
Criteria and Rules for Classification of Software Failures and
Vulnerabilities

Tetiana Hovorushchenko
a

a Khmelnytskyi National University, Institutska str., 11, Khmelnytskyi, 29016, Ukraine

Abstract
The paper proves that despite numerous studies in the field of improving the reliability and

security of system and application software, conducted over the years, despite building a

variety of approaches by many leading scientists in the field, vulnerabilities and software

failures still exist and manifest. An actual task now is to predict software failures and

vulnerabilities, for which the problem of classification of software failures and vulnerabilities

should be solved first. The purpose of this study is to: build mathematical models of software

failures and vulnerabilities; construct criteria and production rules for the classification of

software failures and vulnerabilities. The classification of software failures and

vulnerabilities depending on their manifestation, mathematical models of software failure and

vulnerabilities, as well as criteria for the classification of software failures and vulnerabilities,

which allow formulating rules for classification of software failures and vulnerabilities, were

developed. The proposed rules for the classification of software failures and vulnerabilities

provide an opportunity to facilitate the process of identifying errors in the software. A

promising area of research is to build a method and algorithm for predicting software failures

and vulnerabilities based on developed mathematical models of failure and vulnerabilities,

classification criteria, and rules for software failures and vulnerabilities.

Keywords 1
Software failure, insignificant failure, significant failure, critical failure, software

vulnerability, correct work vulnerability, information integrity vulnerability, information

confidentiality vulnerability, information availability vulnerability.

1. Introduction & Related Works

In terms of the reliability and security of the computer as a whole, system software errors are the

biggest threat. For example, a buffer overflow error can cause the system to fail completely

(reliability issue) or allow a professionally written virus to intercept control of the computer (security

issue). Application software also contains many defects, but these errors can cause only limited

damage if the system software does not contain errors.

The modern system software has features that make it unreliable and dangerous – it is huge and

has a very weak localization of errors [1]. For example, the Linux core has more than 2.5 million lines

of code, and the Windows core has twice as many. The operation system (OS) contains hundreds of

thousands of procedures, which are assembled together as a single binary program operating in core

mode.

The study conducted in [2] shows that as the size of the software increases, the error rate in the

software increases, and for software larger than 512K is 4-100 errors per 1000 lines of code. Another

study [3] provides a density of 2 to 75 errors per 1000 lines of executable code, depending on the size

of the module. Using a moderate estimate of 4 errors per 1000 lines of code, we have 10,000 possible

ITTAP’2021: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems, November 16–18, 2021,
Ternopil, Ukraine

EMAIL: tat_yana@ukr.net (T. Hovorushchenko)

ORCID: 0000-0002-7942-1857 (T. Hovorushchenko)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

errors in the Linux core and 20,000 possible errors in the Windows core. An even bigger problem is

that usually, about 70% of the operating system consists of drivers that have 3-7 times more errors

than simple code [4], so the calculated number of errors is probably much underestimated. It is clear

that finding and correcting all these errors is not feasible. Analysis of the Android mobile OS showed

359 software bugs, including 88 high-risk bugs and 271 medium-risk bugs, which is a serious threat to

OS security [5].

As for the weakness of error localization in the OS, each of the millions of lines of core code can

overwrite the basic data structures used by its independent components, disabling the system in ways

that are difficult to detect. In addition, if a virus infects one core procedure, there is no way to keep it

from spreading quickly to other procedures and prevent it from invading the computer as a whole.

Currently, there are various approaches used to increase the reliability and security of the OS: 1)

the Nooks approach [6], which protects the core from device drivers by placing each driver in a shell

of protective software; 2) paravirtualization approach [7], which allows the simultaneous launch of

several operating systems on one computer using the mechanism of virtual machines; 3) the approach

of creating multi-server operating systems [8], in which only the micro core is run in core mode, and

the rest of the OS works in user mode as a set of completely isolated server processes and drivers; 4)

Microsoft Research approach [1], which rejects the concept of OS as a single program running in core

mode, with some set of user processes running in user mode, and replaces it with a system written in

new type languages that provide the security of types. All of these approaches are based on preventing

a complete system failure caused by multiple errors in device drivers, but are not aimed at predicting

and resolving system software failures and vulnerabilities.

Despite numerous studies in the field of improving the reliability and security of software over the

years, despite building a variety of approaches by many leading scientists in the field, vulnerabilities

and software failures still exist and manifest themselves in the form of OS crashes, inability to load,

"loss" of certain peripherals, information leaks, financial losses, environmental and man-made

disasters [9-14]. The consequences of insufficient software security are presented in Table1.

Table 1
Consequences of insufficient software security

Description Consequences and losses Source

Attack the system process
svchost.exe by error antivirus

(2010)

Continuous overload of the computer on which
such antivirus was installed

[15]

IOS 5 operating system error
(2012)

Fast iPhone battery loss [16]

Detection of 0.6% of critical
vulnerabilities and 19.5% of
high-risk vulnerabilities in

system software

Problems with the functioning of the system
software

[17]

As a result of the software
vulnerability, 500 million records

of data from users of Yahoo
services were opened

Potential leakage of 500 million records of users
of Yahoo services

[18]

Equifax has lost personal and
financial information about 140
million people due to software
vulnerabilities. The company

was unable to correct the critical
vulnerability and did not inform
the public about the situation
that arose within a few weeks

after the incident was
discovered

Equifax's total loss was $ 575 million dollars [19]

The vulnerability in the software
allowed attackers to gain access
to 50 million profiles of users of

the social network Facebook

Potential data leakage of 50 million users of the
social network Facebook

[20]

The Uber taxi app was hacked
and information about 600,000

drivers and 57 million user
accounts was stolen. Instead of

reporting the incident, Uber paid
the attacker $ 100,000 for his

silence

Uber was fined $ 148 million dollars. The total
loss amounted to 148.1 million dollars

[21]

Therefore, software behavior is indeterminate due to errors, the success of software security

attempts is possible only by improving the quality of software and reducing the number of errors, for

this process of identifying errors should be facilitated, so the actual task now is to predict software

failures and vulnerabilities, for which we must first decide the task of classifying the software failures

and vulnerabilities.

In this case, the purpose of this study is to:

1. Develop mathematical models of software failures and vulnerabilities

2. Construct criteria and production rules for the classification of software failures and

vulnerabilities

2. Mathematical models of software failure and vulnerabilities

During developing the mathematical models, we will use the following symbols:

∃ - quantifier of existence ("exists for some");

∈ - membership in the set;

∩ - simultaneous fulfillment of conditions (logical operation "AND");

∀ - quantifier of generality ("for all");

→ - implication.

From the point of view of the theory of reliability, a failure is an event that is a violation of the

operational state of the object, as a result of which the system ceases to perform all or part of its

functions, i.e. an event that involves the transition of the object from one level of operation to another,

lower, or to the completely inoperable state [22-24].

Insignificant failure Isf from the point of view of the software will be called the termination of

operation of the program for the time exceeding the set threshold, without data loss and requirement

of the restart of the computer.

Significant failure Sf from the point of view of software will be called the termination of the

program for a time exceeding a specified threshold, with the loss of all or part of the data, but without

the need to restart the computer.

Critical failure Cf from the point of view of the software will be called the termination of the

program, which requires a restart of the computer on which the software operates.

Then the mathematical model of failure has the following form:

𝐹𝑙 = {

𝐼𝑠𝑓 | ∃(𝑠𝑡𝑖 ∈ 𝑆𝑇) ∩ (𝐷𝑓𝑖 = 𝐷𝑓𝑖−1)
𝑆𝑓 | ∃(𝑠𝑡𝑖 ∈ 𝑆𝑇) ∩ (𝐷𝑓𝑖 < 𝐷𝑓𝑖−1)

𝐶𝑓 | ∃(𝑠𝑡𝑖 ∈ 𝑆𝑇)

where i – time after software failure; (i-1) – time before a software failure; sti – software state after

software failure; ST = {st1,..,stn} – the set of working states of the software (n – the total number of

working states of the software); Dfi – set of data after software failure; Dfi-1 – set of data before the

failure of the software.

In the context of functional security, the focus is on the functional features of the software, the use

of which may disrupt its proper operation, as well as the integrity, availability, or confidentiality of

information.

In computer security, the term "vulnerability" is used to refer to a flaw in a system that can be used

to intentionally compromise its integrity and cause it to malfunction. Vulnerabilities can be the result

of programming errors, system design flaws, unreliable passwords, viruses, and other malicious

programs [25].

In addition, software vulnerabilities are defined as undeclared capabilities – software functionality

that is not described or does not correspond to those described in the documentation, the use of which

may violate the confidentiality, availability, or integrity of processed information.

The correct work vulnerability Cwv will be called a functional feature that leads to the termination

of the program functioning for a time that exceeds a specified threshold, i.e. to software failure.

The information integrity vulnerability Iiv is called the functional feature of the software, which

leads to loss of data completeness, to unauthorized (malicious or accidental) change of data when

performing a certain operation associated with this functional feature.

The information confidentiality vulnerability Icv is the functional feature of the software, which

leads to leakage, unauthorized disclosure, illegal access, or use of any information.

The information availability vulnerability Iav will be called the functional feature of the software,

which leads to a state in which entities that have access rights to information cannot implement them

without hindrance.

Obviously, vulnerabilities can be complex - for example, vulnerabilities that simultaneously

threaten the integrity and confidentiality of information, or vulnerabilities that simultaneously threaten

the correct operation of software, integrity, confidentiality, and availability of information, etc.

Given the above, let's develop a mathematical model of software vulnerabilities in terms of

manifestations of vulnerabilities:

𝑉 =

{

𝐶𝑤𝑣 ∀(𝐶𝑤𝑣 ∈ 𝐹𝑇) ∩ ∃(𝐶𝑤𝑣 → 𝐹)
𝐼𝑖𝑣 ∀(𝐼𝑖𝑣 ∈ 𝐹𝑇) ∩ ∃(𝐼𝑖𝑣 → (𝐷𝑗 ≠ 𝐷𝑗−1))

𝐼𝑐𝑣 ∀(𝐼𝑐𝑣 ∈ 𝐹𝑇) ∩ ∃ (𝐼𝑐𝑣 → (𝐼𝑗 ≠ 𝐼𝑗−1) ∩ (𝐼𝑗 > 𝐼𝑗−1))

𝐼𝑎𝑣 ∀(𝐼𝑎𝑣 ∈ 𝐹𝑇) ∩ ∃ (𝐼𝑎𝑣 → (𝐴𝑗 ≠ 𝐴𝑗−1) ∩ (𝐴𝑗 < 𝐴𝑗−1))

𝐶𝑤𝑣 ∩ 𝐼𝑖𝑣
𝐶𝑤𝑣 ∩ 𝐼𝑐𝑣
𝐶𝑤𝑣 ∩ 𝐼𝑎𝑣
𝐼𝑖𝑣 ∩ 𝐼𝑐𝑣
𝐼𝑖𝑣 ∩ 𝐼𝑎𝑣
𝐼𝑐𝑣 ∩ 𝐼𝑎𝑣
𝐶𝑤𝑣 ∩ 𝐼𝑖𝑣 ∩ 𝐼𝑐𝑣
𝐶𝑤𝑣 ∩ 𝐼𝑐𝑣 ∩ 𝐼𝑎𝑣
𝐶𝑤𝑣 ∩ 𝐼𝑖𝑣 ∩ 𝐼𝑎𝑣
𝐼𝑖𝑣 ∩ 𝐼𝑐𝑣 ∩ 𝐼𝑎𝑣
𝐶𝑤𝑣 ∩ 𝐼𝑖𝑣 ∩ 𝐼𝑐𝑣 ∩ 𝐼𝑎𝑣

where: FT = {ft1,…,ftm } – set of all software functional features; m is the total number of all software

functional features; j – the time after performing the functional feature with the vulnerability; (j-1) – the

time before performing the functional feature with the vulnerability; Dj – set of data after the execution

of the functional feature with the vulnerability; Dj-1 – set of data before performing the functional feature

with a vulnerability; Ij is the set of data that can be used after performing a functional feature with a

vulnerability; Ij-1 – set of data that can be used before performing the functional feature with a

vulnerability; Aj – set of data that can be freely used by an entity that has access to them, after

performing a functional feature with a vulnerability; Aj-1 is a set of data that can be freely used by an

entity that has access to them before performing the functional feature with a vulnerability.

3. Criteria and rules for classifying the software failures and vulnerabilities

As proved in Section 1, the current challenge is to predict software failures, for which the problem

of classification of software failures should be solved first. To solve the problem of software failure

classification, it is necessary to formulate failure classification criteria. Given the proposed definitions

of failure types, let’s propose the following failure classification criteria:

1. Loss of operability (ability to function) of the software

2. Loss of data (all or part) of the software

3. The need to restart the computer

Given the proposed definitions of types of vulnerabilities, let's propose the following criteria for

classifying the vulnerabilities:

1. Occurrence of software failure

2. Loss of completeness of data

3. Leakage of unauthorized information

4. Impossibility to obtain permitted information

Using the developed mathematical model of failure, and also the proposed criteria of classification

of failures of the software, let's construct rules of classification of failures:

1. If the state si of the software after cessation of operation is operational (si ϵ S) and during the

cessation of operation there was no data loss, i.e. Di = Di-1, the failure is insignificant

2. If the state si of the software after cessation of operation is operational (si ϵ S), but during the

cessation of operation there was a loss of data, i.e. Di < Di-1, the failure is significant

3. If the state si of the software after cessation of operation is not operational (si is not an

element of the set S), the failure is critical

Using the developed mathematical model of vulnerability and the proposed criteria of

classification of vulnerabilities, let's construct rules of classification of vulnerabilities:

1. If during the execution of the h-th functionality of the software it stopped functioning for a

time th, which exceeds the specified for the software of this type threshold time tlim (th > tlim), then

the h-th functionality of the software is correct work vulnerability

2. If after the execution of the h-th functionality of the software there was a loss of completeness

of data, i.e. Dj (h) ≠ Dj-1 (h), then h-th functionality of the software is information integrity

vulnerability

3. If after the execution of the h-th functionality of the software there was a data leak, i.e. Ij (h) ≠

Ij-1 (h), and Ij (h) > Ij-1 (h), then h-th functionality of the software is information confidentiality

vulnerability

4. If after the execution of the h-th functionality of the software there is an impossibility to

obtain the information allowed by the user, i.e. Aj (h) ≠ Aj-1 (h), and Aj (h) < A-1 (h), then h-th

functionality of the software is information availability vulnerability

5. If during the execution of the h-th functionality of the software it stopped functioning for a

time th, which exceeds the specified for the software of this type threshold time tlim (th > tlim), there

was a loss of completeness of data, i.e. Dj (h) ≠ Dj-1 (h), then the h-th functionality of the software is

correct work and information integrity vulnerability

6. If during the execution of the h-th functionality of the software it stopped functioning for a

time th, which exceeds the specified for the software of this type threshold time tlim (th > tlim), and

there was a data leak, i. e. Ij (h) ≠ Ij-1 (h), and Ij (h) > Ij-1 (h), then the h-th functionality of the software

is correct work and information confidentiality vulnerability

7. If during the execution of the h-th functionality of the software it stopped functioning for a

time th, which exceeds the specified for the software of this type threshold time tlim (th > tlim), and

there is an impossibility to obtain the information allowed by the user, i.e. Aj (h) ≠ Aj-1 (h), and Aj (h)

< A-1 (h), then the h-th functionality of the software is correct work and information availability

vulnerability

8. If after the execution of the h-th functionality of the software there was a loss of completeness

of data, i.e. Dj (h) ≠ Dj-1 (h), and there was a data leak, i. e. Ij (h) ≠ Ij-1 (h), and Ij (h) > Ij-1 (h), then h-th

functionality of the software is information integrity and information confidentiality vulnerability

9. If after the execution of the h-th functionality of the software there was a loss of completeness

of data, i.e. Dj (h) ≠ Dj-1 (h), and there is an impossibility to obtain the information allowed by the

user, i.e. Aj (h) ≠ Aj-1 (h), and Aj (h) < A-1 (h), then h-th functionality of the software is information

integrity and information availability vulnerability

10. If after the execution of the h-th functionality of the software there was a data leak, i. e. Ij (h) ≠

Ij-1 (h), and Ij (h) > Ij-1 (h), and there is an impossibility to obtain the information allowed by the user,

i.e. Aj (h) ≠ Aj-1 (h), and Aj (h) < A-1 (h), then h-th functionality of the software is information

confidentiality and information availability vulnerability

11. If during the execution of the h-th functionality of the software it stopped functioning for a

time th, which exceeds the specified for the software of this type threshold time tlim (th > tlim), there

was a loss of completeness of data, i.e. Dj (h) ≠ Dj-1 (h), and there was a data leak, i. e. Ij (h) ≠ Ij-1 (h),

and Ij (h) > Ij-1 (h), then the h-th functionality of the software is correct work, information integrity

and information confidentiality vulnerability

12. If during the execution of the h-th functionality of the software it stopped functioning for a

time th, which exceeds the specified for the software of this type threshold time tlim (th > tlim), there

was a data leak, i. e. Ij (h) ≠ Ij-1 (h), and Ij (h) > Ij-1 (h), and there is an impossibility to obtain the

information allowed by the user, i.e. Aj (h) ≠ Aj-1 (h), and Aj (h) < A-1 (h), then the h-th functionality of

the software is correct work, information confidentiality and information availability vulnerability

13. If during the execution of the h-th functionality of the software it stopped functioning for a

time th, which exceeds the specified for the software of this type threshold time tlim (th > tlim), there

was a loss of completeness of data, i.e. Dj (h) ≠ Dj-1 (h), and there is an impossibility to obtain the

information allowed by the user, i.e. Aj (h) ≠ Aj-1 (h), and Aj (h) < A-1 (h), then the h-th functionality of

the software is correct work, information integrity and information availability vulnerability

14. If after the execution of the h-th functionality of the software there was a loss of completeness

of data, i.e. Dj (h) ≠ Dj-1 (h), there was a data leak, i. e. Ij (h) ≠ Ij-1 (h), and Ij (h) > Ij-1 (h), and there is an

impossibility to obtain the information allowed by the user, i.e. Aj (h) ≠ Aj-1 (h), and Aj (h) < A-1 (h),

then h-th functionality of the software is information integrity, information confidentiality and

information availability vulnerability

15. If during the execution of the h-th functionality of the software it stopped functioning for a

time th, which exceeds the specified for the software of this type threshold time tlim (th > tlim), there

was a loss of completeness of data, i.e. Dj (h) ≠ Dj-1 (h), there was a data leak, i. e. Ij (h) ≠ Ij-1 (h), and Ij

(h) > Ij-1 (h), and there is an impossibility to obtain the information allowed by the user, i.e. Aj (h) ≠

Aj-1 (h), and Aj (h) < A-1 (h), then the h-th functionality of the software is correct work, information

integrity, information confidentiality and information availability vulnerability

4. Experiments & Results

For example, let's consider the software for traffic light control at the intersection of streets,

developed by one of the IT companies in Khmelnytskyi (Ukraine).

Two failures occurred during the test operation of this software. After the first failure f1, the

software remained operational, but data was lost during the failure. After the second failure f2, the

software stopped working at all.

Using the developed rules of classification of failures, it was established that:

1. Failure f1 is significant, i.e. f1 ϵ Sf

2. Failure f2 is critical, i.e. f2 ϵ Cf

A detailed study of software for traffic light control at intersections showed that the failures were

due to a number of vulnerabilities in the analyzed software. Thus, one of the available functional

features v1 led to the termination of the software, another functional feature v2 led to the loss of data

completeness, the third functional feature v3 led to the impossibility of obtaining the information

allowed by the user, the fourth functional feature v4 led to the loss of data completeness and the

inability to obtain the authorized user information at the same time, and the fifth functional feature v5

led to the termination of the software, loss of data completeness and the inability to obtain the

information allowed by the user at the same time.

Guided by the developed rules of classification of vulnerabilities, it is established that:

1. Functionality v1 is correct work vulnerability, i.e. v1 ϵ Cwv (rule 1)

2. Functionality v2 is information integrity vulnerability, i.e. v2 ϵ Iiv (rule 2)

3. Functionality v3 is information availability vulnerability, i.e. v3 ϵ Iav (rule 4)

4. Functionality v4 is information integrity and information availability vulnerability, i.e. v4 ϵ

Iiv Iav (rule 9)

5. Functionality v5 is correct work, information integrity and information availability

vulnerability, i.e. v5 ϵ Cwv Iiv Iav (rule 13)

Then the distribution of the 5 vulnerabilities found in the software by their types is as follows –

Figure 1:

Figure 1: Distribution of the vulnerabilities in software for traffic light control at street intersections

Therefore, the proposed rules for classifying the software failures and vulnerabilities provide an

opportunity to facilitate the process of identifying errors and incorrect functionality in the software.

5. Conclusions

The paper analyzes the current state of the field of software reliability and security, as a result of

which the features of the software that make it unreliable and dangerous are identified. An analysis of

the approaches currently used to improve software reliability and security has shown that the

approaches are based on preventing complete system failure, but are not aimed at predicting and

resolving software failures and vulnerabilities. The paper proves that despite numerous studies in the

field of improving the reliability and security of system and application software, conducted over the

years, despite building a variety of approaches by many leading scientists in the field, vulnerabilities

and software failures still exist and manifest.

The classification of software failures and vulnerabilities depending on their manifestation,

mathematical models of software failure and vulnerabilities, as well as criteria for the classification of

software failures and vulnerabilities, which allow formulating rules for classification of software

failures and vulnerabilities, were developed. The proposed rules for the classification of software

failures and vulnerabilities provide an opportunity to facilitate the process of identifying errors in the

software.

A promising area of research is to develop a method and algorithm for predicting software failures

and vulnerabilities based on developed mathematical models of failure and vulnerabilities,

classification criteria, and rules for the classification of software failures and vulnerabilities.

Practical areas of application of the proposed approach are predicting the failures and

vulnerabilities of both application and system software, as well as the classification of failures and

vulnerabilities of both application and system software.

6. References

[1] A. Mitrokotsa, M. Rieback, A. Tanenbaum, Classifying RFID attacks and defenses. Information

Systems Frontiers 12 5 (2010) 491-505. doi: 10.1007/s10796-009-9210-z.

[2] S. McConnell, Code complete, Microsoft Press, Redmond, 2013.

[3] T. Ostrand, E. Weyuker, Predicting bugs in large industrial software systems. Lecture Notes in

Computer Science 7171 (2013) 71-93. doi: 10.1007/978-3-642-36054-1_3.

Vulnerabilitites

Correct work vulnerability
(functionalities v1, v5)

Information integrity
vulnerability (functionalities
v2, v4, v5)

Information availability
vulnerability (functionalities
v3, v4, v5)

[4] D. Cotroneo, D.Di Leo, R. Natella, R. Pietrantuono, A case study on state-based robustness

testing of an operating system for the avionic domain. Lecture Notes in Computer Science 6894

(2011) 213-227. doi: 10.1007/978-3-642-24270-0_16.

[5] Study: 359 Android code flaws pose security risks, 2015. URL: http://news.cnet.com/8301-

30685_3-20021437-264.html?part=rss&subj=news&tag=2547-1_3-0-20.

[6] N. Shalev, Improving system security and reliability with OS help, Research Thesis, 2018.

[7] J. Deepbawa, Boosting the cloud meta-operating system with heterogeneous kernels. a novel

approach based on containers and micro services. International Journal of Advances in

Electronics and Computer Science 6 9 (2019) 40-44.

[8] Even More Alternative Operating Systems: MINIX STILL ALIVE, 2017. URL:

https://dwaves.de/2017/03/25/even-more-alternative-operating-systems-minix-still-alive/.

[9] T. Hovorushchenko, Methodology of evaluating the sufficiency of information for software

quality assessment according to ISO 25010. Journal of Information and Organizational Sciences

42 1 (2018) 63-85. doi: 10.31341/jios.42.1.4.

[10] T. Hovorushchenko, Information technology for assurance of veracity of quality information in

the software requirements specification. Advances in Intelligent Systems and Computing 689

(2018) 166–185. doi: 10.1007/978-3-319-70581-1_12.

[11] O. Pomorova, T. Hovorushchenko, Research of artificial neural network's component of software

quality evaluation and prediction method, in: Proceedings of the 2011 IEEE 6-th International

Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and

Applications, IDAACS’2011, Prague, 2011, vol.2, pp. 959-962. doi:

10.1109/IDAACS.2011.6072916.

[12] T. Hovorushchenko, O. Pavlova, D. Medzatyi, Ontology-based intelligent agent for

determination of sufficiency of metric information in the software requirements. Advances in

Intelligent Systems and Computing 1020 (2020) 447-460. doi: 10.1007/978-3-030-26474-1_32.

[13] A. Drozd, M. Drozd, V. Antonyuk, Features of hidden fault detection in pipeline components of

safety-related system. CEUR-WS 1356 (2015) 476–485.

[14] O. Drozd, K. Zashcholkin, O. Martynyuk, O. Ivanova, J. Drozd, Development of checkability in

fpga components of safety-related systems. CEUR-WS 2762 (2020) 30-42.

[15] McAfee DAT 5958 Update Issues, 2010. URL:

http://isc.sans.edu/diary/McAfee+DAT+5958+Update+Issues/8656.

[16] How to fix battery life issues with iOS 6 or iPhone 5, 2012. URL: http://www.imore.com/how-

fix-battery-life-problems-ios-6-or-iphone-5.

[17] Vulnerabilities, 2021. URL: http://www.securitylab.ru/vulnerability/.

[18] Yahoo says 500 million accounts stolen, 2016. URL:

https://money.cnn.com/2016/09/22/technology/yahoo-data-breach.

[19] Equifax Made Major Errors That Led to Hack, Ex-CEO Concedes, 2017. URL:

https://www.bloomberg.com/news/articles/2017-10-02/ex-equifax-ceo-says-human-tech-failures-

allowed-breach-to-occur.

[20] Facebook Says Breach Affected About 50 Million Accounts, 2018. URL:

https://www.bloomberg.com/news/articles/2018-09-28/facebook-says-security-breach-affected-

about-50-million-accounts.

[21] A.G. Underwood Announces Record $148 Million Settlement With Uber Over 2016 Data

Breach, 2018. URL: https://ag.ny.gov/press-release/2018/ag-underwood-announces-record-148-

million-settlement-uber-over-2016-data-breach.

[22] What is Software Failure, 2021. URL: https://www.igi-global.com/dictionary/investigation-of-

software-reliability-prediction-using-statistical-and-machine-learning-methods/59093.

[23] M. Drozd, A. Drozd, Safety-related instrumentation and control systems and a problem of the

hidden faults, in: Proceedings of the 10th International Conference on Digital Technologies,

Zhilina, 2014, pp. 137–140. doi: 10.1109/DT.2014.6868692.

[24] O. Pomorova, T. Hovorushchenko, Artificial neural network for software quality evaluation

based on the metric analysis, in: Proceedings of IEEE East-West Design & Test Symposium,

EWDTS’2013, Kharkiv, 2013, pp.200-203. doi: 10.1109/EWDTS.2013.6673193

[25] M. Howard, D. LeBlanc, J. Viega, 24 Deadly Sins of Software Security: Programming Flaws and

How to Fix Them, McGraw-Hill Education, Redmond, 2010.

