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Abstract  
Signature approach due to its exact matching is still a relevant technology used in applications 

like network intrusion detection systems (NIDS), antivirus, anti-spam, worm-containment and 

other security systems. Basing on signature approach, multi-pattern string matching technology 

by comparing an input data stream against a set of predefined patterns, detects malicious 

activities. Due to the increasing signature database size and the high throughput of today’s 

networks the traditional software alone solutions can no longer meet the performance 

requirements of such systems. Therefore, many hardware approaches are proposed to 

accelerate the computational-intensive pattern matching procedure. On the other hand, a 

developer of hardware-accelerated security system has to solve non-trivial problem of choosing 

the most suitable approach in each particular case. Thus, some kind of guidance is needed to 

facilitate this problem solving. This paper provides a comprehensive survey on the hardware 

solutions were proposed in this area for the past years focusing on their effectiveness and 

feasibility. A deep analysis of main directions of security systems hardware acceleration has 

done. The most promising direction based on the use of FPGA and programmable logic is more 

closely investigated.  
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1. Introduction 

Whereas the propagation of Internet and network technologies in all spheres of human activities 

gains in many benefits the increase in number and sophistication of attacks against the network 

infrastructure and computer systems significantly escalates risks of information security compromising. 

Therefore, many technologies and techniques are offered to make information systems more robust and 

secure. 

Despite the great progress made in recent years by AI-based approaches, in particular, by deep neural 

networking, security tools based on such methods still suffer from nonzero recognition error probability. 

Even low probability of such error is able to disrupt the correct operation of the security information 

system. In critical infrastructure such effects can have disastrous consequences. Therefore, signature-

based recognition methods with their theoretically exact match are still relevant when creating 

information security systems. 

Signature-based technology relies on using so called signatures – descriptions of known attacks that 

are compared against the intensive flow of input information (coded by bytes). Checking every byte of 

every data element to see if it matches one of hundreds thousand and millions strings becomes a 

computationally-intensive task as network speeds grow into the tens and hundreds of gigabits/second. 

Thus, the multi-pattern string matching task has been a major performance bottleneck in information 
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security systems which have to scan the incoming data in real time [1]. There is an ever-widening 

performance gap between the security systems processing requirements and their software 

implementations because of the speed limitations of sequential software execution on standard CPUs 

[2]. To keep up with these speeds specialized devices built on hardware-oriented solutions are required. 

Literature review demonstrates the high variety of technical solutions aimed to the hardware 

acceleration of multi-pattern string matching based on different computing platforms, which use 

approaches to building matching schemes of very different nature. Thus, choosing a solution to be most 

suitable for particular application is a complex and cunning problem that developers of signature-based 

security systems aim to solve effectively. 

This paper provides some kind of guidance for such developers through analyzing, systematizing 

and classifying known platforms, approaches, techniques and customized solutions are invented by 

researchers over the world to realize the multi-pattern matching task in hardware. The goal of this work 

is also to facilitate the process of creating signature-based hardware-accelerated security systems by 

becoming familiar with their features and peculiarities. 

To continue it is necessary to decide on some terms and definitions. 

2. Terms and definitions 

Some of the definitions required to work with signature-based information security tools are as 

follows. 

The signature in this paper is considered as aggregate information about a specific threat, stored in 

the signature database of the correspondent security system. 

The term pattern refers to a sample of a text string (a fixed sequence of characters in a certain 

encoding), which is part of the signature and is to be find in the input data. 

Pattern dictionary – all the patterns that the database of signatures contains. 

Pattern set – patterns that only some signatures contain that are selected for a certain purpose. 

The mathematical formulation of the task of multi-pattern string matching can be defined as follows. 

D. Gusfield in the monograph [3], page 53, defines it as generalization of the task of exact matching: 

"An immediate and important generalization of the exact matching problem is to find all occurrences 

in text T of any pattern in a set of patterns P = {P1, P2, …, PZ}". 

So, given text T that consists of written in the line n symbols: "C1C2C3 … Cn", and the set of patterns 

P = {Р1, Р2, …, PZ}, where Z is its size, and each pattern Pi (i = 1, 2, …, Z) consists of written in the 

line m symbols: "C1C2C3 … Cm", where m is the length of the corresponding pattern (different for each 

of them in the General case), the task of multi-pattern string matching is to identify all occurrences in 

the text T any of the patterns of Ri from the set P. 

The fundamental difference multi-pattern string matching task from the single string recognition, 

which is effectively solved by the classical algorithms Knuth–Morris–Pratt, Boyer–Moore, Karp–

Rabin, etc., is in the need to search not one pattern, but many patterns simultaneously. 

In a practical sense, the task of multi-pattern matching is to provide answers to the following 

questions: 

 whether there are substrings in the text T, that matches character by character with any of the 

patterns Pi; 

 if any – with which ones; 

 how many matches for each of the patterns is detected; 

 in which position (relative to the beginning of the text T) is each of the matching substrings. 

Note that the sequences of characters corresponding to the patterns in the input data may not only 

be repeated, but also partially overlap, i.e. the end of the suspicious substring may match the beginning 

of another. Such situations must also be revealed when solving the multi-pattern matching task [4]. 

3. HPC vs. accelerators 

Traditional way to sole computationally-intensive problems is use of high performance computing 

means as supercomputers, clusters, GRID and cloud. Unfortunately, the main feature of the entire HPC 



segment is the apartness of their computing resources from the place where the calculation results are 

needed. The large volume and intensity of information to be processed when performing multi-pattern 

matching do not allow the use of the above-mentioned high-performance solutions. In other words, the 

local nature of security tasks in fact makes it impossible to apply HPC equipment. 

Instead, it turned out to be more acceptable to use various joined coprocessors (accelerators), which 

are located directly at the place of the problem, so do not require quick transfer of large amounts of data 

over long distances. The principles of construction and capabilities of such devices vary considerably. 

But the main feature that unites their diversity is the use of hardware solutions instead of software, 

because the main purpose of such devices is to overcome the limitations faced by software solutions, 

as mentioned above. 

4. Hardware platforms for multi-pattern matching 

Devices that theoretically can be used as a hardware platform for solving the multi-pattern matching 

task include: 

 specialized coprocessors based on ASIC; 

 network processors (NP); 

 ternary content-addressable memory (TCAM); 

 accelerators based on multi-core processors; 

 graphics accelerators (GPGPU); 

 based on FPGA reconfigurable accelerators (RA). 

Let's consider the features of these technologies and their possibilities to solve the multi-pattern 

matching task for further comparison. 

4.1. Specialized coprocessors based on ASIC 

In specialized hardware coprocessors, due to the constriction of the target area, the maximum 

acceleration is achieved the microelectronic technology can theoretically provide at present. The ASICs 

(Application-Specific Integrated Circuits) is the base of modern special processors that are in fact the 

top of the semiconductor circuit evolution, starting with small- and medium-scale integration devices, 

whose electrical circuits have been redesigned for each application up to complex nanometer process 

products, which allow developers to synthesize the most complex computing schemes. 

Creation of special hardware devices for solving the information security tasks on the basis of ASIC 

chips is quite possible, and such developments exist. Due to specialization, such solutions have the best 

performance and energy consumption characteristics compared to other technologies. But the 

production of each ASIC is a resource-intensive process both in terms of cost and time. The fixed 

internal structure of such integrated circuits does not allow making changes in already made products. 

Properly speaking, a special processors based on ASIC is not a joined accelerator in the conventional 

sense, because products on "fixed" logic a-priory cannot be universal. Therefore, the use of special 

ASIC-based processors is reasonable under the condition of sufficiently large production volumes. 

4.2. Network processors 

Network processors were created to accelerate the execution of specialized network tasks, including 

multi-pattern matching for signature-based information security systems. A typical NP in addition to 

the components of a conventional network adapter contains a CPU, usually of VLIW- or RISC-

architecture, multi-port memory and additional logic resources to perform typical network operations. 

On such a device it is convenient to organize computing, for instance, according to the multi-pattern 

matching algorithm Aho–Corasick by using additional logic for a finite automaton control unit, the 

memory – to store transition table and the CPU – to create and load these tables, and to perform general 

control functions [5]. 

There are also NPs that includes content-addressable memory chips with three states – the ternary 

content-addressable memory (see the next subsection). 



But despite the fact that NPs were designed specifically for network problems, the fixed architecture 

and limited computing resources have led to a decline in interest for this type of accelerators, and they 

have not actually been used now. 

4.3. TCAM-memory 

The tertiary content-addressable memory, strictly speaking, is not a separate computing platform 

[6], [7]. But the speed capabilities of TCAM (response time in nanosecond range) are of some interest 

and distinguish it from other hardware that focuses on the algorithmic performance of multi-pattern 

matching. A number of methods have been developed to use TCAM for multiple matching, but without 

addressing its practical implementation as part of an accelerator. 

In contrast to conventional binary-, ternary-memory provides limited possibility for flexible 

matching based on regular expression [6]. There are also several comparative studies in which TCAM 

is considered as a computing technology, so this type of equipment was moved in this paper to a separate 

section. Disadvantages of the approach based on using TCAM chips are: a fixed architecture and a limit 

on the pattern dictionary volume. 

4.4. Multi-core processors 

A typical multi-core device is the Intel Xeon Phi product [8]. The main advantage of this technology 

is ease of programming. The similarity to conventional processors allows using well known and verified 

algorithmic approaches for multi-pattern matching. Strong computing capabilities of multi-core 

processors simplify the implementation of complex procedures of multi-pattern matching, such as 

flexible recognition using regular expressions [9]. 

Disadvantages include the well-known shortcomings of microprocessor technology – fixed internal 

structure and increased power consumption, as well as difficulties in organizing data exchange with the 

central (control) computer and between processor cores, that complicates the parallelization of multi-

pattern matching task. 

4.5. Graphic technology GPGPU 

The technology of using graphics accelerators not for the main purpose, but to perform resource-

intensive computing was called GPGPU (General-Purpose Graphics Processing Units). 

The process of displaying graphical information on the screen of a personal computer initially was 

more complex than the actual data processing in the CPU. And this task with the development of the 

PC only continued to get more complicated. The market for graphics adapters was equal to market PCs, 

so manufacturers have invested heavily in the development of graphics processing units. The most 

powerful products in terms of functionality and performance contained an increasing number of 

components capable to process information independently. In order to unify technical solutions and 

simplify their management processes, well-known low-level programming techniques were used. As a 

result it became unexpectedly possible not only to send data to the GPU for processing, but also to 

retrieve results of data processing back. 

Modern GPUs consist of many independent processing elements, capable to simultaneously process 

a large number of data streams [10]. Processing elements can be programmed independently or similar 

to vector architecture. That is, GPGPUs can function both as SIMD (Single Instruction Multiple Data) 

architecture and as a SPMD (Signal Program Multiple Data) structure, which is a kind of the MIMD 

(Multiple Instruction, Multiple Data) architecture class. Like multi-core processors, GPGPUs realize 

mainly algorithmic methods for solving multi-pattern matching tasks. 

Disadvantages of GPGPU technology also include a fixed internal structure (moreover optimized 

for graphics problems) and excessive power consumption. The advantages of this platform are: high 

overall performance and fine-tuned interaction with the central computer. 

Therefore, GPGPU platform can be effectively used to solve the multi-pattern matching task. 



4.6. FPGA-based reconfigurable accelerators 

The most flexible and universal tool for creating digital circuits, which allows developing computing 

devices for any purpose at almost any level of complexity is programmable logic [11]. The ability of 

modern FPGAs (which already contain millions of equivalent gates) to synthesize information 

processing devices by any principles, approaches and computational architectures gives the developer 

a wide space to choose and implement the most appropriate direction for creating recognition tools. 

Namely the possibility to implement the latest methods and algorithms for information processing in 

digital devices should be considered a significant advantage of programmable logic. 

Because the computing scheme created in FPGA is in fact a specialized device, it does not consume 

excess electrical power to support universal components, which makes RAs a more energy saving 

option compared to other platforms. 

The use of RA as joined accelerator allows building high-performance computing system on the 

basis of universal computer. 

The presence of a large number of ready-made products that can be used as RA is an advantage of 

reconfigurable platform too. An electronic resource [12], numbering more than a thousand items, makes 

it possible to estimate the number and variety of reconfigurable accelerators. Among the most well-

known manufacturers of RAs are: Nallatech, Xilinx, Alpha Data, National Instruments, DiNI Group 

and many others. 

However the main advantage of the direction based on the FPGAs and RAs should be considered 

the ability to quickly (in a few seconds) change the functionality of the security device. 

The disadvantages of the programmable logic platform include the relative high cost and complexity 

of digital schemes synthesis and FPGA configuration files generation. 

5. Hardware platforms comparison 

As mentioned above, network processors and ternary content-addressable memory chips have 

recently lost interest from developers and are no longer used. These platforms were considered only for 

completeness of the study. Thus, for comparison, ASIC, GPGPU, Multi-Core and FPGA technologies 

remain. 

The problem of choosing the most suitable hardware platform for signature-based security system 

is complicated. A rigorous and well-grounded solution would be possible if for each platform there 

were examples of experimental development of the same task in the same formulation, detailed to the 

quantitative level. Unfortunately, no information about such developments has been found in scientific 

publications and practical reports. In the best case, two or three platforms were compared, and 

furthermore, one of them often was a traditional solution on the CPU. Moreover, the comparison was 

mainly carried out qualitatively rather than quantitatively. 

Using the available sources of all types, as well as other accessible information and logical 

considerations, let's conduct with the maximum degree of objectivity a comparative analysis of the 

above hardware platforms for solving signature-based security tasks. 

One of the only works where almost all technologies are compared [7] provides a qualitative 

assessment of the parameters of physical constraints, system design and performance (Table 1). The 

study [13] qualitatively presents advantages and disadvantages of Multi-Core, ASIC and FPGA 

technologies (Table 2). Quantitative comparison of certain developments on Multi-Core, GPGPU, 

ASIC and FPGA platforms can be found in [14]. Some data from this publication are given in Table 3. 

Note that in the Table 3 the clock speeds of Multi-Core, GPGPU and ASIC projects are significantly 

exceed the frequencies of FPGA-based solutions. This indicates the high potential of the reconfigurable 

platform, for which, unlike other areas, the technological limit has not yet been reached, and i.e. the so-

called Moore's Law still works for the FPGA platform. 

Indeed, in one of more recent sources [15], it is reported that the corresponding implementation of 

a specific signature-based network security task based on FPGA, according to the results of a number 

of experiments, outperformed a traditional processor by 24-89 times, a 12-core processor by 4.7-7.4 

times. Comparison of the reconfigurable solution with the implementation of the same task on the 



GPGPU platform with 200 parallel streams showed an advantage of FPGA in bandwidth by 3.14 times, 

propagation delay by 1020 times, and power consumption by 106 times. 

 

 

Table 1 
Implementation alternatives for signature matching 

Parameters ASIC FPGA GPU NP CPU 

Physical 
constraints 

Cost Highest Medium Low Medium-
Low 

Low 

Power efficiency Highest Low-
Medium 

High Medium Lowest 

Area efficiency Highest Worst High Medium Low 

Scalability High Low Medium High High 

System design 
Flexibility Worst Medium Medium Medium Best 

Design time Highest Medium Low Low Lowest 

Performance 

Peak 
performance 

Highest Medium Medium Medium Lowest 

Application 
performance 

Highest Medium High-
Medium 

Medium Lowest 

 

 

Table 2 
Comparison among hardware platform solutions 

Platform Multi-Core Processors ASIC FPGA 

Advantage 

Can enhance the aggregate 
throughput dramatically by 

using a large number of 
threads to process multiple 

input stream in parallel 

Provide impressively high 
per-stream throughput 

Provide desirable high 
performance, flexibility of 

software and 
reconfigurable 
programming 

Disadvantage 

Additional Complexity is 
introduced in scheduling, 

buffering ordering, and load 
balancing 

The applicability is 
limited by the high 

implementation cost and 
low reprogrammability 

It takes considerable time 
to resynthesize the 

design and reprogram 
the FPGA device 

 

 

Table 3 
Quantitative comparison 

Approach Platform 
Num. of 
Pattern 

Patterns 
length 

Clock rate 
(MHz) 

Throughput 
(Gbps) 

AC -DFA Multi-Core (Cell/B.E.) 8400 ≤10 3200  2.5 

AC -DFA GPGPU (GeForce 8600GT) 4000 ≤25 1200  2.3 

CDFA ASIC (0.18 µm) 1785 No limit 763  6.1 

Bit-Split FPGA 1316 No limit 220 (200)     1.76 

B-FSM FPGA ∼8000 No limit 138 (125)  2.2 

Field-Merge FPGA 6944 < 64 285     4.56 

Multi-Pipeline FPGA 9033 No limit 178 11.4 

 

In summary, we reasonably conclude that FPGA-based reconfigurable accelerators as a hardware 

platform best meet the complex and dynamic nature of information security tasks, outperforming 

competing technologies in terms of flexibility and cost-effectiveness. Therefore, the rest of the paper is 



devoted to a more detailed consideration of this technology and a comparison of the approaches used 

when constructing multi-pattern matching schemes on reconfigurable accelerators. 

6. FPGA-based reconfigurable accelerators 

Programmable logic integrated circuits have been used successfully in engineering for a long time. 

The form of implementation of the FPGA-based equipment as joined co-processors is a 

reconfigurable accelerator (Figure 1). 

 

 

 
Figure 1: Appearance of a typical reconfigurable accelerator 

 

The structure of such a device contains both mandatory and additional components [16]. Every RA 

contains at least one FPGA chip. Another mandatory component of the RA is onboard random access 

memory (RAM) for storing intermediate results of calculations, which are usually used standard chips 

of large capacity DDR-memory. 

A separate hardware interface controller is also highly recommended to be an RA component. In 

addition to communicating with the host system's central processor, this controller also provides FPGA 

chip programming, i.e. loads the configuration file (bitstream) into it. 

An important additional component of RA is the terminal equipment of communication channels for 

direct high-speed exchange with the external environment, bypassing the CPU of the host system. 

Today, the world produces a large number of FPGA-based devices that can be used as RA and 

implemented for solving information security tasks. These devices can range from high-performance, 

general-purpose reconfigurable accelerators to less functional but more affordable products such as 

starter kits, trainer boards, evaluation kits, development boards and prototype plates. The Table 4 

exemplifies several reconfigurable accelerators, which cover a wide range of devices in terms of 

specifications and functionality. 

Due to the relatively long obsolescence of RAs, accelerators with very different capabilities are used 

concurrently. As we can see, some parameters of RA devices in the table vary by several orders of 

magnitude. 

7. Constructing reconfigurable multi-pattern match circuits 

Many different approaches to constructing hardware matching circuits on FPGAs were proposed 

recently. Hundreds researches publish thousands of papers devoted to this scientific direction. To 

understand this diversity and correctly assess the possibilities of various solutions, it is necessary to set 

the appropriate efficiency criteria. Before deciding on the indicators, let us consider the most prevalent 

class of protection tools - network intrusion detection systems as an example of a signature-based 

security system. 

 

 



Table 4 
Specifications for typical RAs 

Manufacturer Nallatech Nallatech Xilinx Digilent Digilent 

Model of RA XUP-VV8 385A VC709 Kit 
NetFPGA-1G-

CML 
Atlys 

Kind of RA Full-size RA Full-size RA Evaluation Kit 
Development 

Board 
Trainer Board 

Type of FPGA 
Xilinx Virtex 
UltraScale+ 

VU13P 

Intel (Altera) 
Arria 10 GX 

1150 

Xilinx Virtex-7 
VX690T 

Xilinx Kintex-
7 XC7K325T 

Xilinx 
Spartan-6 

LX45 

Number of 
logical cells 

3 780 000 1 150 000 693 120 326 080 43 661 

BRAM size, Kbit 36 20 36 36 18 

Total volume of 
BRAM memory, 
Mbit 

94,5 54,3 52,9 16,0 2,1 

Type of onboard 
RAM 

DDR4 SDRAM DDR3 SDRAM DDR3 SDRAM DDR3 SDRAM DDR2 SDRAM 

Onboard RAM 
volume, GB 

512 32 8 0,512 0,128 

Network ports  
4x QSFP-DD 
(2x 100 Gb - 

Ethern. each) 

2x QSFP28 
(100 Gb -

Ethern. each) 

4x SFP+ 
(10 Gb - 

Ethern. each) 

4x RJ-45 PHY 
(1 Gb - 

Ethern. each) 

1x RJ-45 PHY 
(1 Gb - 

Ethern.) 

Communication 
interface 

PCI-Express 
x16 Gen.3 

PCI-Express 
x8 Gen.3 

PCI-Express 
x8 Gen.3 

PCI-Express 
x16 Gen.2 

USB 2.0 

Form factor 

Dual-slot 
PCI-E board 
standard-

height 
3/4-length 

Single-slot 
PCI-E board 
half-height 
half-length 

Single-slot 
PCI-E card 
standard-

height/ 
length 

Single-slot 
PCI-E card 
standard-

height 
3/4-length 

stand-alone 
board 120 x 

133 mm 

Cooling Passive Active Passive No Passive 

Price, $ 8995 5995 4995 1499 490 

 

7.1. The structure of reconfigurable NIDS 

NIDS were historically the first and, consequently, the most studied FPGA-based tools of 

information security [17]. Therefore, without losing the generality of reasoning, consider the typical 

functions and efficiency parameters of reconfigurable security systems on the example of such systems. 

The structure and composition of the reconfigurable network intrusion detection system (Figure 2) can 

be compiled as a generalization of numerous published scientific solutions (see for example [17], [18]). 

The Matching module is the most important component of NIDS. It solves the computationally 

complex task of multi-pattern string matching, i.e. checks the content of network packets against pattern 

set. As we can see the signatures is “wired” into the circuitry of the device at hardware level. This 

feature ensures the highest performance rate due to the maximally possible parallelism has been 

reached. 

7.2. The efficiency parameters of reconfigurable NIDS 

There are three main groups of efficiency parameters (or indicators) of reconfigurable NIDS [19], 

[20]: cost parameters, parameters of speed or performance parameters, functional parameters. 



 

 
Figure 2: The structure of the reconfigurable network intrusion detection system 

 

Cost indicators are as follows: 

 the amount of logical resources of programmable logic needed to create a digital circuit; 

 memory costs of three types: onboard memory of RA, internal memory of FPGA (BRAM) and 

distributed memory of FPGA (flip-flops in logical cells); 

 other costs, which make up the total cost of ownership, including the development, manufacture 

and programming costs. 

Performance parameters include: 

 the volume of the pattern dictionary (i.e. the number of patterns to be matched); 

 the speed of the system (which is defines as either the delay of data propagation from input to 

output or as bandwidth); 

 the predictability of bandwidth as well. 

Functional indicators include: 

 the ability of NIDS to work in the mode of network intrusion prevention system (NIPS); 

 the ability to dynamically update the patterns without interrupting the matching process; 

 ability to selective recognition (the ability to change a subset of recognizable patterns by an 

external signal); 

 the ability to counter attacks targeted at the NIDS itself, 

and others. 

An important intermediate metric that links speed and cost characteristics is scalability – the ability 

to increase performance without excessive resource costs. There are three types of scalability: by the 

bandwidth, by the pattern set size, and by the pattern length. 

7.3. Comparison of the main approaches to the building of reconfiguring 
matching modules 

The analysis of numerical researches from all over the world shows that when creating NIDS the 

most effective and widely applied are these three approaches which use the following technical 

solutions based on the corresponding technologies: 

 content-addressable memory (CAM) based on digital comparators (DC) [21], [22], [23], [24], 

[25] and [26]; 

 Bloom filter (BF) based on hash-functions (HF) [27], [28], [29], [30], [31] and [32]; 

 Aho–Corasick algorithm (AC) on finite automata (FA) [14], [33], [34], [35], [36], [37] and 

[38]. 



Each of these approaches has its own pros and cons. And none of these fully meets the requirements 

for the reconfigurable signature-based security systems. The lack of a leading direction that would 

outperform competitive solutions in all respects makes the developers offer numerous modifications of 

the main approaches, use diverse techniques and technical solutions trying to overcome their 

shortcomings. 

Let's consider briefly these technologies, approaches and its modifications, techniques and solutions 

for every of three mentioned directions. 

7.3.1. Approach based on content-addressable memory and digital 
comparators 

Content-addressable memory is a class of devices that were created for quick code recognition and 

perform a function opposite to traditional RAM: it finds the location of data in the memory device by 

its content or reports about their absence. Digital comparators are the fast-acting basis of CAM [39]. 

The direct solution for detecting the matching of input symbols with patterns is a set of digital 

comparators, each of which compares the input byte with a predetermined symbol [23], [24]. Let's call 

such scheme the Basic scheme on CAM or the BsCAM scheme (Figure 3). Just the input data fed, the 

BsCAM circuit is able to give the output in one clock cycle. The simplicity and regularity of the 

structure are also its advantages. The main disadvantage is the significant consumption of logical 

resources of FPGA. 

 

 

 
Figure 3: Direct recognition by digital comparators 

 

Difficulties when implementing on FPGA arise for the following reasons. Firstly, the outputs of 

registers built on standard FPGA components are overloaded by a large number of comparators inputs. 

Secondly, it is necessary to combine a large number of bit signals with a multi-input AND gate for long 

patterns. Both problems are solved by pipelining the fan-out schemes, which leads to an additional 

increase in hardware costs [23], [25]. This leads to the poor scalability of the approach by the pattern 

set size. 

It is possible to reduce the CAM hardware costs of by the reuse of comparators, which in the extreme 

case leads to the allocation of only one DC per character of the alphabet, and their combinations are 

formed using delay circuits and the AND gates, as shown in Figure 4. Here DEL(1) and DEL(2) – delay 

circuits of one and two cycles, respectively. This solution is called the Decoded Content-Addressable 

Memory (DCAM), because the complete set of the DCs forms a decoder [25]. 

 

 



 
Figure 4: DCAM schematic solution 

 

A further reducing the complexity of the DCAM-based recognition scheme is possible by using a 

partial matching technique where long patterns are broken into shorter parts that are recognized 

consistently. It is sufficient to delay only the partial match signal instead of using long delay circuits 

for a large number of cycles for long patterns. Figure 5 depicts the recognition scheme of a 31-character 

pattern, built on this principle [26]. This solution was named the Recognition Scheme based on partially 

decoded CAM or the DpCAM (Decoded partially Content-Addressable Memory) scheme. 

 

 

 
Figure 5: DpCAM schematic solution 

 

A more detailed study shows that the use of the cost reduction techniques described above in the 

case of their parallel connection (in the ParCAM scheme) leads to even higher resource savings than 

linear growth [23]. Thus, the schemes on the DC have a good scalability by the bandwidth. 

There is also a technique for reducing costs by using non-byte data processing, which is implemented 

by Hbc, HbcDCAM and ParHbcDCAM schemes on half-byte comparators [40], as well as the BCAM 

scheme, which is built using binary decision diagram [41]. 

The fact that the input data content does not affect the operation of the DC-based CAM recognition 

scheme implements the bandwidth predictability functional efficiency indicator and makes security 

system invulnerable to external attacks, which is another functional efficiency indicator. 

As can be seen from the considered solutions, when creating recognition tools on DCs, the 

information about the patterns is actually "wired" into the hardware circuit, which makes it impossible 

to dynamically reconfigure and fulfill the selective recognition. 

The results obtained by examining the features of the recognition schemes based on CAM and DC 

are summarized in Table 5 below (see the section 7.4. "Comparison of the approaches"). 

 

 



7.3.2. Approach based on Bloom filter and hash-functions 

The Bloom filter is an abstract device that allows detecting a match of a fragment of a given bit 

sequence with a sample from the dictionary [27]. BF consists of two key components (Figure 6): a set 

of K units that calculate the hash functions h1(x), h2(x), …, hK(x), and an array of M one-bit memory 

cells (component Rg in the figure). In the initial state, this bit register (BR) is filled with zeros [31]. 

 

 

 a b 

Figure 6: The principle of operation of the Bloom filter: a – programming; b – recognition 
 

At the programming stage of the Bloom filter, each of the n elements of the pattern dictionary (W-

bit length) is sequentially fed to the inputs of the hash function units. The output values are interpreted 

as addresses (bit numbers) of BR and correspondent cells are filled with ones. 

While functioning, a fragment of the input stream of symbols (also of W bits length) is fed to BF 

input, and the values of all K hash-functions are calculated as well. If all the cells of BR pointed by the 

hash-functions outputs contain ones, it is assumed with certain probability that the input combination 

of characters matches one of the patterns used while the BF programming process. But if at least one 

hash-function points to a zero value, no match situation is guaranteed. Thus, BF operates with some 

probability of false positive error, but without false negative errors [32]. 

BF saves memory resources. The size of the pattern set does not directly affect the size of the BR: 

adding new patterns to existing ones only increases the probability of a recognition error, but does not 

increase the amount of memory required. The number and complexity of hash-functions, and therefore 

hardware consumption and performance, also do not depend on the volume of the pattern set with this 

approach. The pattern length also does not affect directly the amount of memory resources or 

performance. That is, BF scales well in two ways: by pattern set size and by pattern length. Indeed, 

even very long strings after conversion with hash-functions require the same K cells of BR to be stored. 

Unfortunately, the Bloom filter has an important drawback inherent in all hash-based solutions: the 

size of the input character sequence to be analyzed must exactly correspond to the given set of hash-

functions. That is, one BF is able to recognize patterns of only the same length. To overcome this 

shortcoming, it is necessary to build a structure containing several BF in order patterns of different 

lengths can be used [29]. This reduces the cost-effectiveness of the Bloom filter approach, but not the 

speed indicators. 

Difficulties when implementing BF on FPGA arise primarily because several hash-function 

generators need to simultaneously access the bit register Rg (Figure 6). When implementing the latter 

on a single memory device, collisions will occur. The solution is to split the BR into several memory 



devices depending on the number of hash-functions. This requires, firstly, distributing the outputs of 

the hash-function units between the corresponding RAM devises, and secondly, imposing additional 

restrictions on the functionality of these units, so that output range of every unit fit the reduced size of 

memory device. It has been proven that such constraints not significantly increase the false positive 

error probability of Bloom filter [29]. 

In the general case, several BRAM blocks are required to create a BR. The corresponding circuit is 

called a Full-Size Bloom Filter or LBF (Large Bloom Filter). But in most practical applications for 

security system the so-called mini-BF circuit, which are part of the LBF and contain only one block of 

BRAM, can be used for the matching module construction. Let's call such decision the Simplified Bloom 

filter or the SBF (Simplified Bloom Filter) scheme [30]. 

In order to increase the speed, BF can be combined into a parallel structure similar to the ParCAM 

scheme. But unlike DC, the properties of Bloom filter do not allow to achieve a sublinear law of cost 

growth – the hardware costs of a parallel circuit are strictly proportional to the achieved acceleration, 

i.e. BF bandwidth is not scaled as well as CAM-based circuits. 

The classic scheme of the Bloom filter does not allow on-the-run removing patterns added during 

programming. If necessary, developer can use a Bloom filter with counters, or CBF (Counting Bloom 

Filter) scheme [28]. This solution allows dynamic reconfiguration without stopping the security system. 

The need to fulfill the procedure of refining the results due to BF's system error, which is slower 

than recognition, leads to unpredictability of bandwidth, and makes the Bloom filter vulnerable to 

attacks on security systems [30], [31]. 

The results of examining properties of the recognition schemes based on BF are also summarized in 

Table 5. 

7.3.3. Approach based on Aho–Corasick algorithm and finite automata 

The mathematical apparatus of finite-state machines or finite automata (FA) has been used 

successfully to create computer systems for a long time [42]. A special class of FAs – so-called 

classifiers is widely used when building signature-based security systems that perform multi-pattern 

string matching [43]. Such a machine outputs an active signal only if one of the predefined sequences 

of symbols is received at its input. When this situation occurs, the classifier goes into one of the so-

called acceptable states [1]. While transitions are performed between unacceptable states, there are no 

signals at the output of a FA–classifier. 

The Aho–Corasick algorithm is an example of a tool that, unlike many known single string 

recognition algorithms, detects several samples in the input data simultaneously [33]. The essence of 

the algorithm is in creating an FA according by certain rules, which recognizes the desired patterns 

while operating. Let's call such FA the Aho–Corasick finite automaton (AC-FA). 

The theory and practical experience of using AC-FA is widely presented in the literature [14], [34], 

[35], [36], [37] and [38]. However, for the effective building AC-FA with help of FPGAs, special 

attention needs to be paid to the finite automaton transition function. Analysis of the problem gives an 

understanding of the need to distinguish following four types of transitions in such machines: direct or 

goto transitions, cross, failure and restartable transitions. The latter type, strictly speaking, belongs to 

cross transitions, but its separation into an individual type allows increasing the effectiveness of FPGA-

based AC-FA realization due to some peculiarities of technical implementation of such machines [44]. 

A generalized structure of the hardware implementation of AC-FA is shown in Figure 7. It based on 

a memory unit (MU) in which the machine transition table is stored [36], [38]. Each MU cell contains 

a number of the next state of automaton and a match vector (MV). A character code from the input 

stream is concatenated with the value of the next state number retrieved from memory unit. The 

obtained value is fed to the MU address input and selects the appropriate record. MVs contain ones in 

the positions denoting the corresponding pattern. The control unit (CU) controls the operation of the 

machine. If the RA onboard memory (external to the FPGA chip) is used when implementing the circuit, 

we will call this solution the Basic AC-FA Scheme with External Memory or ACRAM scheme. A 

solution based on BRAMs (FPGA internal memory blocks) will be called Basic AC-FA Scheme with 

Block Memory or ACBRAM scheme. 

The most important advantage of AC-FA solutions is its bandwidth independence from the signature 



database size and the pattern’s properties, in particular, their lengths, which results in predictability of 

bandwidth. Typically, the FA takes one character from the input stream for each clock cycle. But in 

practice, if the size of transition table is too large and it is necessary to use external memory, each access 

to the MU can take several cycles. Furthermore, external memory is slower than internal. Thus, the 

downside of this advantage is the relatively low speed, which is also difficult to increase, which means 

poor AC-FA scalability by the bandwidth. 

 

 
Figure 7: The structure of the typical Aho–Corasick finite automaton 

 

The main difficulties that arise when implementing AC-FA on the reconfiguration platform concerns 

the organization of efficient data exchange with MU. When constructing an ACBRAM scheme there is 

a possibility to synthesize a memory device of almost arbitrary structure due to the flexibility of BRAM 

blocks configuring process. But in the case of ACRAM the problem is escalated because the onboard 

memory of RA has a fixed structure not convenient in the general case for interaction with CU [45]. 

As we can see, AC-FA requires a small amount of logic resources to create a control unit, registers 

and MU controller. However, the size of memory can be very large, i.e. the approach is characterized 

by high memory consumption. Increasing the number of patterns leads to "explosive" growth of MU 

resources, which means very poor scalability by pattern set size. Therefore, the majority of researchers' 

efforts when implementing AC-FA hardware in security systems are aimed at reducing memory 

resources and moderating their rapid growth. 

Among the numerous modifications of AC-FA there are solutions that offer different ways to encode 

the transition table. The matches of not only prefixes but also infixes of patterns are also analyzed [36], 

[38]. However, in most modifications, memory reduction is achieved by handling certain types of finite 

automaton transitions [35], [44]. In a number of works the technique of AC-FA pipelining has been 

offered and developed [37]. The linear conveyor of H steps allows eliminating all the cross transitions 

in AC-FA structure from an initial state to level H [14]. 

A certain part of the researchers' efforts was aimed at improving the not very good speed efficiency 

of the approach. Because AC-FA, like any finite state machine, processes input information strictly 

sequentially, character by character, attempts have been made to speed up the AC algorithm by 

processing more than one character per clock cycle [46]. Since it is not known in advance with which 

offset the specific pattern will appear in the input data, it is necessary to organize the parallel operation 

of the appropriate number of identical machines (modifications ParACRAM and ParACBRAM). 

Another solution related to non-byte data processing. The so-called Bit-split scheme was proposed 

to replace a FA that processes 8-bit characters by several identical parallel sub-machines that analyze 

1, 2 or 4 bits [34]. By reducing the size of character codes, the size of the alphabet is significantly 



reduced. The Bit-split solution is the opposite of multi-character per clock cycle recognition schemes; 

however, it is not aimed at speeding up but at reducing resources. 

The use of external RAM allows a simple implementation of the dynamic updating of the AC-FA 

circuitry by overwriting FPGA contents, i.e. to completely change the algorithm of the machine without 

stopping the security system. Regarding the indicator of selective recognition, it is implemented by 

forming in the MU several transition tables for different submachines. 

The results of the study of FA-based recognition schemes properties that implement the AC 

algorithm are also summarized in Table 5. 

7.4. Comparison of the approaches 

The comparative analysis of three approaches: the use of associative memory based on digital 

comparators, Bloom filter based on hash functions and the Aho–Corasick algorithm based on finite 

automata, as well as numerous techniques for their improvement allows to thoroughly assessing the 

advantages and disadvantages of each of them in the sense of the performance indicators mentioned 

above. The Table 5 shows the results of this comparative analysis. 

 

Table 5 
The comparison of the main approaches to the construction of the reconfigurable multi-pattern 
matching modules 

Parameter 
Approach 

CAM Bloom Filter Aho–Corasick 

Logic costs - - - + +++ 

M
em

o
ry

 
co

st
s distributed - - - + +++ 

BRAM +++ + - - - 
onboard +++ +++ - - - 

Speed +++ + - 
Speed predictability +++ - - - +++ 

Fu
n

ct
io

n
al

 
p

ar
am

e
te

rs
 the ability to counter attacks 

targeted at the defense system 
+++ - - - + 

dynamic update - - - + +++ 
selective recognition - - - + +++ 
ability to work in NIPS mode +++ + - 

Sc
al

ab
ili

ty
 

by bandwidth +++ + - 

by pattern set size - - - +++ - - - 

by pattern length - +++ +++ 

Ability to use redundancy of pattern set + - - - +++ 
A significant drawback that negates the 
main advantages of the approach 

Excessive 
resource costs 

Fixed 
pattern length 

"Explosive" 
memory growth 

Notation: "+" – medium advantage; "+++" – significant advantage; "-" – medium drawback; "- - -" – significant drawback. 

 

As we can see, none of the researched approaches shows obvious advantages over others, each has 

its own positive features and disadvantages. And an advantage according to one of the indicators often 

turns into a disadvantage with respect to another. As a result, each of the approaches has a significant 

drawback, which, in fact, negates the main advantages of this approach. 

For instance, CAM based on DCs and their modifications provide maximum performance, but more 

expensive than other approaches in terms of hardware resources and electricity consumption. They also 

lose in scaling. The Bloom filter is more scalable and effective by resources, but imposes restrictions 

on the length of the patterns. It also requires additional costs to check the obtained results due to its 

inherent false positive errors probability when matching. Finite automata are modest in terms of logic 



consumption, provide stable but relatively low bandwidth, are difficult to build, and lead to an 

"explosive" increase in memory costs for large pattern dictionaries. 

8. Conclusion 

Multi-pattern string matching is a fundamental technology used in signature-based security systems 

like network intrusion detection systems, antivirus, anti-spam, worm-containment and so on. This task 

is computational-intensive, and traditional software solutions do not keep up with speeds of modern 

networks because the number and sophistication of attacks against the computer infrastructure are 

increasing constantly. Hardware accelerators are able to overcome this bottleneck. There are several 

types of such devices known as acceptable solution: specialized coprocessors based on ASIC, ternary 

content addressable memory, accelerators based on multi-core processors, graphics accelerators and 

reconfigurable accelerators based on FPGA. The latter best meet the information security area 

requirements, outperforming competing platforms in flexibility and cost-effectiveness. 

The most promising approaches to the construction of reconfigurable matching modules of 

signature-based security systems are: content addressable memory based on digital comparators, Bloom 

filter based on hash-functions and Aho–Corasick algorithm implemented in the form of a finite 

automaton. Numerous researchers have also considered a lot of modifications and improvements to the 

basic solutions. But none of these approaches has a significant advantage over others in terms of 

efficiency. 

The contribution of this work is as follows. 

A comprehensive survey on the known hardware solutions in this area for the past few years has 

made. Most effective platforms, approaches, techniques and customized solutions to realize the multi-

pattern matching task in hardware are analyzed, systematized and classified. 

A comparative analysis of main hardware platforms for security systems acceleration has provided. 

The most promising direction using programmable logic is more closely explored. 

Specific features of different approaches to the construction of FPGA-based matching schemes in 

terms of resource costs, speed/throughput parameters, functional characteristics, as well as scaling 

parameters are formulated and thoroughly investigated. 

In fact, a developer guide aiming to facilitate choosing the most appropriate solution for a specific 

application of signature-based high performance security systems is proposed. 
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