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Abstract

A continuous-time conditional linear random process (CLRP) is studied as a mathematical
model of the stochastic signal generated in the form of a sum of a large quantity of
stochastically dependent random impulses occurring at the Poisson times with applications in
different areas of computer science and information technology. The model has been defined
as a special stochastic integral driven by the process with independent increments. The
characteristic function of CLRP has been obtained, the examples of finding the moment
functions have been considered. The conditions for CLRP to be strict sense stationary have
been justified.
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1. Introduction

A justification of mathematical and computer simulation models of informative stochastic signals,
images, processes and interferences is one of the most important steps of creating information and
measuring systems, controlling systems in radio engineering and communications, computer-aided
systems of analysis and prediction of electricity, gas, water consumption, information technology of
medical diagnostics, etc. A mathematical model is theoretical foundation for the structural, program
and technical implementation of the developed information systems and technologies, the basis of
algorithms for digital signal processing, decision-making methods. Therefore, the model should be
adequate to the measuring signal or process, to reflect the physical mechanism of its generation, and
also be suitable for its theoretical analysis and solving the problems of identification and estimation of
informative characteristics by the results of experiments, computer simulation.

The above requirements are satisfied by signal models in the form of linear random processes (LRP)
and sequences [1, 2]. Most often LRP with infinitely divisible distributions is used in the problems of
mathematical modelling of signals, which are formed by additive interaction of infinity number of
stochastically independent random impulses occurring at the jump points of a Poisson counting process
[1, 2, 3]. However, if these impulses are stochastically dependent random functions and/or occur at non-
Poisson times (e.g. in the problems of the electricity consumption forecasting [3], analysis of radar
clutter, dynamic loads of mechanical systems [4], electrophysiological signals of the brain [5], etc.),
then an adequate mathematical model is conditional linear random process (CLRP). Thus, studying the
properties of CLRP is an important problem for mathematical modelling in the above applications.

The idea of a conditional linear random process definition is to generalize a linear random process
by replacing the deterministic kernel of LRP with a random function, which obviously has to satisfy
the certain conditions to ensure the convergence of the corresponding stochastic integral, and has
properties that allow the practical application of such kind of model.
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Very often a linear random process is also interpreted as the output signal of some linear dynamic
system where the input signal is the white noise. From this point of view, the idea of constructing a
conditional linear random process is to represent it as a response of a linear dynamic system with
random parameters to the input signal in the form of white noise.

Analysis of literature shows that the concept of "conditional linear random process"” has been defined
by P.A. Pierre [6] in the framework of research conducted by RAND Corporation (USA) on the
problems of radar digital signal processing and interference. A physically reasonable model of the signal

has been presented as a random process &(¢) = Z ¢, (t—1,), thatis as a sum of large amount of random

k=—w0

impulses ¢, (¢) occuring at the random time moments ...<t, , <71, <T,,, <... P.A. Pierre has been
called the process &(#) linearif ¢, (¢) are stochastically independent and identically distributed random
impulses, and time moments of their occurrence form the Poisson flow. If ¢, (#) are stochastically
dependent or/and ...<t, |, <7, <T,,, <... is not Poisson flow then &(¢) is “conditionally linear random

process”.

The main goal of the paper is to justify the expressions of univariate and multivariate characteristic
functions of a conditional linear random process and prove then conditions for CLRP to be strict sense
stationary. That is, the paper extends some results presented in [7].

2. Conditional Linear Random Process Definition

Definition. A real-valued CLRP &(w,?), ®€Q, ¢ € (—o0,0) (where {Q, 8’,P} is some probability
space) is defined in [7] as:

E(o,1) = T o(o,1,0)dn(m,1), e, t € R, (1)

where Q is a sample space; ¢(o,7,7),7,/€R is a real-valued stochastic kernel of CLRP;
N(®,1), T e (—o,0) is a mean square continuous Hilbert process with independent increments, that

satisfies the following conditions: En(w,t)=a(t) <o and Var[n(oo,r)]=b(r)<oo, V1 ; random
functions ¢(m,t,7) and n(w,t) are stochastically independent.

For the simplicity, the argument ® is usually further omitted. Also stochastic integral (1) is assumed
to be exist in the mean-square convergence sense [7].
If kernel ¢(t,7) is nonrandom function then &(¢) is LRP [1]. The properties of LRP have been

studied comprehensively [1, 2] using the method of characteristic functions. The relationships between
linear and conditional linear random processes have been represented in [7].

P. Pierre [6] has been defined the CLRP as the stochastic integral (1), but the process with
independent increments is homogeneous and centered. It should also be noted that in contrast to the
constructions of stochastic integrals of It6 and Stratonovich [8] where the kernel function is measurable
with respect to the filtration of sigma algebras generated by the process m(t), in the expression (1)

random functions @(®,t,?) and n(w,t) are stochastically independent, which on the one hand, makes

it easier to analyze the probabilistic characteristics of CLRP, and on the other hand is adequate to the
above mentioned applied problems of mathematical modeling of stochastic signals in computer science
and information technology. The stochastic integral (1) is constructed as follows.

Let [a,b) €R be the interval which is divided on » subintervals by t,,t,1,,...,T,, such that
a=1,<1,<1,<..<t,=b, that is the intervals we consider have the following form:

[10,171 ), [1:1,172 ), [rn_l,rn) . Let us construct the following integral sums for each time moment ¢:
1,0 =2 o(t,,,)AN(T,), (2)
i=1

where An(t,) =n(t)-n(t, ), i=Ln.



Note that, the values of the function ¢(t,#) of the each item of integral sum (2) are taken at the
points t, |, that is at the left endpoint of the each i -th subinterval [tH,ri ), i= I,_n . The same way the
stochastic It6 integral is constructed [8]. But in our case any value ¢(%,,7) can be taken, where 7, is
any point from the interval [Ti_pT,- ), i= I,_n , the corresponding limit of the sequence of integral sums

will not change, because the random functions ¢(t,7) and m(t) are stochastically independent by
definition.
Thus, if when n—>o we have max(t, -7, ,)— 0 and limit in the mean square exists of the

i=l,n
" b
sequence of the integral sums (2), then we write / .z'.m.Z(p(rFl ,HAN(T,) = I(p(t,t)dﬂ(t) .
n—x0 i=1 Y
Improper integral (1) is constructed then as a following Ilimit (if it exists):

&0 = [ o(e.ndn() =Lim [ o(r.0dn(D).

b a

3. Conditional and Unconditional Characteristic Functions

Let 5 0 C ) is a o-subalgebra generated by the random function @(w,t,#) satisfying the following

conditions:

T |(p(co,r,t)||da(r)| <00, T |(p(o),r,t)|2 db(t) <, Vi with probability 1.

Consider [ (o,7)= Z(P(m:Tifwf)An(man) (this is the sequence of integral sums (2), but here we
i=1
justadd e Q to improve the clarity of representation).
Let EAn(o,t,) =Aa(t,), Var[An((o, ’C[.)] = Ab(t,) be the mathematical expectation and variance of

the increment An(t,)=n(o,t,)-n(w,7,,), and AK(x;t,) be its Poisson jump spectrum in

Kolmogorov’s form, i=1,n.

To obtain the expression for the characteristic function of CLRP we use the mathematical theory of
conditional characteristic functions. Definitions and properties of conditional characteristic function,
and also concept of conditionally independent random variables have been developed in [9, 10, 11].

Elements of the sum (2) are conditionally independent ( 5 , -independent) infinitely divisible random
variables. According to [12], conditional (with respect to & ») characteristic function ( O , ~Characteristic
function) of the sum of ,-independent random variables is equal to the product of their O 0"
characteristic functions. Thus, & , - characteristic function of random variable 7, (w,?) (at the certain
t) is equal:

S ) = B[O

5,)=

=exp iuzn: o(o,7, ,,1)Aa(t,) + zn: T (.e"“’“”"”TH 1= iuxp(w, T, ,t))dAK—Ex;T") .
i=1

i=1

Taking into account the above expression and also the results of [10], we can state that
lim 1ir2 £ (ust) = f;“’ (u3t)

a—>wo n—»
b——

with probability 1, where fg“’ (u;t) is characteristic function of linear random process [1, 2]. That is,

with probability 1 the following holds:



fgﬁ'w (u;1) = E(equ,((u,t)

5,)=

—exp{zujt (P(CO T t)da(r)+ J. I iuxg(0.10) _ 1 _ iWC(P((D,T,t))ddeZ(X;T) ‘

—00 —00

Let fn (M;l) — Eezul,,(m,t) — E|:E(€m[” (0,1)

O, )} =Efn°“’ (u;t) be unconditional characteristic function of

the integral sum / (o,¢) . Taking into account the results of [12], we can obtain the following expression
(this holds with probabiity 1):
lim hmf (u;t) = hm hmEf” (u;t)=E hm 11mf (u;t) = Ef; (w;0) = 1. (wst).

a—>%0 n—
b——x ba —0 ha —o0

Thus, one-dimensional characteristic function of CLRP has the following form:

£, (wst) = E[E(el'“ﬂm &)} _

d.d K (x; (3)
We can easily ﬁnd that mathematical expectatlon of CLRP is equal to
1 af (u3) T
Eg(r) =—— ” = [ Eg(z.0)da(7).
u=0 —00

Similarly, the moment function of second order is

a ee)
(&) l.l f“v(” o — [ [ E(otx.00(,.0) da(x, Mda(z,) + [ B (r.0)db(2),

u=0 T¥*

Thinking the same way we can easily find the expression for multivariate (m-dimensional)
characteristic function of CLRP, which has the following form:

iiuk&(m,tk) tiuk&(w %)

fe(uuy,sut, sttt ) = Ee =E|E|e* SIE

=Eexp {iZuk j o(,7,t, )da(t) +
k=1

2w i@ oy ddK
_,’_II e = —1- zxZuk(p((D‘Et) %:

u,,t, €(-o0,0), k= I,_m
Moment function of third order of CLRP can be obtained (for example) using the expression (4) (we
write ¢(t,¢) here, omitting ® to simplify the expression):

fi(ul,uz,uptl,tz,t )|

E(E0)RLIAn)) =5 ==

uy =ty =u3=0

= I I I E ((P(T1 1)9(T,,8)0(15, 1 ))da(‘cl Ma(t,)da(t;) +

—0

+ E((P(Tl’tl )(P(Tz’tz)(P(Tzst3))da(T1 )db(t,)+

+

I
I

E((P(Tl ,5)0(1,,4 )(p(rz,t3))a’a(rl )db(t,)+



+ [ [E(0(t,6)0(t,,1)0(t,,1,))da(t )db(t,) + + [ [ E(@(r,1)0(t,8,)0(tt,)) xd d K (x;7)

—00 —00 —00 —00

As we already mentioned before, a linear random process has an infinitely divisible distribution
5,)

function. From the above we can conclude that {, - characteristic function f:‘” (u;t) = E(e"“i(“’”)

is infinitely divisible with probability 1, moreover

f:g&» (u:t) = E(eiug(m,t)

X

,&p) _ exp{iums‘“’ (o,2) + T (e”’“ -1- iux)

—00

d K> (oo,x;t)}
2 >

where m" (o,f) = E(i(t)| O, ) = T o(w,7,t)da(7);

K> (0,x;1) = T T ¢’ (0, ,OU (x = z0(>,T,0))d.d K (z,7) .

Unconditional characteristic function of CLRP then can be represented as:
s t A KD (0,50)
Je ;1) =Ef.° (ust) = Eexp| ium™ (o,1) + I (e”‘" -1 —mx)"—2 . (5)
o X

M. Loeve [9] called this type of distribution as “weighted infinitely divisible distribution”
(“weighting function” here is the distribution function of random characteristics m"™ (w,f) and

Kg *(w,x;t)), authors of [13] and others called this kind of distribution as «mixture of infinitely

divisible distributiony.

4. Strict Sense Stationarity of Conditional Linear Random Process

Using the obtained expressions for the characteristic functions of the conditional linear random
process the properties of strict sense stationarity and cyclostationarity [7, 14] can be studied. We justify
the conditions of CLRP to be strict sense stationary in this paper.

Statement. Let for any s € R the following conditions holds:

e random functions (fields) ¢(t,#) and ¢(t+s,t+s) are stochastically equivalent in the wide

sense, that is, their finite-dimensional distributions are equal:

P[ﬂﬂ{m: o(1,,1;) < Xij}j = P[ﬂﬂ{m (T, + 5,8, +5) < xl.j}J, x; €R; (6)

i=1 j=I i=1 j=1
e 1(1) is Levy process, that is:
da(t)=da(t+s)=a,
ddK(x;t)=ddK(x;t+s)=d K(x)dr.

Then m-dimensional characteristic function (4) of CLRP satisfies the following condition

JeQupttyyeestt, 3850 sest,) = fo (Ut st 38 45,0 + 5,008, +5), Vs eR. (7)

that is, CLRP is a strict sense stationary.

Remark. We use some special notations (for example, from [15]) below to simplify the expressions.
If random variables  and n have the same distribution functions (distribution laws), then we denote

itas Law(§) = Law(n), the same, if random vectors (§,&,,...,§,) and (n,,n,,...,n,) have equal n-
dimensional joint distribution functions, then we write Law(§,&,, ..., §,) = Law(n,,n,, ..., N, )-
Indeed, from (6) it follows that



Law(aiuk T o(t,t, )dr] = Law(aiuk T o(t+s,t, +5)d(t+ s)] =

—0

= Law(aZuk _[ o(t,t, + s)dtJ,
k=1 —o

o 0 LxZukgo('c t) d K d
Law _“ I e —1—1X2uk(l)(r t ) & _
© o ,xzukq)(rﬂ b +s) m 4 K0 d
= Law I I e —l—ixZuk(p(r+s,tk+s) M _
o k=1 x
© © ixZuk(p(T,lkJrY) d K(x)dr
Law J I e -1- zxZuk(p(t t,+58) |=———|.

Thus, we obtain that distribution of m-dimensional , -characteristic function of CLRP satisfy the
following equation:
Law(f”“’ ()5 Uy et 58, et ) = Law(f;“’ () Uyt 38+ 8,8, + 8,01 +5)) .

Because of f, (u;,uy,...,1,,31,L,..51,) =Ef§“’ ()15t 52,1555, ) , We conclude that (7) holds.

That is, CLRP under the above conditions is a strict sense stationary.

The methodology of applied mathematical modelling and digital stochastic signal processing using
the theoretical basis of conditional linear random processes has been represented in [7].

Figure 1 represents the relationships between the most important mathematical models that are close
by structure to the class of stationary conditional linear random processes and have a wide application
area in computer science and information technology.

Figure 1: Venn diagram of classes of stationary random processes: AUBUCUD is CLRP (1) driven by
Levy process; BUC is LRP driven by Levy process; A is CLRP driven by Wiener process; B is LRP driven
by Wiener process; C is LRP driven by compound Poisson process; D is CLRP driven by compound
Poisson process; E is a process of type (1), driven by renewal-reward process.

5. Conclusion

The construction of stochastic integral with the random kernel, driven by the process with
independent increments has been considered, as a result the continuous-time real-valued conditional
linear random process has been defined.

The expressions for univariate and multivariate characteristic functions of CLRP have been proven
which belong to the class of the mixture of infinitely divisible distributions. The moment functions of



first, second, and third order have been obtained as the examples of using the characteristic function
method for probability analysis of stochastic signal using the mathematical model in the form of CLRP.

Using the conditional characteristic function approach the conditions for CLRP to be stationary in
the strict sense have been proven which can be used to justify and study the corresponding properties
of mathematical models of signals taking into consideration the natural features of their generation.
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