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Abstract The most common matching applications, e.g., ontology match-
ing, focus on the computation of the correspondences holding between
the nodes of graph structures (e.g., concepts in two ontologies). How-
ever there are applications, such as matching of web service descriptions,
where matching may need to compute the correspondences holding be-
tween the full graph structures and to preserve certain structural prop-
erties of the graphs being considered. The goal of this paper is to provide
a new matching operator, that we call structure preserving match. This
operator takes two graph-like structures and produces a mapping be-
tween those nodes of the structures that correspond semantically to each
other, (i) still preserving a set of structural properties of the graphs be-
ing matched, (ii) only in the case that the graphs globally correspond
semantically to each other. We present an exact and an approximate
structure matching algorithm. The latter is based on a formal theory of
abstraction and builds upon the well known tree edit distance measures.
We have implemented the algorithms and applied them to the web ser-
vice matchmaking scenario. The evaluation results, though preliminary,
show the e�ciency and e�ectiveness of our approach.

1 Introduction

We are interested in the problem of location of web services on the basis of the ca-
pabilities that they provide. This problem is often referred to as the matchmaking
problem; see [12,14,15] for some examples. Most previous solutions employ a single on-
tology approach, that is, the web services are assumed to be described by the concepts
taken from a shared ontology. This allows the reduction of the matchmaking problem
to the problem of reasoning within the shared ontology. In contrast to this work, as
described in [6,19], we assume that the web services are described using terms from
di�erent ontologies and that their behaviour is described using complex terms, actu-
ally �rst order terms. This allows us to provide detailed descriptions of their input and
output behaviour. The problem becomes therefore that of matching two web service
descriptions (which can be seen as graph structures) and the mapping is considered
as successful only if the two graphs are globally similar (e.g., tree1 is 0.7 similar to
tree2, according to some metric). A further requirement of these applications is that
the mapping must preserve certain structural properties of the graphs being consid-
ered. In particular, the syntactic types and sorts have to be preserved (e.g., a function
symbol must be mapped to a function symbol and a variable must be mapped to a
variable). At the same time we would like to enable the matchmaking of the web ser-
vice descriptions that match only approximately (see [6] for a detailed description). For



instance, get_wine(Region, Country, Colour, Price, Number_of_bottles) can be ap-
proximately mapped to get_wine(Region(Country, Area), Colour, Cost, Y ear, Quantity).

In this paper, we de�ne an operator that we call structure preserving match. This
operator takes two graph-like structures and produces a mapping between those nodes
of the structures that correspond semantically to each other, (i) still preserving a
set of structural properties of the graphs being matched, (ii) only in the case that
the graphs globally correspond semantically to each other. Notice that this problem
signi�cantly di�ers from the ontology matching problem, as de�ned for instance in [8],
where (i) is only partially satis�ed and (ii) is an issue which is hardly ever dealt with
(see [12,23] for some noticeable exceptions). We present an exact and an approximate
structure matching algorithm. The former solves the exact structure matching problem.
It is designed to succeed on equivalent terms and to fail otherwise. The latter solves
an approximate structure matching problem. It is based on the fusion of the ideas
derived from the theory of abstraction [7] and tree edit distance algorithms [3,28]. We
have implemented the algorithms and evaluated them on the dataset constructed from
di�erent versions of the state-of-the-art �rst order ontologies. The evaluation results,
though preliminary, show the e�ciency and e�ectiveness of our approach.

Section 2 introduces a motivating example, Section 3 discusses the exact struc-
ture preserving semantic matching. Section 4 de�nes the abstraction operations and
introduces the correspondence between them and tree edit operations. In Section 5 we
show how existing tree edit distance algorithms can be exploited for the computation
of the global similarity between two web service descriptions. Section 6 is devoted to
the approximate structure matching algorithm. The evaluation results are presented in
Section 7. Section 8 brie�y reviews the related work and concludes the paper.

2 Motivating example

Figure 1 provides an example of exactly matched web service descriptions along with
their tree representations (or term trees). Dashed lines stand for the correspondences
holding among the nodes of the term trees. In particular, in Figure 1 we have an exact
match, namely the �rst of the services requires the second to return Cars of a given
Brand, Y ear and Colour while the other provides Autos of a given Brand, Y ear and
Colour. Notice that there are no structural di�erences and that the only di�erence is in
the function names. Where these names di�er, their semantic content remains the same
(e.g., Colour is semantically identical to Colour) and therefore the two descriptions
constitute an exact match.

Figure 2 provides an example of an approximate match. In this case a more so-
phisticated data translation is required. For example, the �rst web service description
requires the fourth argument of get_wine function (Colour) to be mapped to the sec-
ond argument (Colour) of get_wine function in the second description. On the other
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Fig. 1. Exactly matched web service descriptions and their tree representations.

Figure 1: Exactly matched web service descriptions and their tree representations.



In particular, in Figure 1 we have an exact match, namely the first of the services
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Fig. 2. Approximately matched web service descriptions and their tree representations.
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Figure 2: Approximately matched web service descriptions and their tree representa-
tions.
hand, Region on the right is de�ned as a function with two arguments (Country and
Area) while on the left Region is an argument of get_wine. Thus, Region in the
�rst web service description must be passed to the second web service as the value
of the Area argument of the Region function. Moreover, Y ear on the right has no
corresponding term on the left.

Therefore, in order to guarantee the successful data translation, we are interested in
the correspondences holding among the nodes of the term trees of the given web service
descriptions only in the case when the web service descriptions themselves are �similar
enough�. At the same time the correspondences have to preserve the certain structural
properties of the descriptions being matched. In particular we require functions to be
mapped to functions and variables to variables. We can see how the context is preserved
through this mapping: for example, the two nodes Colour are mapped to one another,
but this is done in the context that they are both children of nodes get_wine that are
also mapped to one another. Thus we can tell that Colour is likely to mean the same
thing in both cases.

3 Exact structure semantic matching

There are two stages in the matching process:

� Node matching : solves the semantic heterogeneity problem by considering only
labels at nodes and domain speci�c contextual information of the trees. In our
approach we use semantic matching, as extensively described in [8]. Notice that
the result of this stage is the set of correspondences holding between the nodes of
the trees.

� Structural tree matching : exploits the results of the node matching and the struc-
ture of the tree to �nd the correspondences holding between the trees themselves
(e.g., tree1 is 0.7 similar to tree2).

The exact structure matching algorithm exploits the results of the node matching
algorithm. It is designed to succeed for equivalent terms and to fail otherwise. It expects
the trees to have the same depth and the same number of children. More precisely we
say that two trees T1 and T2 match i� for any node n1i (numbers in subscript refer to
the tree and the node in this tree, respectively) in T1 there is a node n2j in T2 such
that:

� n1i semantically matches n2j ;
� n1i and n2j reside on the same depth in T1 and T2, respectively;
� all ancestors of n1i are semantically matched to the ancestors of n2j .

We do not discuss the exact structure preserving matching any further, since its
implementation is straightforward, see [6] for details.



4 Approximate matching via abstraction/re�nement
operations

In [7], Giunchiglia and Walsh describe their theory of abstraction. We present here the
key concepts in order to facilitate the presentation of our approach, which builds upon
this work. Giunchiglia and Walsh categorise the various kinds of abstraction opera-
tions in a wide-ranging survey. They also introduce a new class of abstractions, called
TI-abstractions (where TI means �Theorem Increasing�), which have the fundamental
property of maintaining completeness, while losing correctness. In other words, any
fact that is true of the original term is also true of the abstract term, but not vice
versa. Similarly, if a ground formula is true, so is the abstract formula, but not vice
versa. Dually, by taking the inverse of each abstraction operation, we can de�ne a cor-
responding re�nement operation which preserves correctness while losing completeness.
The second fundamental property of the abstraction operations is that they provide
all and only the possible ways in which two �rst order terms can be made to di�er by
manipulations of their signature, still preserving completeness. In other words, this set
of abstraction/re�nement operations de�nes all and only the possible ways in which
correctness and completeness are maintained when operating on �rst order terms and
atomic formulas. This is the fundamental property which allows us to study and con-
sequently quantify the semantic similarity (distance) between two �rst order terms.
To this extent it is su�cient to determine which abstraction/re�nement operations are
necessary to convert one term into the other and to assign to each of them a cost that
models the �semantic distance� associated to the operation.

Giunchiglia and Walsh's categories are as follows:

Predicate: Two or more predicates are merged, typically to the least general gen-
eralisation in the predicate type hierarchy, e.g.,

� Bottle(X) + Container(X) 7→ Container(X).

We call Container(X) a predicate abstraction of Bottle(X) or Container(X) wPd

Bottle(X). Conversely we call Bottle(X) a predicate re�nement of Container(X) or
Bottle(X) vPd Container(X).

Domain: Two or more terms are merged, typically by moving the functions (or
constants) to the least general generalisation in the domain type hierarchy, e.g.,

� Daughter(Me) + Child(Me) 7→ Child(Me).

Similarly to the previous item we call Child(Me) a domain abstractions of Daughter(Me)
or Child(Me) wD Daughter(Me). Conversely we call Daughter(Me) a domain re�ne-
ments of Child(Me) or Daughter(Me) vD Child(Me).

Propositional: One or more arguments are dropped, e.g.,

� Bottle(A) 7→ Bottle.

We call Bottle a propositional abstraction of Bottle(A) or Bottle wP Bottle(A).
Conversely Bottle(A) is a propositional re�nement of Bottle or Bottle(A) vP Bottle.

Precondition: The precondition of a rule is dropped 1 , e.g.,

� [Ticket(X) → Travel(X)] 7→ Travel(X).

Consider the pair of �rst order terms (Bottle A) and (Container). In this case there
is no abstraction/re�nement operation that make them equivalent. However consequent
applications of propositional and predicate abstraction operations make the two terms

1 We do not consider precondition abstraction and re�nement in the rest of this paper
as we do not want to drop preconditions, because this would endanger the successful
matchmaking of web services.



equivalent:
(Bottle A) 7→vP (Bottle) 7→wP d (Container) (1)

In fact the relation holding among the terms is a composition of two re�nement
operations, namely (Bottle A) vP (Bottle) and (Bottle) vPd (Container). We de�ne
an abstraction mapping element (AME) as a 5-tuple 〈IDij , t1, t2, R, sim〉, where IDij

is a unique identi�er of the given mapping element; t1 and t2 are �rst order terms; R
speci�es a relation for the given terms; and sim stands for a similarity coe�cient in
the range [0..1] quantifying the strength of the relation. In particular for the AMEs we
allow the semantic relations {≡,w,v}, where ≡ stands for equivalence, w represents
an abstraction relation and connects the precondition and the result of a composition
of arbitrary numbers of predicate, domain and propositional abstraction operations,
and v represents a re�nement relation and connects the precondition and the result of
a composition of arbitrary numbers of predicate, domain and propositional re�nement
operations.

Therefore, the problem of AME computation becomes a problem of minimal cost
composition of the abstraction/re�nement operations allowed for the given relation R
that are necessary to convert one term into the other. In order to solve this prob-
lem we propose to represent abstraction/re�nement operations as tree edit distance
operations applied to the term trees. Calculating the cost of moving between nodes
therefore becomes the problem of determining whether these nodes are equivalent, an
abstraction or re�nement of one another, or none of these relations. Note that this
calculation does not in general require speci�c background knowledge; the semantic
matching techniques allow us to calculate this automatically. Naturally, the semantic
matching techniques themselves require some kind of background knowledge but this
is not speci�c: currently, our semantic matching techniques use WordNet; see [8] for
more details. This allows us to rede�ne the problem of AME computation into a tree
edit distance problem.

In its traditional formulation, the tree edit distance problem considers three opera-
tions: (i) vertex deletion, (ii) vertex insertion, and (iii) vertex replacement [25]. Often
these operations are presented as rewriting rules:

(i) υ → λ (ii) λ → υ (iii) υ → ω (2)

where υ and ω correspond to the labels of nodes in the trees while λ stands for the
special blank symbol. Figure 3 illustrates two applications of delete and replace tree
edit operations.

Our proposal is to restrict the formulation of the tree edit distance problem in order
to re�ect the semantics of the �rst order terms. In particular we propose to rede�ne
the tree edit distance operations in a way that will allow them to have one-to-one
correspondence to the abstraction/re�nement operations presented previously in this
section. Table 1 illustrates the correspondence between abstraction/re�nement and tree
edit operations. The �rst column presents the abstraction/re�nement operations. The
second column lists corresponding tree edit operations. The third column describes the
preconditions of the tree edit operation use. Consider, for example, the �rst line of
Table 1. The predicate abstraction operation applied to �rst order term t1 results with
term t2 (t1 wPd t2). This abstraction operation corresponds to a tree edit replacement
operation applied to the term tree of t1 that replaces the node a with the node b(a → b).
Moreover the operation can be applied only in the case that (i) label a is a generalisation
of label b and (ii) both nodes a and b in the term trees correspond to predicates in the
�rst order terms.
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Abstraction/ Tree edit Preconditions of operation use

refinement operation operation

t1 !Pd t2 a → b a ! b; a and b correspond to predicates

t1 !D t2 a → b a ! b; a and b correspond to functions or constants

t1 !P t2 λ → a a corresponds to predicate, function or constant

t1 #Pd t2 a → b a # b; a and b correspond to predicates

t1 #D t2 a → b a # b; a and b correspond to functions or constants

t1 #P t2 a → λ a corresponds to predicate, function or constant
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(t1 "Pd t2). This abstraction operation corresponds to tree edit replacement operation
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the operation can be applied only in the case if (i) label a is a generalization of label
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Figure 3: Delete and replace tree edit operations

Table 1: The correspondence between abstraction/re�nement operations and tree edit
operations.

Abstraction/re�nement Tree edit operation Preconditions of operation

operation

t1 wP d t2 a → b a w b; a and b correspond to predicates

t1 wD t2 a → b a w b; a and b correspond to functions or constants

t1 wP t2 a → λ a corresponds to predicates, functions or constants

t1 vP d t2 a → b a v b; a and b correspond to predicates

t1 vD t2 a → b a v b; a and b correspond to functions or constants

t1 vP t2 a → λ a corresponds to predicates, functions or constants

5 Computing the global similarity between two trees

Our goal now is to compute the similarity between two term trees. In order to perform
this we need to compute the minimal cost composition of the abstraction/re�nement
operations that are necessary to convert one term tree (or �rst order term) into the
other. The starting point is the traditional formulation of the tree edit distance problem.

Cost =
X
i∈S

ni ∗ Costi (3)

The similarity between two trees is thus the minimal possible Cost as de�ned in
Eq. 3; that is, the set of operations that transforms one tree into another at minimal
cost. In Eq. 3, S stands for the set of the allowed tree edit operations; ni stands for
the number of i-th operations necessary to convert one tree into the other and Costi
de�nes the cost of the i-th operation. Our goal is to de�ne the Costi in a way that
models the semantic distance between the two trees.

A possible uniform proposal is to assign the same unit cost to all tree edit opera-
tions that have counterparts in the theory of abstraction. These are de�ned in Table
1. Table 2 illustrates the costs of the abstraction/re�nement (tree edit) operations,
depending on the relation (equivalence, abstraction or re�nement) being computed.
These costs have to be adjusted depending on what relation is being considered: for
example, the cost of applying an abstraction operation is di�erent if we are considering
abstraction relations than if we are considering re�nement relations. In particular, the
tree edit operations corresponding to abstraction/re�nement operations that are not
allowed by the de�nition of the given relation have to be prohibited by assigning to
them an in�nite cost. Notice also that we do not give any preference to a particular
type of abstraction/re�nement operations. Of course this strategy can be changed to
satisfy certain domain speci�c requirements.

Consider, for example, the �rst line in Table 2. The cost of the tree edit distance
operation that correspond to the propositional abstraction (t1 wPd t2) is equal to
1 when used for the computation of equivalence (Cost≡) and abstraction (Costw)
relations in AME. It is equal to∞ when used for the computation of re�nement (Costv)
relation.



Table 2: Costs of the abstraction/re�nement (tree edit) operations, exploited for com-
putation of equivalence (Cost≡), abstraction (Costv) and re�nement (Costw) relations
holding among the terms.

Abstraction/re�nement (tree edit) operation Cost≡ Costv Costw
t1 wP d t2 1 ∞ 1

t1 wD t2 1 ∞ 1

t1 wP t2 1 ∞ 1

t1 vP d t2 1 1 ∞

t1 vD t2 1 1 ∞

t1 vP t2 1 1 ∞

Eq. 3 can now be used for the computation of the tree edit distance score. However,
when comparing two web service descriptions we are interested in similarity rather than
in distance. We exploit the following equation to convert the distance produced by an
edit distance algorithm into the similarity score:

sim = 1− Cost

max(number_of_nodes1,number_of_nodes2)
(4)

where number_of_nodes1 and number_of_nodes2 stand for the number of nodes
in the trees. Note that for the special case of Cost equal to ∞ the similarity score is
estimated as 0.

Many existing tree edit distance algorithms allow us to keep track of the nodes
to which a replace operation is applied. Therefore, as a result they allow us to ob-
tain not only the minimal tree edit cost but also a minimal cost mapping among the
nodes of the trees. According to [25], this minimal cost mapping is (i) one-to-one; (ii)
horizontal-order preserving between sibling nodes; and (iii) vertical-order preserving.
These criteria are not always preserved in our approach. For example, the mapping
depicted in Figure 1 complies to all these requirements while the mapping depicted in
Figure 2 violates (ii). In particular the third sibling Price on the left tree is mapped
to the third sibling Cost on the right tree while the fourth sibling Colour on the right
tree is mapped to the second sibling Colour on the left tree.

For the tree edit distance operations depicted in Table 1, we propose to keep track of
nodes to which the tree edit operations derived from the replace operation are applied.
In particular we consider the operations that correspond to predicate and domain
abstraction/re�nement (t1 wPd, t1 vPd, t1 wD, t1 vD). This allows us to obtain a
mapping among the nodes of the term trees with the desired properties (i.e., there is
only one-to-one correspondences in the mapping). Moreover it complies to the structure
preserving matching requirements that functions are mapped to functions and variables
are mapped to variables. This is the case because (i) predicate and domain abstraction/
re�nement operations do not convert, for example, a function into a variable and (ii)
the tree edit distance operations, as from Table 1, have a one-to-one correspondence
with abstraction/re�nement operations.

At the same time, a mapping returned by a tree edit distance algorithm preserves
the horizontal order among the sibling nodes, but this is not desirable property for
the data translation purposes. This is the case because the correspondences that do
not comply to the horizontal order preservation requirements, like the one holding be-
tween Colour and Colour on Figure 2, are not included in the mapping. However, as
from Table 1, the tree edit operations corresponding to predicate and domain abstrac-
tion/re�nement (t1 wPd, t1 vPd, t1 wD, t1 vD) can be applied only to those nodes



of the trees whose labels are either generalisations or specialisations of each other, as
computed by the node matching algorithm. Therefore, given the mapping produced by
the node matching algorithm we can always recognise the cases when the horizontal or-
der between sibling nodes is not preserved and change the ordering of the sibling nodes
to make the mapping horizontal order preserving. For example, swapping the nodes
Cost and Colour in the right tree depicted on Figure 2 does not change the meaning
of the corresponding term but allows the correspondence holding between Colour and
Colour on Figure 2 to be included in the mapping produced by a tree edit distance
algorithm.

We can see that this technique satis�es the two properties mentioned earlier:
namely, that the operator �nds a mapping (i) still preserving a set of structural prop-
erties of the graphs being matched, (ii) only in the case that the graphs globally corre-
spond semantically to each other. If the graphs do not correspond semantically to one
another, and the structural properties of the graphs do not match, the similarity score
will be very low.

6 The approximate structure matching algorithm

As discussed above, our goal is to �nd good enough services [9] if perfect services are
not available. We start by providing a de�nition of the approximate structure matching
as the basis for the algorithm.

We say that two nodes n1 and n2 in trees T1 and T2 approximately match i� c@n1

R c@n2 holds given the available background knowledge, where c@n1 and c@n2 are
the concepts at nodes of n1 and n2, and where R ∈ {≡,v,w}. We say that two trees
T1 and T2 match i� there is at least one node n1i in T1 and a node n2j in T2 such
that: (i) n1i approximately matches n2j and (ii) all ancestors of n1i are approximately
matched to the ancestors of n2j .

First the approximate structure matching algorithm estimates the similarity of two
terms by application of a tree edit distance algorithm with the tree edit operations and
costs modi�ed as described in Sections 4 and 5. The similarity scores are computed
for equivalence, abstraction and re�nement relations. For each of these cases the tree
edit distance operation costs are modi�ed as depicted in Table 2. The relation with
the highest similarity score is assumed to hold among the terms. If the similarity score
exceeds a given threshold, the mappings connecting the nodes of the term trees, as
computed by the tree edit distance algorithm, are returned by the matching routine
what allows for further data translation. Algorithm 1 provides pseudo code for the
approximate structure matching algorithm.

approximateStructureMatch takes as input the source and target term trees and
a threshold value. approximateTreeMatch �lls the result array (line 3) which stores
the mappings holding between the nodes of the trees. An AME ame is computed
(line 4) by analyzeMismatches. If ame stands for equivalence, abstraction or re�nement
relations (line 5) and if an approximationScore exceeds threshold (line 6) the mappings
calculated by approximateTreeMatch are returned (line 7). analyzeMismatches calculates
the aggregate score of tree match quality by exploiting a tree edit distance algorithm
as described in Section 5.



Algorithm 1 Pseudo code for approximate structure matching algorithm
AME struct of

Tree of Nodes source;

Tree of Nodes target;

String relation;

double approximationScore;

1.MappingElement[] approximateStructureMatch(Tree of Nodes source, target, double threshold)

2. MappingElement[] result;

3. approximateTreeMatch(source,target,result);

4. AME ame=analyzeMismatches(source,target,result);

5. if (getRelation(ame)=="=") or (getRelation(ame)=="<") or (getRelation(ame)==">")

6. if (getApproximationScore(ame)>threshold)

7. return result;

8. return null;

7 Evaluation

We have implemented the algorithm described in the previous section. In the imple-
mentation we have exploited a modi�cation of simple tree edit distance algorithm from
Valiente's work [27]. We have evaluated the matching quality of the algorithms on
132 pairs of �rst order logic terms. Half of the pairs were composed of the equiva-
lent terms (e.g., journal(periodical-publication) and magazine (periodical-publication))
while the other half were composed from similar but not equivalent terms (e.g., web-
reference(publication-reference) and thesis-reference (publication-reference)). Te terms
were extracted from di�erent versions of the Standard Upper Merged Ontology (SUMO)2

and the Advanced Knowledge Technology (AKT)3 ontologies. We extracted all the dif-
ferences between versions 1.50 and 1.51, and between versions 1.51 and 1.52 of the
SUMO ontology and between versions 1, 2.1 and 2.2 of the AKT-portal and AKT-
support ontologies4. These are both �rst-order ontologies, so many of these di�erences
mapped well to the potential di�erences between terms that we are investigating. How-
ever, some of them were more complex, such as di�erences in inference rules, or con-
sisted of ontological objects being added or removed rather than altered, and had no
parallel in our work. These pairs of terms were discarded and our tests were run on
all remaining di�erences between these ontologies. Therefore, we have simulated the
situation when the service descriptions are de�ned exploiting the two versions of the
same ontology.

In our evaluation we have exploited the commonly accepted measures of matching
quality, namely precision, recall, and F-measure. Precision varies in the [0..1] range;
the higher the value, the smaller the set of incorrect correspondences (false positives)
which have been computed. Precision is a correctness measure. Recall varies in the [0..1]
range; the higher the value, the smaller the set of correct correspondences (true posi-
tives) which have not found. Recall is a completeness measure. F-measure varies in the
[0..1] range. The version computed here is the harmonic mean of precision and recall.
It is a global measure of the matching quality, increasing as the matching quality im-
proves. While computing precision and recall we have considered the correspondences
holding among �rst order terms rather than the nodes of the term trees. Thus, for
instance, journal(periodical-publication1)=magazine(periodical-publication2) was con-

2
http://ontology.teknowledge.com/

3
http://www.aktors.org

4
See http://dream.inf.ed.ac.uk/projects/dor/ for full versions of these ontologies and analysis of
their di�erences.

http://ontology.teknowledge.com/
http://www.aktors.org
http://dream.inf.ed.ac.uk/projects/dor/


Figure 4: The matching quality measures depending on threshold value for approximate
structure matching algorithm.

sidered as single correspondence rather than two correspondences, namely journal=
magazine and periodical-publication1=periodical-publication2.

Interestingly enough, our exact structure matching algorithm was able to �nd 36
correct correspondences what stands for 54% of Recall with 100% Precision. All mis-
matches (or correct correspondences not found by the algorithm) corresponded to struc-
tural di�erences among �rst order terms which exact structure matching algorithm is
unable to capture. The examples of correctly found correspondences are given below:

meeting-attendees(has-other-agents-involved) : meeting-attendee(has-other-agents-involved)

r&d-institute(Learning-centred-organization) : r-and-d-institute(Learning-centred-organization)

piece(Pure2,Mixture) : part(Pure2,Mixture)

has-affiliatied-people(Affiliated-person) : has-affililated-person(affiliated-person)

The �rst and second examples illustrate the minor syntactic di�erences among the
terms, while the third and fourth examples illustrate the semantic heterogeneity in the
various versions of the ontologies.

Figure 4 presents the matching quality measures depending on the cut-o� threshold
value for approximate structure preserving matching algorithm. As illustrated in Fig-
ure 4, the algorithm demonstrates high matching quality on the wide range of threshold
values. In particular, F-Measure values exceed 70% for the given range. Table 3 sum-
marizes the time performance of the matching algorithm. It presents the average time
taken by the various steps of the algorithm on 132 term matching tasks. As illustrated
in Table 3, Step 1 and 2 of the node matching algorithm signi�cantly slow down the
whole process. However these steps correspond to the linguistic preprocessing that can
be performed once o�ine [8]. Given that the terms can be automatically annotated
with the linguistic preprocessing results [8] once when changed, the overall runtime is
reduced to 4.2 ms, which corresponds roughly to 240 term matching tasks per second.
Table 3: Time performance of approximate structure matching algorithm (average on
132 term matching tasks).

Node matching: steps 1 and 2 [8] Node matching: steps 3 and 4 [8] Structure matching

Time, ms 134.1 3.3 0.9

8 Conclusions and Related work

We have presented an approximate structure matching algorithm that implements the
structure preserving match operator. We have implemented the algorithm and applied



it to the web service matchmaking scenario. The evaluation results, though preliminary,
show the e�ciency and e�ectiveness of our approach.

Future work includes further investigations on the cost assignment for the abstrac-
tion/re�nement operations. In the version of the algorithm presented in the paper, no
preference is given to the particular abstraction/re�nement operation and all allowed
operations are assigned a unit cost. One may argue, for example, that the semantic
distance between cat and mammal is less then the semantic distance between cat and
animal. Therefore, the operation abstracting cat to mammal should be less costly than
the operation abstracting cat to animal.

The problem of location of web services on the basis of the capabilities that they
provide (often referred as the matchmaking problem) has recently received a consider-
able attention. Most of the approaches to the matchmaking problem so far employed
a single ontology approach (i.e., the web services are assumed to be described by the
concepts taken from the shared ontology). See [14,15,21] for example. Probably the
most similar to ours is the approach taken in METEOR-S [1] and in [20], where the
services are assumed to be annotated with the concepts taken from various ontologies.
Then the matchmaking problem is solved by the application of the matching algorithm.
The algorithm combines the results of atomic matchers that roughly correspond to the
element level matchers exploited as part of our algorithm. In contrast to this work, we
exploit a more sophisticated matching technique that allows us to utilise the context
provided by the �rst order term.

Many diverse solutions to the ontology matching problem have been proposed so
far. See [23] for a comprehensive survey and [5,18,4,10,2,12,24] for individual solutions.
However most e�orts has been devoted to computation of the correspondences holding
among the classes of description logic ontologies. Recently, several approaches allowed
computation of correspondences holding among the object properties (or binary predi-
cates) [26]. The approach taken in [11] facilitates the �nding of correspondences holding
among parts of description logic ontologies or subgraphs extracted from the ontology
graphs. In contrast to these approaches, we allow the computation of correspondences
holding among �rst order terms.
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