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Abstract  
Mathematical models of inverse problems of mathematical physics have been built for 

ultrasonic diagnostics of complex systems in order to study the structure of the material of the 

systems under study, as well as to detect material defects in the form of cracks and chips. 
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1. Introduction 

Most modern processes in science and technology are described by nonlinear mathematical models. 

It is obvious that the solution of such models cannot always be written in analytical form, for example, 

in the form of functions or functional series. In such cases, computational methods for solving nonlinear 

equations and their systems, methods of global optimization, methods for solving ordinary differential 

equations, equations of mathematical physics and their systems, as well as other methods for studying 

complex dynamical systems in general are used. 

An example of complex processes can be called physical and technical processes, which are 

described by models of mathematical physics in the reverse mathematical formulation. Such problem 

statements imply the identification of the parameters of the processes under consideration. The 

problems that reduce to such models are called inverse problems of mathematical physics. Inverse 

problems of mathematical physics, like all inverse problems, are experimental problems [1; 13; 14]. 

The desired parameters in such problems can be the characteristics or modes of the system under study, 

for example, the geometric dimensions and shape of the system object, boundary conditions, initial 

conditions, internal conditions and others [1; 2]. The input values of the parameters of such 

mathematical models are statistical data about the object or process itself. The more there is 

experimental data, the easier it is to obtain information about him in general.  

Nowadays, the scientific direction on the study of ultrasonic processes is very developed in order to 

diagnose elements of building structures, as well as to increase their functionality and reduce wear. 

Ultrasonic elastic vibrations and waves obey general laws that characterize processes in liquids and 

solids in general. The speed of propagation of waves in a material environment is determined by various 

physical and technical parameters, one of which is elasticity and density. However, with an increase in 

some limiting values of the considered medium of ultrasound intensity during the transition from the 

propagation of oscillations of small amplitude to oscillations of finite amplitude, nonlinear effects arise 
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that can violate the principle of superposition of the wave process in a certain medium. In this regard, 

new physical phenomena arise, to which pressure can be attributed. 

 

The search for a numerical solution to the inverse problem is a rather complicated process that 

requires an integrated approach. Regardless of the structure of the physical and technical process, 

practical scientists develop new effective methods for solving inverse problems. A very popular 

formulation of inverse problems in general is the optimization formulation. Therefore, to obtain a 

solution to the inverse problem, fast methods of multivariate global optimization are needed. 

Deterministic optimization methods make it possible to quickly get a good approximation to the optimal 

solution. But the resulting solution may be suboptimal. To obtain the global optimal solution to the 

inverse problem, stochastic methods of multidimensional global optimization are also used. They do 

not require any information about the differentiability of the function or functional under study. Such 

methods work longer than deterministic ones. To obtain the golden mean in terms of speed and 

optimality of the obtained solution, deterministic and stochastic methods of multivariate global 

optimization are combined. 

The combination of deterministic and stochastic methods of multidimensional global optimization 

is especially effective for the study of mathematical models of systems with distributed parameters, for 

example, models that describe the processes of heat and mass transfer, hydrodynamics and wave 

processes. 

2. Formulation of the problem 

Inverse problems in most cases are incorrect, that is, those in which one or more of the following 

conditions are violated: the existence of a solution; uniqueness of the solution; the condition under 

which small changes in the required parameters correspond to small perturbations for the corresponding 

solutions.  

The simplest and most urgent formulation of the parameter identification problem is the optimization 

formulation, in which it is required to find the global extremum of some function or functional: 

 

𝐽(𝑐1, 𝑐2, . . . , 𝑐𝑛) = 𝐹(𝑈(𝑐1, 𝑐2, . . . , 𝑐𝑛)) → 𝑚𝑖𝑛, (1) 

 

where 𝑈 – the required function that delivers the minimum; 𝑛 – is the number of parameters to be 

identified; 𝑐1, 𝑐2, . . . , 𝑐𝑛 – the parameters of some process on which the function depends 𝑈. 

Constraints are imposed on (1) in the form of functional dependencies, for example, equations of 

the form: 

 

{𝐿𝑗(𝑈(𝑐1, 𝑐2, . . . , 𝑐𝑛)) = 0}, 𝑗 = 1,𝑚 (2) 

 

and inequalities of the form 

 

{𝑆𝑘(𝑈(𝑐1, 𝑐2, … , 𝑐𝑛)) ≤ 0}, 𝑘 = 1, 𝑝, 

{𝑃𝑚(𝑈(𝑐1, 𝑐2, . . . , 𝑐𝑛)) = 0},𝑚 = 1, 𝑑, 
(3) 

 

where 𝐿𝑗, 𝑗 = 1,𝑚 – some differential operators that describe some process in an object, and 𝑆𝑘 – 

functional dependencies, which are constraints on a function 𝑈. Boundary, boundary, internal 

conditions in (2) are set depending on the process under consideration [1; 2]. They can be specified on 

a part of the area of the process under consideration or on the entire area. They can also act as the 

required parameters 𝑐𝑖, 𝑖 = 1, 𝑛. 
Problems of the form (1)–(3) in the optimization formulation are very resource-intensive. The 

amount of computational costs increases significantly with the dimension of the problem. It is known 

that to solve one inverse problem, a multiple call of the procedure for solving the direct problem is used. 

In this regard, it is possible to use applied software packages to solve direct problems, which quickly 

and efficiently cope with the task at hand. These packages include MATLAB, COMSOL Multiphysics, 



and ANSYS. MATLAB has a wide library for working with matrix calculations, which are actively 

used in the process of solving equations of mathematical physics and their systems using the finite 

element method [1]. In this environment, it is very convenient to carry out calculations for objects of 

arbitrary 2D-shape. MATLAB quite efficiently uses memory when solving sparse systems of algebraic 

equations, to which discrete analogs of equations of mathematical physics are reduced. COMSOL 

Multiphysics, ANSYS are significantly improved applied software packages, which, in addition to all 

of the above for MATLAB, have a fairly advanced constructor for creating 3D object geometry. They 

also have the ability to represent intermediate solutions, slices of solutions, solutions on subdomains, 

etc., which gives an overall picture of the process under study. 

 

2.1. A Mathematical Model of the Process 

The propagation of ultrasonic waves can be mathematically described by a wave equation (linear 

and nonlinear) of the second order [1; 5; 12]. In this description, the body is considered to be elastic, 

the deformation is elastic and negligible compared to the geometric dimensions of the object itself. The 

technical task is to determine the geometric position of the oscillator, provided that in specific positions 

of the studied area of the object are sensors that receive the signal generated by the source (exciter). 

The physical and technical characteristics of the object under study, such as the speed of propagation 

and attenuation of the waves, are known. The characteristics of the source, such as frequency and 

amplitude of oscillations also are known. In this case, the mathematical model of the problem has an 

optimization statement [6–8], in which you need to find a minimum: 

 

𝐹(𝑥𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑦𝑠𝑜𝑢𝑟𝑐𝑒) =
1

8
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𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑦𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑡) − 𝑠𝑖
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙(𝑡))
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𝑖=1

→ min (4) 

 

with restrictions in the form 

 

{
 
 
 
 

 
 
 
 
𝑠𝑖(𝑥

𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑦𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑡) = 𝑈(𝑥𝑖
𝑠𝑒𝑛𝑠𝑜𝑟, 𝑦𝑖

𝑠𝑒𝑛𝑠𝑜𝑟 , 𝑡),

𝜕2𝑈

𝜕𝑡2
= 𝛥𝑈 on 𝛺, 𝑡 ∈ [0; 1,5],

𝛺 = (𝑥, 𝑦) ∈ [0; 1]2, 𝑖 = 1,8,

𝑈(𝑥, 𝑦, 0) = 𝑈𝑡(𝑥, 𝑦, 0) = 0,
𝜕𝑈

𝜕𝑛
= 0, 𝑡 ∈ [0; 1,5],

𝑈(𝑥𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑦𝑠𝑜𝑢𝑟𝑐𝑒 , 0) = 𝐴 𝑠𝑖𝑛(2𝜋𝑓𝑡) ,

 (5) 

 

where  

 

𝑛 – total number of sensors; 

𝜏𝑖
𝑏𝑒𝑔

 – the start time of the observation on the i-th sensor; 

𝜏𝑖
𝑒𝑛𝑑 – end time of observation on the i-th sensor; 

𝑠𝑖
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙(𝑡) – the data taken by the i-th sensor for a certain period of time [𝜏𝑖

𝑏𝑒𝑔
; 𝜏𝑖
𝑒𝑛𝑑]; 

𝑇 – the total time of the experiment; 

𝛺 – calculation area of the problem (object under study); 

𝐴, 𝑓 – amplitude and frequency; 
(𝑥𝑖

𝑠𝑒𝑛𝑠𝑜𝑟 , 𝑦𝑖
𝑠𝑒𝑛𝑠𝑜𝑟) – position of the i-th sensor; 

(𝑥𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑦𝑠𝑜𝑢𝑟𝑐𝑒) – position of the oscillator. 

 

Source characteristics is 𝐴 = 30−1, 𝑓 = 9. The sensors positions are shown in Table 1. 

 



Table 1 
Geometric positions of sensors 

𝑥𝑖 𝑦𝑖  𝑥𝑖 𝑦𝑖  

0,5333 0,0667 0,3167 0,8500 
0,7167 0,9167 0,1000 0,2833 
0,4500 0,1167 0,8667 0,5167 
0,1500 0,3500 0,4167 0,9000 

 
To find a numerical solution to this optimization problem (4)–(5), a classical genetic algorithm was 

applied. The results of mathematical modelling and a discussion of the results are given below. 

2.2. Numerical Results of Computer Experiments 

The following are the results of computational experiments performed using the MATLAB 2021a 

application software environment. The mathematical model of problem (4)–(5) is solved using the finite 

difference method. Estimated grid – 60x60 grid nodes, 𝑤 = 32 – the number of bits for encoding by a 

genetic algorithm.  

Figure 1 shows the values of the objective function (4) of the mathematical model (4)–(5) using the 

classical genetic algorithm in the first twenty and in the last twenty iterations. 

 

 
Figure 1: Convergence of the optimization mathematical model (3)–(4) by the classical genetic 
algorithm 
 

The accuracy of the obtained solution was 1,0E–011. When sensors receive real data, the accuracy will 

be lower due to the error in obtaining indicators from sensors. 

 

3. The Discussion of the Results 

The mathematical model of the form (4)–(5) belongs to the models of the class of nonlinear global 

optimization [6; 10; 11], in which the restriction on the objective function (1) is the wave equation, 

which describes the process of wave propagation in a particular medium. The function (1) is nonlinear. 

Thus, stochastic or population methods can be used to minimize it, as local minima can be obtained  

[9–12]. The model of problem (4)–(5) is an inverse problem, because the results of data from sensors 

(indirect measurements – consequence) need to establish the position of the pathogen (cause). 



As a result of computer and mathematical modeling, it is established that various modifications of 

the mathematical model of the form (4)–(5) can be used to determine defects in inhomogeneous two- 

and three-dimensional bodies. 

4. Conclusions 

The choice of applied software packages when solving resource-intensive problems, such as the 

problem of identifying the parameters of physical and technical processes using the example of inverse 

problems of mathematical physics, is an important factor, due to which the time of searching for a 

solution to the problem is significantly saved, as well as the total computational costs of a personal 

computer when solving such problems are reduced. 

The obtained mathematical model can be modified for research of more complex objects and 

processes that arise in production. It is recommended to use genetic algorithms as a tool for finding the 

optimal solution to such problems, since in such processes the sought solutions in the form of functions 

can be nondifferentiable. The presence of nondifferentiability of the sought functions makes some 

classical deterministic methods of searching for the global extremum unusable. 

Obviously, the complication of this mathematical model can be carried out by searching for some 

parameters, which are represented as multidimensional functions of time. Obviously, when solving the 

problem numerically, the required functions are sought in the form of a table of values. In this case, the 

number of calculations increases markedly. To reduce computations, it is recommended to use 

interpolation and approximation, as well as apply multigrid methods. 

 

[1] Yerofeyev V.A., Miller S.S. Ul'trazvukovoy monitoring mikrodefektov v metalle. Zhurnal 

«Izvestiya Tul'skogo gosudarstvennogo universiteta», tekhnicheskiye nauki, mashinostroyeniye i 

mashinovedeniye. 2014, S. 211–217. 

[2] Kolesnikov A.Ye. Ul'trazvukovyye izmereniya. M.: Standarty, 1982. 178 s. 

[3] Klyuyev V.V. Nerazrushayushchiy kontrol'. Tom 3. Spravochnik. V 7-i knigakh. M.: 

Mashinostroyeniye, 2004. 

[4] Zuyev L.B., Semukhin B.S., Bushmeleva K.I., Zarikovskaya N.V. Skorost' rasprostraneniya 

ul'trazvuka v polikristallakh Al s raznym razmerom zerna. FMM, 2000. T. 89. No 4. 

[5] Solov'yanova I.P., Shabunin S.N. Teoriya volnovykh protsessov: akusticheskiye metody: ucheb. 

posobiye. Yekaterinburg: GOU VPO UGTU-UPI, 2004. 142 s. 

[6] Andreyeva Ye.A. Variatsionnoye ischisleniye i metody optimizatsii. M.: Vysshaya shkola, 2006. 

584 s. 

[7] Vasil'yev F.P. Metody optimizatsii v 2-kh knigakh. Kn. 1. M.: MTSNMO, 2011. 619 s. 

[8] Vasil'yev F.P. Metody optimizatsii v 2-kh knigakh. Kn. 2. M.: MTSNMO, 2011. 433 s. 

[9] Yemel'yanov S.V., Korovin S.K., Bobylev N.A. Metody nelineynogo analiza v zadachakh 

upravleniya i optimizatsii. M.: URSS, 2002. 120 s. 

[10] Zolotarev A.A. Metody optimizatsii raspredelitel'nykh protsessov. Vologda: Infra-Inzheneriya, 

2014. 160 s. 

[11] Zubarev YU.M. Spetsial'nyye metody optimizatsii: Uchebnoye posobiye. SPb.: Lan', 2014. 384 s. 

[12] Khaidurov V. Nonlinear Mathematical Model for Determining the Geometric Position of Point 

Signals in Homogeneous Materials. Abstracts of X International Scientific and Practical 

Conference Liverpool, United Kingdom 27–29 May 2020. 

[13] David Matajira-Rueda, Jorge Mario Cruz-Duarte, Juan Gabriel Aviña-Cervantes, Mario Alberto 

Ibarra-Manzano, Rodrigo Correa: Optimization-Based Strategies for Optimal Inverse Parameters 

Estimation for Heat Transfer Systems. IEEE Access 9: 71328-71343 (2021) 

[14] Lin Qiu, Minghui Zhang, Qing-Hua Qin: Homogenization function method for time-fractional 

inverse heat conduction problem in 3D functionally graded materials. Appl. Math. Lett. 122: 

107478 (2021) 


