
Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

122

VERIFIABLE APPLICATION-LEVEL CHECKPOINT AND

RESTART FRAMEWORK FOR PARALLEL COMPUTING

I. Gankevich
a
, I. Petriakov, A. Gavrikov, D. Tereshchenko, G.Mozhaiskii

Saint Petersburg State University, 13B Universitetskaya Emb., St Petersburg 199034, Russia

E-mail: a i.gankevich@spbu.ru

Fault tolerance of parallel and distributed applications is one of the concerns that becomes topical for

large computer clusters and large distributed systems. For a long time the common solution to this
problem was checkpoint and restart mechanisms implemented on operating system level, however,
they are inefficient for large systems and now application-level checkpoint and restart is considered as
a more efficient alternative. In this paper we implement application-level checkpoint and restart
manually for the well-known parallel computing benchmarks to evaluate this alternative approach. We
measure the overheads introduced by creating and restarting from a checkpoint, and the amount of
effort that is needed to implement and verify the correctness of the resulting programme. Based on the

results we propose generic framework for application-level checkpointing that simplifies the process
and allows to verify that the application gives correct output when restarted from any checkpoint.

Keywords: fault tolerance, message passing interface, MPI, miniFE, NAS parallel

benchmarks, DMTCP

Ivan Gankevich, Ivan Petriakov, Anton Gavrikov, Dmitrii Tereshchenko, Gleb Mozhaiskii

Copyright © 2021 for this paper by its authors.

 Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

123

1. Introduction

Current parallel computing technologies do not have automatic fault tolerance built in, and
researchers rely on external tools and application developers to make applications tolerant to cluster
node failures. Popular message passing interface (MPI) provides means of communication but does
not provide means to manage application state. As a result the state of many applications that use MPI

is stored in local and global variables that are not managed by MPI and can not be automatically
saved to and restored from the file (or any other medium). This deficiency lead to the creation of
external tools that periodically stop MPI application, dump memory contents of all parallel processes
to the file and resume the execution [1,2].

This technique is called system-level checkpoint and restart, and it has obvious disadvantage of
being inefficient for the large number of parallel processes and saving too much data if the checkpoint
is triggered during some peak memory usage application phase. An alternative approach is to modify
the application to save all the variables to the file every n-th iteration of the main programme loop and

restore them from the file before the main programme loop starts. This approach is called application-
level checkpoint and restart, and it is more efficient that system-level checkpoints because it saves the
minimum amount of data that is required to restore the application from the file.

In this paper we evaluate application-level and system-level checkpoint and restart on a set of
parallel applications. We implement application-level checkpoints for NAS Parallel Benchmarks [3]
and miniFE [4] applications, measure the overhead and programming effort, and compare and contrast
them to system-level checkpoints created with DMTCP [2]. Based on the experience that we obtained

we write MPI-Checkpoint library that contains a set of routines that can be added to MPI to help
manage application global state and implement application-level checkpoints.

2. MPI-Checkpoint library

The closest library that provides checkpoint and restart functionality for MPI applications is
CRAFT [5], however, this library is written in C++ and is not compatible with C and Fortran

applications. Our approach is to reuse functionality provided by MPI to simplify our library: we can
reuse data type handling and global process communication. From this perspective, our library can be
considered as a set of routines that can be added to MPI to provide application state management via
checkpoints, rather than a standalone full-featured checkpoint library.

Our library provides the following routines:

 MPI_Checkpoint_create — open checkpoint file for writing;

 MPI_Checkpoint_write — write application state to the file;

 MPI_Checkpoint_restore — open checkpoint file for reading;

 MPI_Checkpoint_read — read application state from the file;

 MPI_Checkpoint_close — close the file.
They are used as follows. Every n-th iteration of the main loop each MPI process creates itss own
checkpoint file and writes application state (the values of all relevant local and global variables) to this
file. All files are stored in the same directory and their names equal the ranks of the corresponding
MPI processes. Before the main loop each MPI process tries to restore from the checkpoint file: on
success the values of all relevant variables are read from the file and the loop starts from the

corresponding iteration.
From a technical standpoint, the public interface of the library permits the usage of any

medium to store checkpoints (file systems, main memory of spare nodes etc.), but reference
implementation supports only file systems. Input/output is implemented using memory-mapped files
and is efficient for the large files as the old pages that has already been read from/written to the file are
discarded from the memory.

From the users’ perspective, in order to restore from the checkpoint the environment variable
MPI_CHECKPOINT should be set to the file system path of the checkpoint directory. Since every

MPI process works with its own checkpoint file, they can be stored either in parallel or local file
system. If the local file system is used, the processes should be restarted on exactly the same cluster
nodes to be able to read from these files. The advantage of this approach, however, is the fact that it

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

124

may be more scalable than parallel file system, because the cluster network is not used for the
input/output.

3. Benchmarks

Using MPI-Checkpoint library we implemented application-level checkpoints for NAS
parallel benchmarks and miniFE. Our approach is based on the fact that most parallel batch processing

applications follow bulk-synchronous parallel model [6]: they are organised in a series of sequential
steps (main loop) that are internally parallel. After each step there is a synchronisation point and here
we create checkpoint file. We restore from the checkpoint file before the main loop. The disadvantage
of this approach is that the initialisation of the programme (i.e. the code before the main loop) is
performed once again before the restoration. The approach is presented in listing 1.

int step_min = 0;

MPI_Checkpoint checkpoint = MPI_CHECKPOINT_NULL;

int ret = MPI_Checkpoint_restore(MPI_COMM_WORLD, &checkpoint);
if (ret == MPI_SUCCESS) {

 MPI_Checkpoint_read(checkpoint, &step_min, 1, MPI_INT);
 ... // read more variables
 MPI_Checkpoint_close(&checkpoint);
}

for (int step=step_min; step<=step_max; ++step) {

 ... // some application logic code
 int ret = MPI_Checkpoint_create(MPI_COMM_WORLD, &checkpoint);

 if (ret == MPI_SUCCESS) {

 MPI_Checkpoint_write(checkpoint, &step, 1, MPI_INT);
 ... // write more variables

 MPI_Checkpoint_close(&checkpoint);
 }

}

Listing 1. Main loop augmented with application-level checkpoint and restart functionality. Public
library calls are marked with blue.

Using this approach we implemented checkpoints for CG, EP, FT, IS, LU, MG, BT
benchmarks and for the reference implementation of miniFE, and it took moderate amount of effort.
We stored initial code without checkpoints in Git [7] and then in each commit we implemented a
checkpoint for a particular benchmark. According to Git log1 we spent only four working days for all
the benchmarks to write and verify all the code that is needed for the checkpoints, the rest of the time
was spent on improvement of the library public interface, implementing Fortran public interface,
compression and memory-mapped input/output.

We verified the correctness of the application that was restarted from the checkpoint by using
the automated verification code that is built in the NAS parallel benchmarks and by comparing the
residual of miniFE benchmark. If we produce a checkpoint every iteration we get a set of directories
containing checkpoint files (one directory for each iteration). Then we restart the application using
each such directory and perform verification of the application output. If all verifications succeed, then
application-level checkpoints code is correct (i.e. we saved all the required variables). For many real-
world applications verification can be implemented as bytewise comparison of the output data; for

applications that use pseudo-random numbers integral properties of the output can be used for
verification.

In addition to application-level checkpoints we implemented DMTCP checkpoints in our
library. When DMTCP mode is enabled, the library on each call to MPI_Checkpoint_create instructs
the coordinator process to create full application memory dump. MPI_Checkpoint_restore is a no-op
in this mode since the restoration happens using the shell script generated by DMTCP.

1

https://github.com/igankevich/npb-checkpoints, https://github.com/igankevich/miniFE-checkpoints

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

125

4. Results

We ran performance benchmarks multiple times for all applications, for both DMTCP and
MPI-Checkpoint modes with varying number of MPI processes. We measured checkpoint size on the
disk, checkpoint creation time (overhead) and total execution time of the application. We used parallel
file system GlusterFS, that is deployed on the same cluster nodes where the applications run, to store
the checkpoints. Full testbed configuration is listed in table 1.

Table 1. Hardware and software configuration

DMTCP version 2.6.0, arguments: --no-gzip

MPICH version 3.3.2, environment variables: HYDRA_RMK=user

NPB version 3.4, class C

miniFE version 2.0, parameters: nx=300, ny=300, nz=300

Compiler GCC 7.5.0, compilation flags: -O3 -march=native

Cluster 6 nodes, 2 processors per node, 4 cores per processor, 2 threads per core (96 threads in total), 1

Gbit network switch

GlusterFS version 8.0, two replicas for each file (the same nodes and network switch as the cluster)

Performance benchmarks showed that the total size for both MPI and DMTCP checkpoints

grows linearly with the number of MPI processes: the growth rates for miniFE application are 0.2%
and 4% per node (16 parallel processes) respectively (see fig.1). For miniFE both MPI and DMTCP

checkpoint creation time decreases with the number of processes (see fig.1); this can be explained by
the fact that the network switch single port throughput is fully utilised, but the overall switch
throughput is not (its utilisation increases with the number of ports used). For all NAS parallel
benchmarks (except MG) this time decreases when we go from single node to two-node configuration,
and then increases (see fig.2); the decrease in this case can be explained the same way. The increase
after two nodes can be explained by the fact that the parameters of NAS parallel benchmarks are
determined from the number of MPI processes.

Figure 1. The total size of checkpoint files for DMTCP and MPI

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

126

Figure 2. MPI and DMTCP checkpoint creation time for NAS parallel benchmarks and miniFE

5. Conclusion

We evaluated application-level and system-level checkpoint and restart on a set of benchmarks

that replicate behaviour of real-world applications. Contrary to our expectations we found out that it
takes little programming effort to implement application-level checkpoints for someone who sees the
source code of the application for the first time. Our performance benchmarks confirmed that
application-level checkpoints are much smaller in size and take less time to create compared to
system-level checkpoints. Our cluster was too small to confirm that the time needed to create
checkpoint files increases with the number of nodes (our benchmarks showed that it actually decreases
or does not change much). Based on our experience we proposed minimal set of routines that can be
added to MPI to create application level checkpoints.

We believe that the effort that application developers need to put into implementing
application-level checkpoints is much smaller than the effort application users put into configuring
system-level checkpoints: during our benchmarks we encountered several cases when the programme
restarted from DMTCP checkpoint hanged, DMTCP does not work with OpenMPI library (we did not
find working solution of this problem), DMTCP does not work if one wants to restart the application
on a different set of nodes. For efficiency and reliability reasons developers of new MPI applications
should consider implementing application-level checkpoints. Hopefully, this paper and our public-

domain library2 would help in this regard.

6. Acknowledgement

 This work is supported by Council for grants of the President of the Russian Federation (grant
no. MK-383.2020.9).

References

[1] Hargrove P. H., Duell J. C. Berkeley lab checkpoint/restart (BLCR) for Linux clusters //Journal of
Physics: Conference Series. – IOP Publishing, 2006. – Vol. 46. – Issue 1. – P. 067.

[2] Ansel J., Arya K., Cooperman G. DMTCP: Transparent checkpointing for cluster computations
and the desktop //2009 IEEE International Symposium on Parallel & Distributed Processing. – IEEE,
2009. – P. 1-12.

[3] Van der Wijngaart R. F., Wong P. NAS parallel benchmarks version 2.4. – 2002.

2

https://github.com/igankevich/mpi-checkpoint

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

127

[4] Heroux M. A. et al. Improving performance via mini-applications //Sandia National Laboratories,
Tech. Rep. SAND2009-5574. – 2009. – Vol. 3.

[5] Shahzad F. et al. CRAFT: A library for easier application-level checkpoint/restart and automatic
fault tolerance //IEEE Transactions on Parallel and Distributed Systems. – 2018. – Vol. 30. – Issue 3. –
P. 501-514.

[6] Valiant L. G. A bridging model for parallel computation //Communications of the ACM. – 1990. –
Vol. 33. – Issue 8. – P. 103-111.

[7] Torvalds, L., Hamano, J.: Git: fast version control system (2010). http://git-scm.com.

