝑘

1+𝑎1𝑥𝑘
 – equivalent growth rate coefficient. 

• for fatal cases 

𝑦𝑘+1 = (1 + �̃�(𝑦𝑘))𝑦𝑘 (6b) 

where �̃�(𝑦𝑘) =
𝜙−𝑏0𝑦𝑘

1+𝑏1𝑦𝑘
 – the equivalent rate of increase in fatalities. 

The equivalent growth rate of infected cases �̃�𝑘(𝑥𝑘) varies in the range from �̃�𝑘(0) = 𝜑, 𝑘 = 0 to 

zero �̃�𝑘(𝑥𝑘) = 0, 𝑘 → ∞. Correspondingly, the equivalent growth rate of lethal cases �̃�𝑘(𝑦𝑘)  varies 

in the range from �̃�𝑘(0) = 𝜙, 𝑘 = 0, to zero �̃�𝑘(𝑦𝑘) = 0, 𝑘 → ∞. 

3. Calculations of Covid-19 spreading functions for different countries 
3.1. Approximation of Covid-19 distribution statistics in different 

countries 

Equations (6a) and (6b) were used to approximate the statistical data for the spread of Covid-19 in 

different countries. Actual data from the first wave of Covid-19 spread in the first half of 2020, which 

has no epidemic prehistory, are used as input data. 

The countries selected for the calculation of the Covid-19 spreading functions are Ukraine [26], Italy 

[27], Spain [28] and France [29]. The definition of Covid-19 propagation functions consists in selecting 

parameters for expressions (6a)–(6b): 

• 𝜑, 𝑎1, 𝑎0 – for the propagation function of infected individuals; 

• 𝜙, 𝑏1, 𝑏0 – for the distribution function of lethal cases. 



Using the values of the parameters were calculated the integral indices of 𝑋 and 𝑌 – the plateau of 

Covid-19 spread functions, which is estimated in persons. For an overall assessment of the spread of 

the epidemic, the relative indicator was used 𝑊 =
𝑌

𝑋
. 

To estimate the approximation error were used the relative mean absolute error – MAPE, which 

calculated according to the formula 

𝛿𝑥 =
1

𝑁
∑|�̅�𝑘 − 𝑥𝑘|

𝑁

/�̅�𝑘, 
 

where �̅�𝑘 – statistical data values. 

For the selected countries, the MAPE values show a reasonably high approximation accuracy (Table 1). 

Table 1 
Approximation accuracy 

Function type Parameter 
Country 

Ukraine Italy Spain France 

ill 𝛿𝑥 3,0% 2,4%, 1,6 % 1,4 % 
deceased 𝛿𝑦 7,0 % 4,6 % 2,2% 2,0% 

Ukraine [26] (Figures 1 and 2) and Italy [27] (Figure 3) are chosen as examples to show how the 

calculated Covid-19 spread functions correspond to statistical data. 

 

Figure 1: Compliance of the estimated values of Covid-19 infection spread functions with statistical 
data for Ukraine for April and May 2020 

 
Figure 2: Compliance of the estimated Covid-19 fatality distribution functions to the statistical data 
for Ukraine for April and May 2020 



Figures 1 and 2 clearly show a reasonably good correlation between the calculated and actual data, 

where the MAPE does not exceed 3% and 7%. 

 
Figure 3: Compliance of the estimated Covid-19 spread functions with the statistics for Italy for March, 
April, and May 2020 

Figure 3 clearly shows a reasonably good correlation between the calculated and actual data, where 

the MAPE does not exceed 3% and 5%. 

A comparison of the calculated Covid-19 spread functions for different countries is shown in 

Figure 4. 

 

Figure 4: Comparison of estimated Covid-19 distribution functions for different countries for April and 
May 2020 

Analysis of the results shows that the number of Covid-19 cases for Italy, France and Spain has 

almost reached a plateau, with values around the same level. Ukraine has passed the inflexion point of 

the Covid-19 prevalence curve and is halfway to the plateau. The number of Covid-19 cases in Ukraine 

is markedly lower than in the other countries examined  

The curves of the Covid-19 spread functions are smooth and monotonic, which, assuming unchanged 

parameter values, allows them to be used for forecasts with a high degree of confidence. 



3.2. Parametric analysis of Covid-19 spreading functions 

The Covid-19 spreading functions in the different case studies share a common, universal 

mathematical design and differ in parameter values, which allows for a comparative parametric analysis 

of the spread of Covid-19. The parameter values for comparative analysis of the spread of Covid-19 in 

different countries are shown in Table 2. 

Table 2 
Parameter values for analysis 

Function 
type 

Parameter 
Country 

Ukraine Italy Spain France 

ill 

𝑋 42 000 240 000 250 000 200 000 

𝜑 0,2 0,235 0,25 0,2 

𝑎1 ∙ 10
6 230 16 15 17 

𝑎0 ∙ 10
6 4,76 1,00 1,00 1,00 

deceased 

𝑌 1400 36 500 36 000 50 000 

𝜙 0,15 0,34 0,34 0,47 

𝑏1 ∙ 10
6 4600 220 220 220 

𝑏0 ∙ 10
6 105 9,32 9,32 9,32 

 
𝑊 =

𝑌

𝑋
 0,03 0,15 0,14 0,25 

For Covid-19 cases: 

• The values of the incidence rates 𝜑 are in the range 𝜑 ∈ {0,2; 0,25} and differ 

insignificantly. The growth rate of the epidemic in these countries is about the same. 

• For Italy, France and Spain, the phenomenological coefficients 𝑎1 are in the range of 

 𝑎1 ∙ 10
−6 ∈ {15; 17}, 𝑎0 ≈ 10−6 and differ slightly. In Ukraine, the coefficient  

𝑎1 ≈ 230 ∙ 10−6 is about 15 times larger than in the other countries. Given that the 

coefficient 𝑎1 describes the inhibition effect of the Covid-19 spread, it can be concluded 

that Ukraine has a high resistance to the epidemic. 

For Ukraine, the coefficient values 𝑎0 ≈ 4,76 ∙ 10−6 are almost 5 times higher than in the 

other countries. Given that 𝑋 =
𝜑

𝑎0
, the consequence is that the threshold (plateau) 𝑋 of the 

incidence curve decreases by a factor of almost 5 compared to other countries.  

For Covid-19 lethal cases: 

• The values of the indicators for the growth of the deceased 𝜙, are in the range of 

 𝜙 ∈ {0,15; 0,47} and vary considerably. The value for Ukraine is three times lower than 

that for France. 

• the values of the phenomenological coefficients for Italy, Spain and France are 

approximately the same 𝑏1 ≈ 220 ∙ 10−6, 𝑏0 ≈ 9,32 ∙ 10−6. For Ukraine, the value of the 

phenomenological coefficient 𝑏1 ≈ 4600 ∙ 10−6 is 20 times higher than in the other 
countries, which indicates a high resistance to lethal cases; 

• for Ukraine the coefficient value 𝑏0 ≈ 105 ∙ 10−6 is 10 times those of other countries. Given 

that 𝑌 =
𝜙

𝑏0
, the consequence is that the threshold (plateau) 𝑌 of the morbidity curve has 

been reduced by a factor of almost 20 compared to other countries. 

The integral characteristic of an epidemic, defined as the ratio of deaths to cases 𝑊 =
𝑌

𝑋
, is several 

times smaller than in other countries. 

As the values of the indicators can be linked primarily to prevention, sanitation, and treatment 

interventions, they can be used to assess the results of controlling the epidemic in different countries. 

The strategy for controlling the epidemic in terms of Covid-19 spread models is generic and consists of 

lowering the threshold (plateau) of the disease as much as possible (model parameters 𝑋, 𝑌). This 

requires:  

1. Decreasing the epidemic's growth rate (model parameters 𝜑, 𝜙). 



2. Increasing resistance to the virus (model parameters 𝑎1, 𝑏1). 

3. Reducing the range of the community of people accessible to infection (increase model 

parameters 𝑎0, 𝑏0).  

Interpretation of these formal requirements is followed by known protective actions. 

4. Conclusions 

The epidemic spread models considered are fundamentally different from SIR models in the 

following respects: 

• SIR class models investigate the behaviour of epidemic categories depending on the 

interaction between them, which is consistent with the principles of system dynamics. 

Representing SIR models as a coupled set of differential category equations limits the 

accuracy of the calculations. 

• The epidemic spreading model examines the behaviour of epidemic categories as 

decentralised agents and how this behaviour determines the behaviour of the system, so the 

model is based on an unrelated set of differential category equations. This approach is 

consistent with agent-based modelling methodology, which has greater descriptive power 

than SIR models but requires a more detailed description of the epidemic categories. Agent-

based models use a dynamic system representation in which the details of the descriptions 

are provided by feedbacks 

The application of Covid-19 propagation functions based on the generalised logistic function shows 

a high approximation accuracy of the statistical data, which demonstrates the good adequacy of these 

functions. This correspondence with the original evidence suggests that the main problem of 

mathematical modelling of Covid-19 propagation, which boils down to the adequacy of epidemic 

models, can be solved by applying Covid-19 spreading models and functions.  

The application of Covid-19 propagation functions makes it possible not only to quantitatively 

describe the basic concepts of the epidemic but also to construct a reliable forecast, provided that the 

parameters are constant. An even more important, in our opinion, the consequence of the application of 

Covid-19 propagation functions is a comparative parametric analysis of specific epidemic spread 

functions. Comparison of parameter values can reveal differences in growth rates and 

phenomenological coefficients, from which conclusions can be drawn about different processes of 

epidemic behaviour in different regions and countries. By linking these processes to prevention, 

sanitation and treatment interventions, differences in the results of the epidemic can be identified, 

analysed and good practices can be disseminated. In general, the application of Covid-19 spread 

functions can help to reduce the harm caused by a pandemic. 
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