
ITTAP’2021: 1nd InternationalWorkshop on Information Technologies: Theoretical and Applied Problems, November 16–18, 2021,
Ternopil, Ukraine
EMAIL: oleksandr_pokydko2507@tntu.edu.ua (A. 1); karelina@tntu.edu.ua (A. 2), lilyadzhydzhora1970@gmail.com (A 3)
ORCID: 0000-0001-7105-7942 (A. 1); 0000-0002-5628-9048 (A. 2), 0000-0002-3672-4807 (A 3)

©� 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

The Development of automated system for monitoring the
information leakage into the Darknet

Oleksandr Pokydkoa, Olena Karelinaa, Liliana Dzhydzhoraa

a Ternopil Ivan Pulyuj National Technical University, Ruska, 56, Ternopil, 46001, Ukraine

Abstract
The system for monitoring the corporate information leakage of into the darknet is
developed. The web documents collected from darknet are compared with the documents of
the company-customer of monitoring and conclusion about the information leakage is made
on the basis of documents similarity. The system consists of the following modules: source
search module in darknet, text mining module, cryptographic module, document similarity
assessment module. The following mathematical methods are used to assess the degree of
similarity between corporate documents and Darknet documents: vector space model and
information interaction model. Software implementation of the tool for automatic monitoring
of information leakage by Python is described. The system testing results are given.

Keywords 1
Dataleakage, monitoring, Python, Tor, Darknet.

1. Introduction

Digital assets play an important or even crucial role in today's business. In all medium and large
companies, payment information about transactions, agreements, customers personal data, financial
documentation is formed and stored in the information system. Leakage of such information carries
severe reputational and monetary losses for the company. Taking into account the peculiarities of
modern business, hackers illegally access the companies files and demand a huge ransom for their
unlocking and non-disclosure. It is worth mentioning the recent attacks on Colonial Pipeline, Acer,
Apple, when ransoms amounted to millions of dollars.

Corporate information leakage can also be caused by insiders - employees of the company.
Sometimes insiders are financially interested, sometimes the leakage is due to incompetence,
inattention or mistakes in the business process. The reasons are different, but the result is the same -
losses for the company. Therefore, the task of developing an automated tool for network monitoring,
which would detect corporate information leakage is of great importance. If the loss of information is
detected as early as possible, there are more opportunities to minimize its negative consequences. As
hackers often publish information in the Darknet, the monitoring tool is developed for this purpose.

2. Background

Different aspects of information leakage monitoring are studied in scientific discourse. The
solutions for cloud computing are developed in papers [1, 2]. In paper [3] the functionality of the leak
detection system is based on the capabilities of the virtual machines hypervisor. In papers [4, 5] the
development of information leakage monitoring systems from Android devices is revealed.
Monitoring information leakage in the Darknet is an important and unresolved problem.

3. Characteristics of the data leakage detection system

The specification of the system is Darknet monitoring and collection of information about web
documents in accordance with customer requirements. The collected web data sources are compared
with confidential user documents. If the document that is semantically similar to users' confidential
documents appears on the Internet, the system indicates possible data leakage.

Typically, the similarity of documents is determined by solid similarity metric based on repetition.
This approach neglects all potential semantic correlations between different words. The system does
not compare pure content, but the value of web documents and user documents. The system consists
of modules presented in Figure 1.

Figure 1: Modules of the system

The documents collection contains protected or confidential information. Encryption is required to

protect these documents. The cryptographic module is responsible for preparing the encrypted version
of the documents. To ensure the document content confidentiality, the cryptographic module is
located on the client server. All other services are located in the cloud. The search module is
responsible for detecting web pages that indicate data leakage. The search module includes the
scanner module that examines the structure of websites, identifies those pages of websites that contain
relevant data, and indexes those pages using keywords. The text extraction module converts web
documents into the corresponding mathematical image. The evaluation module corresponds to the
mathematical representation of web documents and confidential user documents.

4. Mathematical methods used to detect data leakage

Mathematical methods are used in the modules of text mining, cryptography and evaluation.
Taking into account the search query, received web documents and confidential documents of the
users, the calculation module calculates the conformity assessment, which measures the similarity of
these documents. The scoring module uses various mathematical documents representations.

Depending on the type of information that prevails in the document, different mathematical
methods are used.

4.1. Vector space model

Vector space model (VSM) is widely used as mathematical model of the systems. In VSM,
documents are represented by the vector in n-dimensional vector space, where n is the number of
terms of the keyword or index [6].

Darknet Search module

Text mining module

Scoring module

Cryptographic
module

Document
collection

In data leakage detection system the VSM is proposed to be used as a basis for cryptographic and
text analysis module. As a result, the scoring module can match the mathematical representation of
web documents and user confidential documents based on vector space.

Presentation of VSM documents is as follows.
On the one hand, a set of keywords is obtained from confidential documents

during indexing. On the other hand, another set of keywords is derived from
web documents during indexing. Web documents and confidential user documents are represented by
VSM over in the following way: under the condition of finite set of index
terms , any web document is assigned vector of real numbers, as shown
below:

 (1)
Confidential user documents should also be presented as vector of real numbers, as shown

below:
 (2)

Weight is interpreted as the value to which the index term characterizes the document. Web
document vectors and customer documents vectors are compared to some degree of similarity. The
disadvantage of this presentation is that due to the potential diversity of web documents, the
dimension of the vector space can be quite high requiring significant computing power to determine
the degree of similarity. Web document is presented to the customer who has confidential
document , if they are quite similar, i.e. the degree of similarity between the web document
vector and the confidential user vector exceeds a certain threshold, i.e.

 (3)
Term weight indices express how important the term or keyword is to describe the content of the

document. The simplest weighing scheme is binary, which indicates the presence or absence of the
keyword in the document. This scheme is usually insufficient, as it does not distinguish documents
with frequent and infrequent keyword inclusions. The frequency with which keywords is met in the
document is called term-frequency weight. The logarithm-based weighing scheme is used to adjust
the frequency within the document. This is done because the terms that are frequently met in the
document are not necessarily more important than special terms that are met in the document only
once.

Documents sizes can vary greatly. In order to compensate this fact, the length normalization is
used, i.e. the document rank is divided by its length. Taking into account the weighted vector space of
the documents submission, they can be compared by calculating the distance between the points
representing the documents. In other words, the similarity indicator is used in such a way as the
documents with the highest scores will be the most similar to each other.

Three typical normalized similarity indicators are defined as follows [7]:
Similarity of cosines

(4)

Jaquard similarity

(5)

The system's conclusion concerning documents similarity can be changed by both changing the
weighing scheme and the degree of similarity.

4.2. Information interaction model

Information interaction and search (I2R) model is also chosen to implement the information
leakage monitoring system. In data leakage detection system, I2R model can be implemented in the
following way. Any web document is represented by an object. Each object is
associated with the vector of predefined index terms . Connections

are established between any pair . Links are weighted and targeted. Two pairs of links
can be identified in each direction. One directional link shows the relative frequency of the
index polynomial [8]. The relative frequency of the keyword in the document is defined as follows:

 (6)

where indicates the relevance of the index term in the object of the web document ,
is the number of index terms in the web document object .

 Relationship between pairs of objects are schematically shown in Fig. 2.

Figure 2: Relationship between pairs of objects for documents similarity determination

Another directional link is the reverse frequency of the document . It is defined as follows:

(7)

where indicates the correspondence of the index term in , is the number of web
documents containing the keyword , and is the number of objects of the web document. As it is
shown in Figure 3, the other direction also has two links with the same value. The investigated web
documents are presented in the form of complete graph of objects. The user's confidential document is
also represented by the object. It is linked to other web documents that are in the full column. Linking
this new object to the graph, the weights of the existing links will change. The weight of the link

between any pair of objects , and therefore between the confidential document and
another object of the web document , is defined as the sum of the corresponding weights, as shown
below:

 (8)
This complete graph of objects can be considered as an artificial neural network. In this network,

the neurons activation is subjected to the dominant, which accepts all strategies. Activation begins
with the user's confidential document and extends to the most active neuron. After several steps, the
activation reaches the affected object. These web documents are similar to the confidential documents
of users in this group. These documents can indicate the data leakage. The advantages of the
interaction model are that this method avoids expensive calculations. The complexity of calculating
weights is polynomial. The method of finding the interaction makes it possible to obtain relatively
high accuracy within the range of 75% -85% on test collections.

 5. Software implementation of the tool for automatic monitoring of
information leakage

The set task of automatic monitoring of information leakage includes search, collection, analysis
and classification of information from the Internet, which is very cumbersome work. The system
should be able to analyze a large number of data of different formats, which come from a variety of
sources on the network. Implementation of this system is presented in the form of modules:

• file analyzer module, which is responsible for reading useful data from a wide range of file
types, as well as for searching for key words in these files to create a prediction about the file
involvement in the source;
• modules for searching and collecting information - the number of modules is limited by the
number of sources of information. Their task is to find and save files for further analysis.
Such modularity of this solution makes it possible to: perform them on different servers; conduct
selection and analysis in Docker containers and Kubernetes clusters; use the hybrid approach to
the location of servers; failure of one component does not affect the work of other components.
All these opportunities make it possible to maintain the maximum stability of work, give the

chance to be expanded both vertically and horizontally, and enable to save money during work in
cloud environments.

The scheme of operation principle of the monitoring system for information leakage is shown in
Figure 3.

During the development it was decided to implement minimum two required components, which
together build the system for collecting and analyzing information. The obligatory component is the
file analyzer module, which should analyze the files in particular directory. For the second component
the module for collecting information from Darknet is chosen for implementation.

Darknet is the global network by which users can access web resources that are not accessible
through conventional search engines. Information in the Darknet is usually not available to the
general public, and such information is deliberately hidden for the ordinary Internet, known as
Clearnet.

Figure4:Принцип роботиавтоматизованоїсистемимоніторингувитокуінформації

Figure 3. The scheme of operation principle of the information leakage monitoring system

Data collection
modules

Continuously
running for new
data collecting

Save files on
physical storage

Files unarchiving and
comparison with customers
data

The result of the
analysis is positive

File moves to
directory for saving

Information about
file save to
database

Yes

No

 File removes
File analyzer module

The decision to choose this source is due to the sharp increase in the number of hacker attacks on
corporate data. If companies do not pay ransom, all collected information becomes available to the
public on the Darknet resource. To analyze possible sources of corporate information leakage, blogs
of several ransomware-groups are selected.

To access the information on the Darknet page, you must use Tor software. When you run Tor
utility, socks5h proxy is automatically created by means of which the program receive information. It
is not necessary to run Tor in the browser, it is sufficient to run Tor as a service and allow it to run in
the background. Thus, the implementation of this module is not limited to desktop computers, but can
be run on servers where there is no graphical interface. For the Python programming language, there
is a special Stem library [9], which enables you to control the operation of Tor service in the
background. In order not to create problems with already running Tor services, the new launch will
take place in specially created temporary directory, which will be deleted automatically at the end of
the work.

The Deep_Web_Parser class is created to work with information on sites in the darknet network.
This is the parent class and defines only the interfaces, the implementation of which is in the
children's class ContiNews_Parser (for parsing the blog ransomware-group Conti). This unifies the
method the data is accessed between different page parsers, making it possible to add easily a new
source without breaking the program.

Undocumented API was found during the development of ContiNews parser. After getting
acquainted with the principle of queries, the parser implementation was greatly simplified. There are
two main methods of information parsing from the darknet web page:

• get – allows you to get information about the article;
• files – allows you to get information about files in the article.

After the information about all previously unprocessed publications has been processed and stored
in the database, the information is passed over the socket to the file download module which is
implemented in Watcher class. The part of the information retrieval server implementation can be
seen in Listing 1. This module operates in multithreading mode, which makes it possible to receive
information about new publications and download multiple files at once. This has a positive effect on
performance, as the download speed of a single file over Tor network is very slow, and the queue for
files to be downloaded can always be supplemented with new files.

Listing 1 - Data retrieval server implementation

def _server_connection(self):
 """ Methodisrunninginbackgroundinfinitelyandwaitsfornewqueueupdate,

afterreceivingvalidjson-dataifwillexecuteself.update_queue
 """
 # Create a TCP/IP socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 # Bindthesockettotheport
server_socket.bind((self.ip, self.port))
 # Listenforincomingconnectionsserver_socket.listen(1)
whileTrue:
 # Generateemptydecodeddataforeveryconnection
data_decoded = dict() # Waitfor a connection
connection, _ = server_socket.accept() data = '' try:
 # Receivethedatainsmallchunksandappendit whileTrue: chunk =

connection.recv(1024).decode(encoding="utf-8") iflen(chunk) > 0: data
+= chunkif "END_CONVERSATION" indata: data =
data.replace("END_CONVERSATION", "") breakelse:

break
try: data_decoded = json.loads(data)
resp = f"DataReceived! : {data_decoded}END_CONVERSATION"

connection.sendall(resp.encode(encoding="utf-8")) exceptException: resp =
f"Couldnotdecodedata, pleasedoublecheck:{data}" logger.warning(resp)

connection.sendall(resp.encode(encoding="utf-8"))
finally:
 # Cleanuptheconnection connection.close()
ifdata_decoded: ifdata_decoded.get("action", None) == "stop_server":

returnifself._download_thread_started: self._stop_download()
self._queue = self._generate_new_queue(data_decoded) self._start_download()

During downloading, a separate Tor-proxy is created for each file, in order not to overload the same
Tor access nodes. As the result, the download speed is limited only by the capabilities of the
equipment on which the files are downloaded and the speed provided by Internet-provider. The
function for file downloading is shown in Listing 2.

Listing 2 - The function of file downloading from darknet

def _download_by_link(self, _file: dict, download_status: dict):
 # PrepearigTorproxies
Tor_Session = Tor_Connector(socks_port=socks_port, control_port=control_port,

disable_init_msgs=True) sleep(2)
proxy = Tor_Session.get_proxy() # Creatingrequestssessionwithparams session =

requests.Session() session.proxies.update(proxy)
save_path = f"{DOWNLOAD_BASE_PATH}{source_parser}/{company_name}/{file_name}"

whiledownloaded<total_length: resume_header = {'Range': f'bytes={downloaded}-'}
session.headers.update(resume_header)

res = session.get(url=url, allow_redirects=True)
try: forchunkinres.iter_content(chunk_size=2048):

ifself._download_stop_flag:
Tor_Session.stop_tor()
return 0 try: withopen(save_path, "ab+") as f:
f.write(chunk)
f.flush()
downloaded += len(chunk)
 # XXX maybeeaddctrl + c signalcheckto
 # verifyexitortoproperlysavedata
withopen(f"{save_path}.metadata", "w") asf_meta: try:

f_meta.write(str(downloaded)) f_meta.flush()
exceptExceptionas e: logger.error("Cannotwritelenofdownloaded"

"datatometadatafile" f"Error: {e}") exceptExceptionas e:
logger.error(f"CannotwritedatatofileError: {e}") return 1

exceptExceptionas e:
logger.warning(f"Erroroccurredwhiledownloadingfile {file_name}, probablyconnection "
f"crashed, tryingtocontinuein a momentError: {e}")
Tor_Session.build_new_circuit() sleep(5) continue

download_status.pop(file_name, None)
os.remove(f"{save_path}.metadata")

Tor_Session.stop_tor()

 # Deletingfinisheddownloadfromqueue. Byebye ;)
q_download_links = [_q_obj.get("file", {}).get("remote_location", "") for _q_objinself._queue]
self._queue.pop(q_download_links.index(url))

5.1. Software implementation of the file analyzer module

The implementation of the module starts with the definition of data types that will be analyzed.
Due to the fact that the task is to find keywords in corporate documents, it is necessary to be able to
read data from such formats as:

• doc, docb, docm та docx;
• xls,xlsb, xlsm та xlsx; - ppt, pptb та pptx.

In addition, support for popular data formats is implemented. These formats are:
• pdf; txt; png; jpg та jpeg; log; json.

In order to standardize the work, Analyzer class which contains implemented data access
interfaces and algorithms for searching for keywords in the text, titles and metadata files is created.
Textract library is used while retrieving from plain text formats, as well as retrieving metadata from
files. The function of retrieving text from files is shown in Listing 3.

Listing 3 - Function for retrieving file contents

defget_content(self): try: returntextract.process(self.file_path).decode('utf-8').lower()
exceptUnicodeDecodeError: try:

withopen(self.file_path, 'rb') as f:
returnf.read().decode('utf-16').lower() exceptUnicodeDecodeError: try:

withopen(self.file_path, 'rb') as f: returnf.read().decode('utf-32').lower()
exceptUnicodeDecodeError:

logger.error(f'[Analyzing] {self.file_path} cannotbedecodein
anyformat (utf-8/utf-16/utf-32)')
self.extracting_error = "cannotbedecodeinanyformat (utf8/utf-16/utf-32)"
excepttextract.exceptions.ExtensionNotSupported: self.extracting_error = 'isnotsupported'
logger.warning(f'[Analyzing] {self.file_path} isnotsupported') exceptExceptionas e:

self.extracting_error = f'generatethefollowingexception {e}' logger.error(f'[Analyzing]
{self.file_path} hasgeneratethefollowing

exception {e}')

Due to the fact that pdf and word files often contain images that cannot be retrieved as separate

text, the approach of text analysis from images is implemented. In order to do this, Office format files
are converted to pdf using Libreoffice [25]. Then pdf files are converted into images using pdf2image
library. Google's tesseract tool, i.e. pytesseract [26], is used to retrieve text from images. The example
of text retrieval is given in Listing 4.

Listing 4 - Text retrieval from images

forpage_pathinpages:
text = str((pytesseract.image_to_string(Image.open(page_path)))) text = text.replace('-\n', '')

os.remove(page_path) content += text

Further, the file is analyzed for the content of keywords, domains, email addresses and bank card

numbers, on the basis of this analysis the prediction if the document refers to data leakage is made.
The implementation fragment is shown in Listing 5.

Listing 5 - Implementation of data leakage prediction

defpredict_breach(report, customer_keywords): prediction = 0
customer_keywords_size = len(customer_keywords)
content_keywords_size = len(report["event"]["content"]["keywords"]) title_keywords_size =

len(report["event"]["title"]["keywords"]) metadata_keywords_size =
len(report["event"]["metadata"]["keywords"])

content_keywords_value = 0.9 * (content_keywords_size/customer_keywords_size) prediction
+= content_keywords_value

title_keywords_value = 0.05 * (title_keywords_size/customer_keywords_size) prediction +=
title_keywords_value

metadata_keywords_value = 0.05 * (metadata_keywords_size/customer_keywords_size)
prediction += metadata_keywords_value

iflen(report["event"]["content"]["emails"]) > 5:
prediction += len(report["event"]["content"]["emails"]) * 0.02
iflen(report["event"]["content"]["credit_card"]) > 2:
prediction += len(report["event"]["content"]["credit_card"]) * 0.02
 prediction = content_keywords_value + title_keywords_value +
metadata_keywords_value
returnprediction

The result of the entire analysis is stored in the database, where the information can be obtained for

further application.

5.2. Testing the functionality of the information leakage monitoring
system

After the development and implementation of the new module in software product, functional
testing is carried out.

Functional testing is carried out in the following areas:
• regression testing. Testing of the developed module after changes in it is carried out;
• modular testing. Testing of separate modules after their development;
• integration testing. Testing the correct modules interaction for information processing

correctness.
In the process of testing the module for collecting and storing information by logging the

successful scanning, information storage to Elasticsearch database, and successful transfer of
information about publications to the download module are confirmed. The results are shown in
Figure 4.

Figure 4: The results of collecting information about the article

The test of file download module, after receiving the list of information about new articles,

successfully obtains additional information about files from the database, generates the download
queue and starts downloading, this information is displayed in the execution logs, which is presented
in Figure 5.

Figure 5: The results of file download module performance

In order to simulate the real example of information leakage, the keywords of one of the customers

are added to random file. After this file scanning, the corresponding message is displayed in the logs.
It is shown in Figure 6.

Figure 6: The example of scanning the file containing customer’s keywords

Modular and integration testing of the system components showed excellent results and did not

reveal any problems.

6. Conclusions and directions for further investigations

The developed system of automatic monitoring of corporate information leakage makes it possible
to reveal the corporate information leakage as soon as possible and to minimize its consequences. At
present the problem of hacker attacks on companies is very important all over the world. Different
countries are taking measures to protect businesses from attacks by intruders in the digital space.
However, the companies should take care of data security themselves.

The proposed development will be expanded in order to cover new sources of information (hacker
forums, shadow Telegram channels, etc.). For some companies (design, design bureaus) graphic
information is of primary importance. In further research it is necessary to investigate mathematical
methods of similarity detection for graphic, audio, video files.

7. References

[1] R. Kirdat, N. Mokal, J. Mokal, A. Parkar, R. Shahabade. “Data Leakage Detection and File
Monitoring in Cloud Computing” Internetional Journal of Advance Research, Ideas and
Innovations in Technology. Volume 4, Issue 2, 2018. pp. 859-866.

[2] R. Naik and M. N. Gaonkar, "Data Leakage Detection in cloud using Watermarking
Technique," 2019 International Conference on Computer Communication and Informatics
(ICCCI), 2019, pp. 1-6, doi: 10.1109/ICCCI.2019.8821894.

[3] Chang, S.-H., Mallissery, S., Hsieh, C.-H., & Wu, Y.-S. (2018). Hypervisor-Based Sensitive
Data Leakage Detector. 2018 IEEE International Conference on Software Quality, Reliability
and Security (QRS). pp. 155-162. doi:10.1109/qrs.2018.00029

[4] Tuan, L.H., Cam, N.T. & Pham, VH. Enhancing the accuracy of static analysis for detecting
sensitive data leakage in Android by using dynamic analysis. Cluster Comput 22, 1079–1085
(2019). https://doi.org/10.1007/s10586-017-1364-8

[5] G. Kul, S. Upadhyaya and V. Chandola, "Detecting Data Leakage from Databases on Android
Apps with Concept Drift," 2018 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2018, pp. 905-913, doi:
10.1109/TrustCom/BigDataSE.2018.00129.

[6] R. Baeza-Yates, B. Ribeiro-Neto. Modern information retrieval: The Concepts and Technology
behind Search (2nd Edition). ACM Press Books, 2011. pp. 53-55.

[7] C. T. Meadow, R. B.Bert, H. K.Donald. TextInformationRetrievalSystems, 2017. Print.
[8] S. Dominich. Connectionist interaction information retrieval. In: Information processing &

management. 2003. pp. 167-193.
[9] Welcome to Stem! URL: https://stem.torproject.org/

https://doi.org/10.1007/s10586-017-1364-8

	1. Introduction
	2. Background
	3. Characteristics of the data leakage detection system
	4. Mathematical methods used to detect data leakage
	4.1. Vector space model
	4.2. Information interaction model

	5. Software implementation of the tool for automatic monitoring of information leakage
	5.1. Software implementation of the file analyzer module
	5.2. Testing the functionality of the information leakage monitoring system

	6. Conclusions and directions for further investigations
	7. References

