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Abstract 
Epilepsy is a condition that affects the nervous system. Seizures, strange behavior episodes, 

and occasional consciousness loss are all symptoms of this condition, which are caused by 

abnormal brain activity.  It is one of the four most common neurological conditions that result in 

unprovoked and repeated seizures. This study proposes a prediction model that alerts patients 

early before the onset of epileptic seizures. The proposed model uses two-dimensional discrete 

wavelet transform (2D-DWT) on 23/30-s EEG time frames to identify essential signs to 

distinguish between the states of preictal and interictal. While a convolutional neural network 

(CNN) is used to predict epileptic seizures using discrete wavelet sub-bands, the proposed model 

predicts epileptic seizures adequately ahead of time and achieves remarkable results. On the CHB-

MIT scalp EEG dataset, the proposed method has a sensitivity of 96.54% and a false positive rate 

(FPR) of 0.015338/h. 
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1. Introduction 

Epilepsy is a chronic condition that causes unprovoked and repeated seizures. A seizure is defined 

as an unexpected surge of electrical activity that attacks the brain [1]. Epilepsy is identified by 

seizures, affecting people of all ages [2, 3]. Seizures can be severe when they occur and can lead to 

injuries, brain damage, life-threatening situations, and even death [4].  

 

A highly reliable diagnostic method for epilepsy detection is through EEG. Measuring and 

recording the brain's electrical activity is widely used to predict and analyze epileptic seizures [5]. The 

EEG directly records the cerebral cortex's electrical activities through the electrodes placed on the 

scalp [1]. Epileptiform in EEG activity is divided into three periods: the ictal period; referring to a 

seizure event itself, the preictal period; the state occurring immediately prior to the epileptic seizure, 

and the interictal period; referring to the stable (seizure-free) state between seizures [6].  

 

The main objective of the seizure prediction system is to discriminate between preictal state and 

other period states. Numerous research methods using machine learning and deep learning techniques 

are proposed for automatic seizure prediction. In this paper, the main contributions can be 

summarized as:  

 

1. An improved prediction approach is proposed to predict upcoming seizure events. The 

proposed approach focuses on the pre-processing and the extraction of features, using the 

2D-DWT, from EEG signals to achieve a form suitable for a CNN. 

 

2. Our approach was validated using the public scalp EEG CHB-MIT dataset. 
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The paper at hand comprises the following: Section II presents the related work. Section III 

presents the material and methods of the work. Experiments are illustrated in Section IV. Section V 

presents the experimented results. Section VI presents the discussion. Finally, section VII concludes 

the paper. 

2. Related Work 

A significant amount of research work for epileptic seizure prediction using EEG signals 

and deep learning techniques has been conducted. Khan et al. [7] use CNN on the continuous 

wavelet transform of the EEG signals to define and extract the quantitative identifying signs 

for each of the three periods; interictal, preictal, and ictal. They adopt automatic feature 

extraction techniques to foresee seizures from EEG made on the scalp so as to warn patients 

about upcoming seizures. This method achieves a sensitivity of 87.8% and an FPR of 

0.142/h. Usman et al. [8] propose a model that provides reliable pre-processing and feature 

extraction methods. The proposed model predicts epileptic seizures sufficiently earlier prior 

to the occurrence of a seizure and provides satisfyingly realistic results. Empirical mode 

decomposition (EMD) for pre-processing is applied, and time and frequency domain features 

are extracted to train a prediction model. This approach achieves a sensitivity of 92.23% and 

a specificity of 93.38%. Chen et al. [9] use CNN to automatically extract features and classify 

them. Their model is specially designed for each patient individually to identify each one’s 

unique features. They tested the model with the CHB-MIT dataset and yielded a sensitivity of 

91.4%, an accuracy of 91%, and an FPR of 0.09/h. Kitano et al.  [10] propose a method that 

is patient-specific using a pre-processing wavelet transform combined with self-organizing 

maps (SOM), a polling-based technique, and an unsupervised machine learning algorithm. 

This method offers sensitivity up to 98%, accuracy up to 91%, and specificity up to 88%. 

Jana et al. [11] propose a method that predicts epileptic seizures automatically from raw EEG 

signals. They use a Dense Convolution Network for interictal and preictal state classification 

and automatic feature extraction. The specificity of this approach is 95.87%, and the FPR is 

0.0413/h. For the time intervals of 0 – 5 minutes, 5 – 10 minutes, and 10 – 15 minutes prior 

to the seizure episode, they produce average sensitivities of 100%, 97%, and 90%, 

respectively. Xu et al. [12] propose an end-to-end, patient-specific method by adopting CNN 

to solve seizure prediction issues. This method is tested on Kaggle intracranial and CHB-MIT 

scalp EEG datasets. Their approach yields a sensitivity of 93.5%, an FPR of 0.063/h, and a 

98.8%, 0.074/h on two datasets in order. Truong et al. [13] propose a technique that is 

patient-specific for the prediction of an epileptic seizure. Their method is based on 

convolutional neural networks for autonomous feature extraction and classification. The raw 

EEG signal is transformed into a corresponding short-time Fourier transform for 30-second 

EEG recordings to extract information in the frequency and time domains. The American 

Epilepsy Society Seizure Prediction Challenge dataset, the Freiburg Hospital intracranial 

EEG dataset, and the Boston Children's Hospital-MIT scalp EEG dataset were all used to test 

this method. In total, the three datasets had a sensitivity of 81.4%, 81.2%, and 75%, 

respectively, and a false prediction rate of 0.06/h, 0.16/h, and 0.21/h. Jana et al. [14] 

demonstrated an effective seizure prediction method based on a Convolutional Neural 

Network (CNN) with channel minimization. They employed CNN to automatically extract 

features and classify epilepsy patients' states. Their proposed technique had an average 

sensitivity and specificity of 97.83% and 92.36%, respectively, with a false positive rate of 

0.0764 and an average classification accuracy of 99.47%. Whatever the strategy, all methods 

mentioned work on epilepsy seizure prediction, some methods achieve low sensitivity or 

report relatively high FPR while others did not mention the FPR. Some methods select a 



limited number of patients and use a limited number of data recordings. Most of the models 

are based on 1D-CNN, while our approach is based on 2D-CNN. This approach matches the 

visual diagnosis carried out by the clinicians.  

3. Materials and Methods 

3.1. Wavelet transform 

Wavelet transform is an image processing method for object detection and classification which is 

frequently adopted in computer vision. Wavelets are mathematical functions generated from a mother 

wavelet by dilations and translations [15, 16].  

 

These wavelet functions are calculated in order to break down a given function or time-series 

signal into different scale components. One of the techniques used for multi-level decomposition is 

Two-Dimensional DWT (2D-DWT). This 2D-DWT moves images from the spatial domain to the 

frequency one. One level of 2D-DWT analyzes the given image by breaking it down into one 

approximation coefficient with low-pass filtering and three detailed components with high-pass 

filtering [17]. 
 

By applying discrete wavelet transform as an image processing technique, transformation values 

are yielded, known as wavelet coefficients. The 2D-DWT generates an image as a set of orthonormal 

shifted and dilated wavelet and scaling functions. The discrete wavelet transform of functions f (x, y) 

in two dimensions of an image of size MxN is given by: 
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𝑖 = {𝐻, 𝑉, 𝐷}, (3) 

where 𝑗0 is an arbitrary starting scale in the one-dimensional case. The 𝑊𝜙(𝑗0, 𝑚, 𝑛) coefficients 

represent an approximation of f (x, y) of an image at scale j0. 𝑊𝛹
𝑖 (𝑗, 𝑚, 𝑛) are the horizontal (H), 

vertical (V), and diagonal (D) details coefficients for scaling j≥j0, and 𝑖 is a superscript that carries the 

values H, V, and D [18]. In our research, we used one level 2D Haar DWT to transform the EEG 

segments from spatial domain to the frequency domain then we fed the resulting coefficients the 

horizontal (H), the vertical (v), and the diagonal (D) as an input image to the CNN for the prediction 

task. 

3.2. Convolution neural network 

      Convolution neural network (CNN) is a class of artificial neural networks that are commonly 

adopted for the extraction of features and for the classification of time series data and images [19]. 

CNN’s convolution is popularly known to work on spatial or 2D data because under the movement of 

a fixed time sliding window, the CNN network learns the spatial features between the sequences and 

extracts them [20]. In this work, the designed architecture of the CNN adopted for predicting patient 

seizures is illustrated in Figure 2. A CNN with two convolution stages is employed where each 

convolution stage consists of three operations: a convolution layer with rectified linear unit (ReLU) 

activation, a batch normalization layer, and a max-pooling layer. By decreasing the pixels’ number in 

the previous convolutional layer's output, the max-pooling layer decreases the dimensionality of the 

image and allows the model to learn invariant features. The batch normalization is used to normalize 

the previous layers' output and guarantees that the inputs to the convolution layer have zero mean and 



unit variance. Fully connected layers gather inputs from all the positions into a 1-D feature vector. 

Finally, the classification is made using the SoftMax activation function layer.  

4. Experiments 

4.1. Dataset 

In the current study, the proposed model is trained, and its performance is assessed based on the 

online public CHB-MIT dataset [21]. This dataset is composed of EEG recordings from pediatric 

patients with intractable seizures. The recordings are sampled from 22 patients with 9-42 successive 

file recordings per patient. The dataset contains EEG recordings both with and without seizures. Each 

record has 23 EEG channel signals. The EEG signals are extracted by putting multiple electrodes on 

the scalp with a conductive gel or paste. The international 10-20 system of EEG electrodes placement 

is employed for these recordings. All EEG signals are collected at 256 Hz with a 16- bit resolution. 

Each recording contains interictal, preictal, and ictal durations. In the study at hand, the definition of 

the interictal periods proposed by Troung et al. [13] is followed. They define the interictal periods as 

found between a minimum of 4 hours pre-seizure occurrence and 4 hours post one. The main target of 

the study is predicting the leading seizures. In this dataset, some seizures are found to be less than 30 

minutes from the previous one, and in this case, they are considered as only one seizure, and the 

beginning of the leading seizure is used as the onset of the combined seizure. In addition, patients 

suffering from fewer than 10 seizures/day are only considered for the prediction task due to the lack 

of practicality of performing the task for patients who have a seizure on average every 2 hours [13]. 

Using these definitions and considerations, 11 patients with sufficient data were chosen. The patients 

chosen have a total of 22 channels, and 57 seizures, and 171.8 interictal hours. 

4.2. Preprocessing  

EEG data are subject to artifacts that could alter the original signal, distorting the training and 

testing process. Excluding components in the frequency ranges of 57-63 Hz and 117-123 Hz, 

canceling the 60 Hz power-line noise for each segment and its main harmonic [13]. The DC 

component was also removed. The imbalance of the dataset is one of the most common challenges in 

many classification tasks. To solve this problem, extra preictal segments are generated by applying an 

overlapped sampling technique during the training phase. particularly, more preictal samples are 

created, specifically, for the training phase by sliding a 30/23-s; where 23 is the number of EEG 

channels, and 30 is the time window in seconds, every step S across preictal time-series EEG signals 

along the time axis. S is assigned to each patient in order to ensure that the training set has an equal 

number of samples/class (preictal or interictal) [13]. Then feature extraction is applied to extract 

information for the classification stage. Figure 1 shows our proposed flowchart.  

 

 

 

 
Figure 1: Process of epilepsy prediction using EEG data 

The use of time-frequency domain methods, such as the wavelet transform, is the most appropriate 

method for extracting characteristics from EEG raw data [22] because the EEG signal is non-

stationary [23]. One level of 2D Haar DWT is used to convert image segments from the spatial to the 

time-frequency domain. Before feeding the data to the CNN, horizontal, vertical, and diagonal 

coefficients are normalized to have a unit norm, and then the DWT coefficients are fed, as an input 

image, to the CNN prediction model. Before training the CNN, the samples are split randomly into 

75-25 % for training and validation.  

http://www.bem.fi/book/13/13.htm#03


4.3. Evaluation metrics  

In seizure prediction, Maiwald et al. [24] discuss the seizure occurrence period (SOP) and seizure 

prediction horizon (SPH). As indicated in Figure 3, SOP is the period when a seizure is likely to 

occur, whereas SPH is the time between the alarm and the beginning of the SOP. An SOP of 

30 minutes and an SPH of 5 minutes were used in this investigation. The seizure alarm must come at 

any time throughout the SOP and after the SPH in order to successfully forecast a seizure. For each 

subject, a leave-one-out cross-validation attempt is used for a more robust evaluation. If a person 

suffers N seizures, N − 1 seizures are chosen for the training task and the remaining seizures are used 

for validation. This round is repeated N times, ensuring that each seizure is validated just once. 

Interictal segments are split into N portions at random. The first N-1 portions are used for training, 

while the remaining segments are chosen for validation. To avoid over-fitting, the N-1 sections are 

further separated into monitoring and training sets [13]. 

 

The performance of the proposed model is tested by measuring the four different metrics widely 

employed for the system’s performance evaluation: accuracy, sensitivity, specificity, and FPR. The 

number of correct predictions divided by the total number of cases is known as accuracy. The 

percentage of seizures correctly predicted divided by the total number of seizures is referred to as 

sensitivity. Specificity is the proportion of actual negatives which got predicted correctly as negative. 

False-positive rate (FPR) is the number of false alarms divided by the total number of interictal 

samples. 

 

 

Figure 2: Convolutional neural network architecture 

4.4. Implementation and parameter settings  

In literature, different models have been proposed for epilepsy seizure prediction. Each model 

aims to predict seizures before they occur. Our proposed model is shown in Figure 2. The first 

convolution stage has 16x5x5 kernels with a stride of 2x2. The second convolution stage has 32x3x3 

kernels with a stride of 1x1, and a max-pooling of over a 2x2 region. Following the two convolution 

stages, a dense layer with a dropout set to 0.6 is used for the prevention of overfitting. Following that 

are two fully connected layers with sigmoid activation and output sizes of 256 and 2. There wasn’t a 

vanishing gradient problem due to the shallow number of neural networks used. A sigmoid activation 

function is used in the first fully connected layer, while a SoftMax activation function is used in the 



second. The two fully connected layers have a dropout rate of 0.6. Focal loss is used as the loss 

function and Adam optimizer is used for loss minimization with the learning rate, β1, and β2 of 

0.0001, 0.9, and 0.999 respectively.  

5. Results 

In the present study, the proposed model is tested on the scalp EEG of 11 patients. The data 

consists of 57 seizures and 171.8 without seizures, from the CHB-MIT dataset. The EEG image 

samples are divided into two groups: training and validation. 

 

Table 1  
SEIZURE PREDICTION RESULTS 

Patients No. of seizures FPR (/h) Specificity Accuracy 

CHB01  7 0 100% 100% 

CHB02  3 0.001387 99.70% 99.72% 

CHB03  6 0.010244 92.65% 93.21% 

CHB05  5 0.012169 100% 95.18% 

CHB10  6 0.012123 96.49% 96.85% 

CHB13 5 0.007259 93.33% 94.06% 

CHB14  5 0.102610 87.94% 91.28% 

CHB18 6 0.007197 88.18% 88.80% 

CHB20 5 0.008150 94.49% 95.06% 

CHB21  4 0.007163 96.99% 97.19% 

CHB23 5 0.000413 100% 100% 

Total 57 0.015338 95.43% 95.58% 

 

    The performance of the proposed model is tested by measuring the four parameters: sensitivity, 

FPR, accuracy, and specificity. Table 1 presents each patient’s seizure prediction results. The FPR is 

calculated for pooled 30-seconds EEG signals. The FPR ranges from 0 to 0.102610/h with an average 

of 0.015338, where 0 FPR resulted when no true negatives were found. The specificity average is 

95.43%, reaching 100% for patients CHB01, CHB05, and CHB23 as no false positives are found. The 

average accuracy achieved by the model is 95.58% with some patients having neither false negatives 

nor false positives detected such as patients CHB01 and CHB23. The body of work is compared with 

the most recently benchmarked seizure prediction approaches, as shown in Table 2. 

 

 

 
Figure 3: Definition of the seizure occurrence period (SOP) and the seizure prediction horizon (SPH) 

6. Discussion 

Various methods are commonly adopted to extract features from EEG signals to predict seizures. 

Without using handmade feature engineering, we employed 2D-DWT to extract features from EEG 

signals. The 2D-DWT of an EEG segment window has two dimensions, namely: frequency and time. 

For this reason, we used CNNs with convolution operations that can handle spatial information 

available in images and make a prediction at each datapoint. We used CNN rather than recurrent 

neural network (RNN) because CNN outperforms RNN when dealing with spatially related data [20, 



25]. To gather changes in both the frequency and the time of the EEG signals, a two-dimensional 

convolution filter is slid throughout the 2D-DWT. During the training stage, the filter weights are 

automatically updated, and the CNN functions as a feature extraction method. Following Truong et al. 

[13], an oversampling technique is adopted here to overcome the imbalance problem of the dataset. In 

addition, a focal loss is used, and the cost function is changed in such a way that the cost of preictal 

sample misclassification is multiplied by the ratio of interictal samples to preictal samples per patient, 

resulting in cost-sensitive learning. For cost-sensitive learning, 2D-DWT is used as a preprocessing 

step. Based on the proposed method, the specificity is 95.43% and the FPR is 0.015338/h. The model 

achieves an average sensitivity of 96.54%, and for some individual patients 100% when no false 

negatives are detected. Some test results, such as CHB01's sensitivity of 100% and FPR of 0, are 

perfect.  

         

Table 2 
COMPARISON STUDY OF PROPOSED METHOD WITH PREVIOUS METHODS 

Authors Feature Learning 

technique 

Sensitivity 

(%) 

FPR(/h) Accuracy 

(%) 

Haidar. [7] CWT CNN 87.80% 0.142  

Chen Wei Li. [9] STFT CNN 91.4% 0.09 91% 

Truong Duy. [13] STFT CNN 81.2% 0.6  

Syed 

Muhammad. [8] 

Empirical 

Mode 

decomposition 

Machine 

learning 

methods 

92.23%   

Kitano. [10] DWT Self-organizing 

maps (SOM) 

Up to 98%  Up to 91% 

Jana Ranjan. [11] No Features 

Extraction. 

DenseNet 90%-100% 0.0413 Up to 94% 

Xu Yankun. [12] End to end CNN 98% 0.063  

Jana et al. [14] CNN CNN 97.83% 0.0764 99.47% 

Proposed method 2D-DWT CNN 96.54% 0.015338 95.58% 

 

As indicated in Table 2, the current study's results are compared to those of earlier studies on 

epilepsy prediction. The results show the highest accuracy of 95.58% and the lowest FPR of 

0.015338/h among all compared approaches and the comparable sensitivity is inconsistent with the 

top result. It is further noticed that the proposed method for epileptic seizures prediction performs 

better than other methods in terms of accuracy and FPR. Therefore, the proposed model produces 

effective seizures prediction for the chosen 11 epileptic patients under study. 

7. Conclusions  

An epileptic seizures prediction method is proposed using deep learning with high accuracy 

seizure prediction. For feature learning and classification between interictal and preictal states, the 

proposed model employs CNN. Features are extracted using one level 2D-DWT for features learning 

and improvement of the classification task. In the current experiment, a public CHB-MIT dataset is 

used to evaluate the proposed method, and results have proven that the model performs better in terms 

of both accuracy and FPR in comparison to other models. After applying the proposed model to the 

dataset, epileptic seizures are predicted 30 minutes before the beginning of a seizure. It is then 

concluded that, with the aid of the proposed model, epileptic patients can have more time for taking 

conventional medications in order to prevent the seizure before it occurs. 
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