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Abstract 
The plastic strips propagation in an ideal elastic-plastic body with colinear system of shear 

cracks has been studied. The cracks are opposed to the stable stresses on the faces. Stress-

and-strain state of the body, dependencies of the strips length on the loading for random 

distance between cracks and the level of their faces friction have been found. The value of 

critical loading has been found where the plastic strips are merging and some plastic fracture 

occurs. 

 

Keywords 1 
All-round compression, shear cracks, plastic zones, conformal representation. 

1. Introduction 

As a rule, the well-known investigations of plastic zones propagation for the bodies with cracks 

have dealt with their noninteracting and free of external stresses surfaces [1-3]. Under combined shear 
and compression stresses of three-dimensional arrays conditions the cracks opening is accompanied 

by the interaction of their faces. It is especially important in case of the cracks of 3d type as the 

distance between the surfaces during the crack formation process has been equal to 0 and the presence 

of compression has resulted in friction forces occurrence. The above-mentioned situation is typical in 
the problems of geomechanics, mechanics of earthquakes and rock formations due to the presence of 

big efforts of compression and widely spread shear mechanisms of deformation processes [4-6].  

So, we will study the propagation of plastic deformations within the conception of plastic 
deformations location in the cracks plane [1]. The basic reason for this assumption is the interaction 

of cracks faces, as we have known that it causes the narrowing of the continuous plastic zone in 

perpendicular to the crack direction and contributes to the thin-strip location of plastic deformations 
[7]. Moreover, friction also reduces the size and slows down the propagation of plastic zones [7]. On 

the contrary, the interaction of cracks of collinear system has accelerated the propagation of plastic 

strips. Thus, it is necessary to take into account both of these competing factors of impact on the 

plastic strips to determine the conditions of domination of each of them. 
 

2. Problem statement and formalization. 

Let an unbounded ideal elastic-plastic body containing the system of tunnel collinear cracks −𝑙 ≤
|𝑥 + 2𝑛𝑎| ≤ 𝑙, 𝑦 = 0    (𝑛 ∈ 𝑍) −∞ < 𝑧 < ∞ (2𝑙 – length of cracks, 2𝑎 – distances between their 
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centers), is loaded by the infinite shear efforts 𝜏𝑦𝑧
∞ = 𝜏∞, 𝜏𝑥𝑧

∞ = 0 (Figure ). Under extra compression 

by normal stresses conditions on infinities 𝜎𝑦𝑦
∞ = −𝑝 the crack is closed and it can’t  excite any 

normal homogeneous field of stresses in the environment: 𝜎𝑦𝑦(𝑥, 𝑦) = 𝜎𝑦𝑦
∞ = −𝑝 = const. The 

interaction of cracks faces is accompanied by their friction resulted in some extra tangent stresses on 
the cracks faces which can oppose the shear and whose values are  supposed to be stable and the same 

𝜏𝑦𝑧 = 𝜏0 = 𝑓0𝑝 (𝜏0 < 𝑘), where 𝑓0 - static coefficient of the  sliding friction. When 𝜏∞ > 𝜏0 the 

cracks faces are shifted, some extra tangent stresses are acting on their faces 𝜏𝑦𝑧 = 𝜏0 = 𝑓0𝑝 and 

some plastic strips are developing on the cracks continuation due to the concentration of stresses −𝑙 −
𝑑 ≤ |𝑥 + 2𝑛𝑎| ≤ 𝑙 + 𝑑, 𝑦 = 0    (𝑛 ∈ 𝑍), −∞ < 𝑧 < ∞, whose length 𝑑 should be found. In these 

plastic strips the yield criterion must be fulfilled: 𝜏𝑥𝑧
2 + 𝜏𝑦𝑧

2 = 𝑘2, where 𝑘 – shear limit of liquidity. 

Unlike linear case, due to the nonlinear character of the problem it cannot be reduced to the study of 

similar problems only in case of the given stress on infinities 𝜏𝑦𝑧
∞ = 𝜏∞ − 𝜏0. 

Under the defined conditions together with the above-mentioned uniform field of compression 

stress some anti flat stress-and-strain state arises in the body which can be found by the shear  𝑤(𝑥, 𝑦) 

. Two nonzero components of the stresses tensor are given by the formulae 𝜏𝑥𝑧 = 𝜇 𝜕𝑤 𝜕𝑥⁄  and 𝜏𝑦𝑧 =

𝜇 𝜕𝑤 𝜕𝑦⁄  (𝜇 – shear modulus of the material). The shear 𝑤(𝑥,  𝑦) is symmetric referred to the lines 

𝑥 = 𝑛𝑎  (𝑛 ∈ 𝑍) and is antisymmetric about X-axis. That is why it can be determined only in a half-

strip 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 < ∞ (area 𝐷).  

Due to the balance conditions and Hooke’s law, the function 𝜏(𝜁) = _𝑦𝑧(𝑥, 𝑦) + 𝑖𝜏𝑥𝑧(𝑥, 𝑦) is 

analytical one in the elastic part of the body. So, to determine stress-and-strain state of the body we 

will define a boundary problem for function 𝜏(𝜁) in the area 𝐷, consisting in the necessity to fulfill 

four conditions. 
1. Due to the symmetry we have obtained 

Im𝜏(𝜁) = 0    ((𝜁 = 𝑖𝑦, 𝑦 ≥ 0)⋃(𝜁 = 𝑥, 𝑙 + 𝑑 ≤ 𝑥 ≤ 𝑎)⋃(𝜁 = 𝑎 + 𝑖𝑦, 𝑦 ≥ 0)). (1) 

2. On cracks faces the stress 𝜏𝑦𝑧 = 𝜏0 = const, so 

Re𝜏(𝜁) = 𝜏0      (𝜁 = 𝑥, 0 ≤ 𝑥 ≤ 𝑙).     (2) 

3. In the area 𝑙 ≤ 𝑥 ≤ 𝑙 + 𝑑 the yield criterion has been fulfilled, so 
|𝜏(𝜁)| = 𝑘    (𝜁 = 𝑥, 𝑙 ≤ 𝑥 ≤ 𝑙 + 𝑑).     (3) 

4. Stress-and-strain state on infinities is defined by the formula 

lim
𝜁→∞

𝜏(𝜁) = _∞.      (4) 

As the function 𝜏(𝜁) in the zone 𝐷 is analytical and one-sheet, it conformally maps 𝐷 to the part of 

circle |𝜏| ≤ 𝑘, Re  𝜏 ≥ 𝜏0, Im  𝜏 ≥ 0 (zone 𝐺 Figure 2). In this case the following points match the 

 
Figure 1: Cross section of the body. 



areas boundaries 𝐷 and 𝐺: 𝜁 = ∞ + 𝑖ℎ → 𝜏 = 𝜏∞, 𝜁 = 0 → 𝜏 = 𝜏0, 𝜁 = 𝑙 → 𝜏 = 𝜏0 − 𝑖√𝑘2 − 𝜏0
2, 

𝜁 = 𝑙 + 𝑑 → 𝜏 = 𝑘. Section (𝜁 = 𝑖𝑦, 0 ≤ 𝑦 < ∞) within the zone 𝐷 is mapped to the interval (Im𝜏 =

0, 𝜏0 ≤ Re  𝜏 ≤ 𝜏∞); interval (𝜁 = 𝑥, 0 ≤ 𝑥 ≤ 𝑙) – to Re  𝜏 = 𝜏0 ,    − √𝑘2 − 𝜏0
2 ≤ Im  𝜏 ≤ 0, 

section (𝜁 = 𝑥, 𝑙 + 𝑑 ≤〰 ≤ 𝑎)⋃(𝜁 = 𝑎 + 𝑖𝑦, 𝑦 ≥ 0) – to the interval (Im  𝜏 = 0, 𝜏∞ ≤ Re  𝜏 ≤
𝑘). The interval (𝜁 = 𝑥, 𝑙 ≤ 𝑥 ≤ 𝑙 + 𝑑), corresponding to the plastic strip, is mapped to the circle 

arch (|𝜏| = 𝑘, −arccos(𝜏0 𝑘⁄ ) ≤ arg𝜏 ≤ 0 ). 

 

3. Study of plastic strips propagation 

The solution of the boundary problem (1)-(4) is reduced to the construction of the described 

conformal mapping [8]. We will introduce some additional complex plane 𝑡, where the areas 𝐷 and 𝐺 

match the upper half-plane 𝐻 = {Im𝑡 ≥ 0} (see Figure 2) and we will find the function 𝜏(𝜁) in 

parametric form 
 

 

𝜏 = 𝜏(𝑡),    𝜁 = 𝜁(𝑡)    (𝑡 ∈ 𝐻)     (5) 

Function 𝜏(𝑡) is given as a composition of elementary mappings: 

𝜏(𝑡) = 𝑘
𝑡6(𝑡)exp(𝑖𝜓0)+exp(−𝑖𝜓0)

𝑡6(𝑡)+1
 ,    (6) 

where 

𝑡6(𝑡) = 𝑡5(𝑡)𝜓0 𝜋⁄ , 𝑡5(𝑡) =
𝑡3(𝑡)+𝑀

𝑡3(𝑡)−𝑀
, 𝑡3(𝑡) = √

1−(𝑠+1)𝑡

(𝑠+1)𝑡
, 

𝑀 = −tg (
𝜋

2𝜓0
(2arctg

√𝑘2−𝜏0
2

𝜏∞−𝜏0
− 𝜋)), 𝜓0 = arccos

𝜏0

𝑘
, 𝑠 = −

𝑀2

𝑀2+1
. 

 

As 𝑧𝑞   (0 < 𝑞 < 1) we consider the analytical in the upper half plane function receiving actual 

added values at the same values of  𝑧. 

In the finishing point of the strip 𝜏 = 𝑘. So, from the formula (6) we have obtained the complex 

number of the certain point of the additional plane: 𝑡𝐸 = 1/(𝑠 + 1). 

The function determined by composition of elementary mappings  𝜁(𝑡) looks like: 

𝜁(𝑡) =
2𝑎

𝜋
arcsin (√𝑡sin

𝜋𝑙

2𝑎
).     (7) 

As 𝜁(𝑡𝐸) = 𝑙 + 𝑑, the length of plastic strips can be obtained from the last formula  

𝑑 =
2𝑎

𝜋
arcsin (

1

√𝑠+1
sin

𝜋𝑙

2𝑎
) − 𝑙.      (8) 

The length of plastic strips as functions of stresses have been calculated for different stresses and 

distance between cracks and for different levels of the faces friction and are shown Figure 3. 

 
Figure 2: Example figure 



 
The strips length can’t exceed the half distance between the tops of neighboring cracks. Stress 

𝜏∞ = 𝜏∞
∗  when 𝑑 = 𝑎 − 𝑙 can cause some ductile fracture of the body. From the formula (8) it is clear 

that the value of critical loading 𝜏∞ = 𝜏∞
∗  has satisfied the equation sin(𝜋𝑙/(2𝑎)) = √𝑠 + 1. Hence, 

𝜏0
∗ = 𝜏0 + √𝑘2 + 𝜏0

2tg (
𝜓0

2
(1 −

𝑙

𝑎
)).        (9) 

Under fixed levels of the friction of faces 

conditions (𝜏0 = const) the last par has given 

the dependence of critical loading on the 

distance between cracks (Figure 4). The 

interaction of faces has very strong impact on 

the value of critical loading for the cracks 

locating very close to each other. The bigger 
distance between cracks the more weaken is the 

interaction impact. 

 
 

 

 

Without the interaction of faces (𝜏0 = 0) the 
formulae (8), (9) have given the known 

dependencies [9]: 

 
 

𝑑 =
2𝑎

𝜋
arcsin (

𝑘2+𝜏∞
2

𝑘2−𝜏∞
2 sin

𝜋𝑙

2𝑎
) − 𝑙,      𝜏∞

∗ = 𝑘tg (
𝜋

4
(1 −

𝑙

𝑎
)). 

In case of large distance between cracks the function stresses has been expressed by the formulae 

(5) where 𝜏(𝑡) is the same as for the general case and 𝜁(𝑡) = 𝑙√𝑡. The length of plastic strips has been 

described by the following expression 𝑑 = 𝑙((𝑠 + 1)−1/2 − 1).  
The conducted study has proved a considerable impact of cracks interaction on plastic strips 

development near their tops. Therefore, the important problem requiring a special attention is the 

study of cracks interaction located in neighbourhood in an elastic-plastic body resulted in possible 
plastic strips coalescence and plastic fracture. 

 

 
Figure 3. 

 
Figure 4. 
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