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Abstract. This paper presents the results of LILY, which is an ontology 
mapping system, for OAEI 2007 campaign. To accurately describe what the 
real meaning of an entity in the original ontology is, LILY extracts a semantic 
subgraph for each entity. Then it exploits both linguistic and structural 
information in semantic subgraphs to generate initial alignments. If necessary, 
using these initial results as input, a subsequent similarity propagation strategy 
could produce more alignments, which often can not be obtained by the 
previous process. The preliminary results of the experiments for four tasks (i.e. 
benchmark, directories, anatomy and conference) are presented. The discussion 
of the results and future work of LILY are also given. 

1  Presentation of the system 

Currently more and more ontologies are distributedly used and built by different 
communities. Many of these ontologies would describe similar domains, but using 
different terminologies, and others will have overlapping domains. Such ontologies 
are referred to as heterogeneous ontologies, which is a major obstacle to realize 
semantic interoperation. Ontology mapping, which captures relations between 
ontologies, aims to provide a common layer from which heterogeneous ontologies 
could exchange information in semantically sound manners. 

LILY is a system for solving the issues related to heterogeneous ontologies. One 
important function of LILY is to match heterogeneous ontologies. LILY uses the 
semantic subgraph to describe the meaning of an entity. Then linguistic and structural 
similarity algorithm and similarity propagation strategy are exploited to create the 
alignments between ontologies. 

1.1  State, purpose, general statement 

When LILY is used to find alignments between heterogeneous ontologies, it tries to 
utilize all useful information to discover the correct matching results. Currently it 
does not use any external knowledge such as WordNet. The matching process consists 
of three main steps: (1) Extracting semantic subgraph LILY tries to use a semantic 
subgraph to represent the real meaning for a given entity in an ontology. A semantic 
subgraph, which is also a subgraph of the original ontology, is extracted by a variant 



algorithm based on the connection subgraphs 
discovery algorithm [1]. (2) Computing alignment 
similarity Through analyzing the literal and structural 
information in the semantic subgraphs, LILY 
computes the similarity confidences between entities 
from different ontologies. (3) Similarity propagation 
In most cases, LILY can find satisfactory alignment 
results after the second process. If few alignment 
results are got, a strategy will decide whether to take 
similarity propagation process. The similarity 
propagation could produce more alignments that can 
not be found in the previous processes. The matching 
process is shown in Fig. 1. 

LILY is still being improved and enhanced, and 
the lasted version is V1.2. 

1.2  Specific techniques used 

LILY aims to provide high quality alignments 
between concept/property pairs. The main specific 
techniques used by LILY are as follows. 

Semantic subgraph An entity in a given ontology has its specific meaning. In our 
ontology mapping view, capturing such meaning is very important to obtain good 
alignment results. Therefore, before similarity computation, LILY first describes the 
meaning for each entity accurately. The solution is inspired by the method proposed 
by Faloutsos et al. for discovering connection subgraphs [1]. It is based on electricity 
analogues to extract a small subgraph that best captures the connections between two 
nodes of the graph. Ramakrishnan et al. also exploits such idea to find the informative 
connection subgraphs in RDF graph. We modify the method for extracting an n-size 
subgraph for a node or edge in an ontology graph. The subgraphs can give the precise 
descriptions of the meanings of the entities, and we call such subgraphs semantic 
subgraphs. The details of the semantic subgraph extraction process will be reported 
elsewhere. 

Alignment similarity computation The similarity computation is based on the 
semantic subgraphs, i.e. all the information used in the similarity computation is come 
from the semantic subgraphs. LILY uses two kinds of descriptions to interpret the 
concepts and properties. The first is the basic description, which is a document 
consisting of the identifier, label and comments. The second is the semantic 
description. A semantic description of a concept contains the information about class 
hierarchies, related properties and instances. A semantic description of a property 
contains the information about hierarchies, domains, ranges, restrictions and related 
instances. For the descriptions from different entities, we calculate the similarities of 
the corresponding parts. Finally, all separate similarities are combined with the 
experiential weights. The descriptions collect the linguistic and structural information 
of entities. Therefore, for the regular ontologies, LILY can find satisfactory 
alignments in most cases. 

Fig. 1. Matching process 
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Similarity propagation When the ontologies lack of regular and clear literal 
descriptions, the above method just returns few alignments. LILY uses similarity 
propagation strategy to compensate for it. Compared with other similarity propagation 
methods such as similarity flood [3] and SimRank [4], our similarity propagation 
defines stronger propagation condition and is based on the semantic subgraphs. The 
propagation graph is not stable, but is incremental during propagation process. Using 
similarity propagation can find more alignments that cannot be found in the previous 
process. However, the similarity propagation is not always perfect. When more 
alignments are discovered, more incorrect alignments would also be introduced by the 
similarity propagation. So it requires a strategy to determine when to use the 
similarity propagation. 

Automatic threshold selection The previous processes will return a similarity 
matrix, which represents the confidence level between entities from two ontologies. It 
is need a threshold to filter the low confidence values and keep high confidence ones. 
However, the threshold is usually set up manually, that cannot adapt to all matching 
situations. LILY treats the similarity matrix as an image, and then uses the classic 
image threshold selection algorithm to find a threshold automatically. There are many 
image thresholding methods [5]. After comparing the effectiveness of a variety of 
thresholding algorithms, we choose the maximum entropy approach to calculate the 
threshold [6]. After filtering, final 1-1 alignments are generated using the stable 
marriage strategy. 

1.3  Adaptations made for the evaluation 

In the evaluation, the size of semantic subgraph would influence on the alignment 
results. We set 5-size semantic subgraphs for most test cases. When the ontologies 
lack of regular literals, we set 10 to 35-size semantic subgraphs for capturing more 
structural information. For large scale ontologies, we just set 2 to 3-size semantic 
subgraphs for the purpose of reducing the time of extracting semantic subgraphs. 

1.4  Link to the system and the set of provided alignments 

A demo version of LILY and the alignment results for OAEI2007 campaign are 
available at http://ontomappinglab.googlepages.com/oaei2007. 

2  Results 

In this section, we will analyze the performances and problems during taking the four 
alignment tracks. 



2.1  benchmark  

The benchmark tests the performance of matching system during various ultimate 
situations. 

101-104 This test set contains same, irrelevant, ontology language generalization 
and restriction ontologies. LILY plays well for these test cases. But for the irrelevant 
ontology 102, LILY returns several alignments because it cannot decide whether the 
two ontologies are irrelevant, so it tries to find any possible alignments. 

201-210 In the test cases, the structure of ontology is preserved, but the labels and 
identifiers are replaced by random names, misspellings, synonyms and foreign names. 
The comments have been suppressed in some cases. LILY can produce good results 
for this test set. Even without right labels and comments information, LILY can find 
most correct alignments through making use of other information such as instances. 
Using few alignment results obtained by the basic methods as inputs, the similarity 
propagation strategy will generate more alignments. 

221-247 The test cases can be divided into two subgroups: 221-231 and 232-247. 
The first subgroup contains 11 kinds of modifications, such as the hierarchy is 
flattened or expanded, and individuals, restrictions and datatypes are suppressed. Due 
to the labels and comments are preserved, the modifications have little influence on 
our system. LILY can find most correct alignments using the labels and comments 
information. In the second subgroup, the modifications are the combinations of the 
ones used in 221-231. LILY can obtain good results for 232-247 as well. 

248-266 This is the most difficult test set. All labels and identifiers are replaced by 
random names, and the comments are also suppressed. LILY uses the information 
from the semantic subgraphs to look for alignments. However, no enough information 
is provided in the ontologies, and the similarity computation process can only find 
few alignments. Subsequently, using these initial results as input, LILY exploits the 
similarity propagation algorithm to discover more alignments. In our experiments, too 
smaller and too bigger size semantic subgraph can not produce good alignments. 10-
35 is a suitable size range in our experience. In 254 and 262, since almost all literal 
and structure information are suppressed, the similarity propagation can not find more 
results, so LILY just can produce limit results. When some structure information is 
preserved, similarity propagation will play a role and can generate more alignment 
results. 

301-304 This test set are the real ontologies. For LILY just can find equivalent 
alignment relations, the inclusion alignments can not be generated. For 301-302, 
LILY finds most correct alignments, but it also returns some wrong results. The 
alignment results for 303 are far from satisfactory. We think the reason might be that 
303 is no individuals and with shallow class hierarchy, and there are no direct 
connections between the classes and properties. Without the external knowledge, 
LILY can not produce good results for 303. 304 has similar structure and vocabularies 
to the reference ontology 101, so LILY outperforms other three ontologies. 



2.2  anatomy 

The anatomy track consists of two real large-scale biological ontologies. Handling 
such ontologies is a big problem for LILY, because extracting semantic subgraphs 
would need long time and large memory space. Even though LILY sets up small size 
semantic subgraphs for this matching task, it needs about 4 days to create the 
alignment results. For the purpose of producing the alignments in time, the principal 
technique advantages of LILY are discards in this alignment task. 

2.3  directory 

The directory track requires to matching two taxonomies describing the web 
directories. Except the class hierarchy, there is no other information in the ontologies. 
Therefore, LILY will utilize the hierarchy information to decide the alignments. There 
are three alignment tasks. The first is matching the 4640 small ontologies pairs. The 
second task is matching a 10% sample ontology pair. LILY completes the two tasks 
smoothly. The third task is required to match two large-scale taxonomies. LILY takes 
8 days to produce the alignments. Similar to the anatomy track, we just set up the 
small size semantic subgraphs to assure that the alignment results can be generated in 
time. 

2.5  conference 

This track contains 14 real-case ontologies about conference. For a given ontology, 
we compute the alignments with itself, as well as with other ontologies. For we treat 
the equivalent alignment is symmetric, we get 105 alignment files totally. The 
heterogeneous character in this track is various. It is a challenge to generate good 
results for all ontology pairs in this test set. 

3  General comments 

3.1  Comments on the results  

During the OAEI campaign, we are aware of the strengths and weaknesses of LILY. 
Strengths For normal size ontologies, if they have regular literals or similar 

structures, LILY can achieve satisfactory alignments. The reason lies in two aspects: 
(1) The semantic subgraphs could represent the real meanings of the concepts or 
properties, that avoids introducing the unnecessary and noise information to the 
matching processes. (2) The similarity propagation strategy could compensate for the 
linguistic matching methods, and it can produce more alignments when ontologies 
lack of linguistic information. 



Weaknesses LILY has two obvious weaknesses. (1) Processing large scale 
ontologies LILY cannot work well for large scale ontologies. Semantic subgraph 
extraction process and similarity propagation process could take terrible time for large 
scale ontologies. (2) Efficiency LILY needs to extract semantic subgraphs for all 
concepts and properties. It is a time-consuming process. In similarity propagation, the 
propagation graph would become large that will also need more time for propagating 
the similarities. 

3.2  Discussions on the way to improve the proposed system 

In OAEI07, we find the efficiency is an outstanding problem for LILY. In the 
matching process, most of time is spent on extracting semantic subgraphs and 
similarity propagation. The two processes usually account for 80% time in the full 
matching process. In addition, LILY’s time complexity is O(kn2), where n is the 
number of entities and k is the average time for calculating an alignment. Therefore, it 
is very slow when run the large scale ontology matching task. Even we completed two 
large scale ontology matching tasks (directory and anatomy), we had to use the basic 
parameters. It causes that some advanced methods in LILY can not be utilized. To 
sum up, improving the efficiency and finding suitable methods to handle large scale 
ontologies are the near future work for LILY. 

3.3  Comments on the OAEI 2007 test cases 

More real ontologies should be added to the test cases. The real ontologies could be 
better than the ones designed manually for testing the performance of a matching 
system. 

The large scale ontology alignment task is a challenge for some ontology matching 
systems such as LILY. For the sake of fairness, currently, all reference alignment 
results for large scale ontologies matching tasks are unknown to all participants. We 
suggest that it was necessary to provide an open large scale ontology matching task 
for all researchers. That would be benefit to finding efficient methods for matching 
large scale ontologies. In addition, different matching systems could compare their 
results based on such open large scale ontologies. 

4 Conclusion 

We briefly introduce our ontology matching tool LILY. The matching process and the 
special techniques used by LILY are presented. The preliminary alignment results are 
carefully analyzed. Finally, we summarized the strengths and the weaknesses of LILY. 
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Appendix: Raw results  

The final results of benchmark task are as follows. 

Matrix of results  

# Name Prec. Rec. 
101 Reference alignment 1.00 1.00 
102 Irrelevat ontology 0.00 NaN 
103 Language generalization 1.00 1.00 
104 Language restriction 1.00 1.00 
201 No names 1.00 1.00 
202 No names, no comments 1.00 0.80 
203 No comments 1.00 1.00 
204 Naming conventions 1.00 1.00 
205 Synonyms 1.00 0.99 
206 Translation 1.00 0.99 
207  1.00 0.99 
208  1.00 1.00 
209  0.92 0.91 
210  1.00 0.91 
221 No specialisation 1.00 1.00 
222 Flatenned hierachy 1.00 1.00 
223 Expanded hierarchy 1.00 1.00 
224 No instance 1.00 1.00 
225 No restrictions 1.00 1.00 
228 No properties 1.00 1.00 
230 Flatenned classes 0.94 1.00 
231 Expanded classes 1.00 1.00 
232  1.00 1.00 
233  1.00 1.00 
236  1.00 1.00 
237  1.00 1.00 
238  0.98 0.98 
239  0.97 1.00 
240  0.97 1.00 
241  1.00 1.00 
246  0.97 1.00 
247  0.94 0.97 
248  1.00 0.77 
249  1.00 0.80 
250  0.85 0.67 
251  0.96 0.74 
252  0.94 0.76 
253  0.97 0.75 
254  1.00 0.27 



257  0.85 0.67 
258  0.76 0.74 
259  0.94 0.75 
260  0.62 0.45 
261  0.61 0.42 
262  1.00 0.27 
265  0.86 0.41 
266  0.64 0.42 
301 BibTeX/MIT 0.89 0.80 
302 BibTeX/UMBC 0.82 0.65 
303 Karlsruhe 0.58 0.69 
304 INRIA 0.91 0.97 

 


