
Proceedings of the 9th International Conference “Distributed Computing and Grid Technologies in Science and
Education” (GRID’2021), Dubna, Russia, July 5-9, 2021

133

HPC WORKLOAD BALANCING ALGORITHM FOR CO-

SCHEDULING ENVIRONMENTS

R.I. Kuchumov, V.V. Korkhov
a

Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia

E-mail: a v.korkhov@spbu.ru

The goal of this research work is to reduce wait time of HPC (high performance computing)
applications in schedulers queue by applying a co-scheduling strategy. This strategy allows the
execution of more than one task with different non-overlapping requirements for computational

resources simultaneously. Co-scheduling strategy reduces task queue wait time and improves
utilization of cluster resources when compared to the scheduling strategies that do not allow for
parallel task execution on the same machine. We have proposed a method for measuring application
processing speed in its run-time, which can be used as a feedback for scheduling strategies. In this
work, we have formalized the co-scheduling problem and proposed strategies for solving it. For some
strategies we have shown analytically the upper bounds values of their competitive ratios. Besides that
for the proposed scheduling strategies we ran numerical experiments using imitation models to show

how they compare to the optimal strategy.

Keywords: Co-scheduling, HPC, Scheduling theory, Stochastic Optimization.

 Ruslan I. Kuchumov, Vladimir V. Korkhov

Copyright © 2021 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Proceedings of the 9th International Conference “Distributed Computing and Grid Technologies in Science and
Education” (GRID’2021), Dubna, Russia, July 5-9, 2021

134

1. Introduction

There are several case studies (e.g [1-3]) showing that by running more than one HPC
application on the same computational node it is possible to increase cluster throughput, decrease
schedule makespan and to decrease power consumption. The scheduling strategy that allows to run
multiple tasks on the same machine in the literature is usually referred to as co-scheduling or co-

location strategies. Commonly used batch schedulers do not allow implement such strategy in a
controllable way, as they work either by assigning the whole computational node or by assigning a
subset of CPU cores (so called slots) to a single task without considering task performance
degradation.

In this work we propose a method of measuring task processing speed in its runtime. This
metric can be used as a feedback for dynamic scheduling algorithms to quantitatively evaluate co-
scheduling decisions. We have formalized co-scheduling problem in terms of scheduling theory and
have proposed several strategies that vary by the amount of initial information about each task they
require and by the optimality of the schedules they produce. We have analytically shown how greedy
strategy compares to an optimal strategy and based on that proposed several stochastic strategies that
approximate a greedy strategy and use task processing speed metric as a feedback.

2. Co-Scheduling problem and its strategies

To provide scheduling strategies that implement a co-scheduling approach, we formalised the
problem in terms of scheduling theory. We have considered a static problem definition where the
number of tasks and their parameters (processing speed, amount of work) does not change in time. In
this work we consider makespan (completion time of the last task) as an objective function.

Denote a set of n tasks as T={T1,...,Tn}. Each Ti requires a bi amount of work units to be
completed. Values of bi form an n-dimensional vector b. Any combination (subset) for T can be
simultaneously on the same machine. There are a total of m = 2n-1 possible combinations of n tasks.
We will denote Sj as a combination of tasks T (Sj is in the power set of T and non-empty).

Denote ai,j as a speed of Ti in combination Sj. Without loss of generosity we will consider the
processing speed of any task Ti running alone (i.e. in combination Sj = {Ti}) to be equal to 1. Values ai,j
form a matrix A with dimensions n by m. As task processing speed can not increase, when a new tasks
are added to the combination, we can introduce the following constraint on ai,j values:

 ai,p ≤ ai, q, ∀ (p, q) | Sp ⊆ Sq, i = 1,..., n (1)

At first, we will consider a deterministic offline problem to provide an optimal solution. In this
problem definition, exac values of all task parameters (A, b) are known in advance. Denote xj as a total
amount of time the combination Sj were run in a schedule. Then the problem of makespan

optimization can be solved by reducing it to a linear programming problem of minimizing a sum of xj,
subject to Ax=b and x ≥ 0.

This solution can not be used in practice as it requires all task data to be available. To mitigate
this, we have considered an online problem definition, where values of the vector b are unknown in
advance. To solve this problem, we have proposed to use a scheduling strategy that selects the
combination of remaining tasks with the maximum sum of tasks processing speed. We refer to this
strategy as FCS (Fastest Combination Speed-first). We have analytically shown [4] that the makespan
of FCS strategy can not be larger than the optimal makespan by more than 2 times.

Online definition of this problem still can not be applied in schedulers implementations, as it
requires values of matrix A to be known in advance. As FCS strategy makes local optimal decisions (a
greedy strategy), provides a small competitive ratio and values of task processing speed can be
measured in practice, we have covered several strategies that approximate FCS strategy.

We have considered a non-deterministic definition of co-scheduling problem, where task
processing speed ai,j are normal random variables and their parameters can be estimated in tasks run-

Proceedings of the 9th International Conference “Distributed Computing and Grid Technologies in Science and
Education” (GRID’2021), Dubna, Russia, July 5-9, 2021

135

time. To do that, we have relaxed constraint (1) by defining variances of ai,j so that constraint (1)
holds with a given probability. We have proposed several stochastic search strategies that approximate
FCS by searching for the combination with maximum sum of task processing speed. To interpolate
values of ai,j and ensure that task variance increases with an increase of uncertainty, we used linear
spline interpolation as described in [4].

In this work, we have considered 3 search based strategies, varying by their acquisition
functions: PI (probability of improvements), EI (expected improvements) and UCB (upper confidence

bounds). We have compared them with FCS and the optimal strategy using the simulation software
that we developed. Task processing speed values in different combinations were measured in the
experiments and then they were used to generate similar input for numerical simulations. Simulation
results are shown in figure 1.

Figure 1. Comparison of the lowest competitive ratio values produced by different scheduling

strategies. Speedup rate range is a range of task processing speed decrements when the number of
tasks in combinations increases.

3. Processing speed metrics

Tasks running on the same computational node may share bandwidth of such resources as
memory bus, network card, last level cache, disk bandwidth, etc. When bandwidth for any of these
resources is fully utilized, task processing speed decreases as CPU instructions performing access to
the resource take more cycles to complete. That is, when multiple tasks interfere with each other due
to co-scheduling IPC (instructions per cycle) values will decrease.

Besided IPC, CPU time may also be affected by co-scheduling as operating system scheduler
may assign more than one task thread to a single CPU core. In this case, CPU time would be shared

between all of the threads and the more threads there are, the smaller fraction of CPU time would be
available to each task.

In this work we proposed to measure task processing speed in runtime as IPC multiplied by
CPU time fraction values averaged across all tasks threads. To show that this metric indeed measures
task processing speed, we found a set of benchmark applications that have a constant IPC value
throughout their runtime and compared how this metric changes in different conditions compared to
the change of total task processing time. For that we picked 10 benchmark applications from NPB and

Proceedings of the 9th International Conference “Distributed Computing and Grid Technologies in Science and
Education” (GRID’2021), Dubna, Russia, July 5-9, 2021

136

Parsec and a few of our own benchmarks and run them in combinations of a different size. A complete
list of benchmarks is presented in [4].

Results for some benchmarks are shown in figure (2) along with a complete list of
benchmarks. The figure shows a scatter plot of processing time ratio version processing speed ratio (as
measured by the proposed metric). Each point corresponds to measurements of a single task in
combinations with other tasks.

Figure 2. Scatter plots of task processing time ratio version processing speed ratio. Each point

corresponds to tasks run in different combinations with other tasks. Red line is a line where ratios are
equal.

4. Results and Conclusion

We have formalized the co-scheduling problem in terms of scheduling theory and have
proposed multiple strategies that provide a solution for the problem. An optimal strategy was proposed
for offline deterministics problem definitions. For online deterministic problem we have proposed a
greedy strategy (FCS) and have analytically shown that its competitive ratio can not be larger than
two. For non-deterministics counterpart problem we have proposed three search-based strategies (PI,
EI, UCB) that use different acquisition functions. Using numerical simulations we have shown (figure
1) how competitive ratio compares between different scheduling strategies. Simulation results show

that PI produces a lower value of competitive ratio than EI and UCB strategies for almost all problem
input ranges.

We have proposed a method for measuring task processing speed in its runtime and have

validated it using test applications that mimic HPC workloads. Results of the evaluation (figure 2)
showed that this metric measures task processing speed with a very high accuracy in different
conditions. These results allow to apply proposed scheduling strategies in schedulers implementations.

5. Acknowledgement

Research has been supported by the RFBR grant 19-37-90138.

Proceedings of the 9th International Conference “Distributed Computing and Grid Technologies in Science and
Education” (GRID’2021), Dubna, Russia, July 5-9, 2021

137

References

[1] Trinitis, Carsten, and Josef Weidendorfer, eds. Co-scheduling of HPC applications. Vol. 28. IOS
Press, 2017.

[2] de Blanche, Andreas, and Thomas Lundqvist. "Node Sharing for Increased Throughput and
Shorter Runtimes–an Industrial Co-Scheduling Case Study." Proceedings of the 3rd Workshop on Co-
Scheduling of HPC Applications (COSH 2018). 2018.

[3] Breslow, Alex D., et al. "The case for colocation of hpc workloads." Concurrency and
Computation: Practice and Experience Preprint (2012).

[4] Kuchumov, R.; Korkhov, V. Analytical and Numerical Evaluation of Co-Scheduling Strategies and
Their Application. Preprints 2021, 2021090053 (doi: 10.20944/preprints202109.0053.v1).

