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The goal of this research work is to reduce wait time of HPC (high performance computing) 
applications in schedulers queue by applying a co-scheduling strategy. This strategy allows the 
execution of more than one task with different non-overlapping requirements for computational 

resources simultaneously. Co-scheduling strategy reduces task queue wait time and improves 
utilization of cluster resources when compared to the scheduling strategies that do not allow for 
parallel task execution on the same machine. We have proposed a method for measuring application 
processing speed in its run-time, which can be used as a feedback for scheduling strategies. In this 
work, we have formalized the co-scheduling problem and proposed strategies for solving it. For some 
strategies we have shown analytically the upper bounds values of their competitive ratios. Besides that 
for the proposed scheduling strategies we ran numerical experiments using imitation models to show 

how they compare to the optimal strategy. 
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1. Introduction 

There are several case studies (e.g [1-3]) showing that by running more than one HPC 
application on the same computational node it is possible to increase cluster throughput, decrease 
schedule makespan and to decrease power consumption.  The scheduling strategy that allows to run 
multiple tasks on the same machine in the literature is usually referred to as co-scheduling or co-

location strategies. Commonly used batch schedulers do not allow implement such strategy in a 
controllable way, as they work either by assigning the whole computational node or by assigning a 
subset of CPU cores (so called slots) to a single task without considering task performance 
degradation. 

In this work we propose a method of measuring task processing speed in its runtime. This 
metric can be used as a feedback for dynamic scheduling algorithms to quantitatively evaluate co-
scheduling decisions. We have formalized co-scheduling problem in terms of scheduling theory and 
have proposed several strategies that vary by the amount of initial information about each task they 
require and by the optimality of the schedules they produce. We have analytically shown how greedy 
strategy compares to an optimal strategy and based on that proposed several stochastic strategies that 
approximate a greedy strategy and use task processing speed metric as a feedback. 

2. Co-Scheduling problem and its strategies 

To provide scheduling strategies that implement a co-scheduling approach, we formalised the 
problem in terms of scheduling theory. We have considered a static problem definition where the 
number of tasks and their parameters (processing speed, amount of work) does not change in time. In 
this work we consider makespan (completion time of the last task) as an objective function. 

Denote a set of n tasks as T={T1,...,Tn}. Each Ti requires a bi amount of work units to be 
completed. Values of bi form an n-dimensional vector b. Any combination (subset) for T can be 
simultaneously on the same machine. There are a total of m = 2n-1 possible combinations of n tasks. 
We will denote Sj as a combination of tasks T (Sj is in the power set of T and non-empty). 

Denote ai,j as a speed of Ti in combination Sj. Without loss of generosity we will consider the 
processing speed of any task Ti running alone (i.e. in combination Sj = {Ti}) to be equal to 1. Values ai,j 
form a matrix A with dimensions n by m. As task processing speed can not increase, when a new tasks 
are added to the combination, we can introduce the following constraint on ai,j  values: 

 ai,p ≤ ai, q, ∀  (p, q) | Sp ⊆ Sq, i = 1,..., n (1) 

At first, we will consider a deterministic offline problem to provide an optimal solution. In this 
problem definition, exac values of all task parameters (A, b) are known in advance. Denote xj as a total 
amount of time the combination Sj were run in a schedule. Then the problem of makespan 

optimization can be solved by reducing it to a linear programming problem of minimizing a sum of xj, 
subject to Ax=b and x ≥ 0. 

This solution can not be used in practice as it requires all task data to be available. To mitigate 
this, we have considered an online problem definition, where values of the vector b are unknown in 
advance. To solve this problem, we have proposed to use a scheduling strategy that selects the 
combination of remaining tasks with the maximum sum of tasks processing speed. We refer to this 
strategy as FCS (Fastest Combination Speed-first). We have analytically shown [4] that the makespan 
of FCS strategy can not be larger than the optimal makespan by more than 2 times. 

Online definition of this problem still can not be applied in schedulers implementations, as it 
requires values of matrix A to be known in advance. As FCS strategy makes local optimal decisions (a 
greedy strategy), provides a small competitive ratio and values of task processing speed can be 
measured in practice, we have covered several strategies that approximate FCS strategy. 

We have considered a non-deterministic definition of co-scheduling problem, where task 
processing speed ai,j are normal random variables and their parameters can be estimated in tasks run-
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time.  To do that, we have relaxed constraint (1) by defining variances of ai,j  so that constraint (1) 
holds with a given probability. We have proposed several stochastic search strategies that approximate 
FCS by searching for the combination with maximum sum of task processing speed.  To interpolate 
values of ai,j and ensure that task variance increases with an increase of uncertainty, we used linear  
spline interpolation as described in [4]. 

In this work, we have considered 3 search based strategies, varying by their acquisition 
functions: PI (probability of improvements), EI (expected improvements) and UCB (upper confidence 

bounds). We have compared them with FCS and the optimal strategy using the simulation software 
that we developed. Task processing speed values in different combinations were measured in the 
experiments and then they were used to generate similar input for numerical simulations. Simulation 
results are shown in figure 1.   

 

Figure 1. Comparison of the lowest competitive ratio values produced by different scheduling 

strategies. Speedup rate range is a range of task processing speed decrements when the number of 
tasks in combinations increases. 

3. Processing speed metrics 

Tasks running on the same computational node may share bandwidth of such resources as 
memory bus, network card, last level cache, disk bandwidth, etc. When bandwidth for any of these 
resources is fully utilized, task processing speed decreases as CPU instructions performing access to 
the resource take more cycles to complete. That is, when multiple tasks interfere with each other due 
to co-scheduling IPC (instructions per cycle) values will decrease. 

Besided IPC, CPU time may also be affected by co-scheduling as operating system scheduler 
may assign more than one task thread to a single CPU core. In this case, CPU time would be shared 

between all of the threads and the more threads there are, the smaller fraction of CPU time would be 
available to each task. 

In this work we proposed to measure task processing speed in runtime as IPC multiplied by 
CPU time fraction values averaged across all tasks threads. To show that this metric indeed measures 
task processing speed, we found a set of benchmark applications that have a constant IPC value 
throughout their runtime and compared how this metric changes in different conditions compared to 
the change of total task processing time. For that we picked 10 benchmark applications from NPB and 
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Parsec and a few of our own benchmarks and run them in combinations of a different size. A complete 
list of benchmarks is presented in [4]. 

Results for some benchmarks are shown in figure (2) along with a complete list of 
benchmarks. The figure shows a scatter plot of processing time ratio version processing speed ratio (as 
measured by the proposed metric). Each point corresponds to measurements of a single task in 
combinations with other tasks.   

 

Figure 2. Scatter plots of task processing time ratio version processing speed ratio. Each point 

corresponds to tasks run in different combinations with other tasks. Red line is a line where ratios are 
equal. 

4. Results and Conclusion 

We have formalized the co-scheduling problem in terms of scheduling theory and have 
proposed multiple strategies that provide a solution for the problem. An optimal strategy was proposed 
for offline deterministics problem definitions. For online deterministic problem we have proposed a 
greedy strategy (FCS) and have analytically shown that its competitive ratio can not be larger than 
two. For non-deterministics counterpart problem we have proposed three search-based strategies (PI, 
EI, UCB) that use different acquisition functions. Using numerical simulations we have shown (figure 
1) how competitive ratio compares between different scheduling strategies. Simulation results show 

that PI produces a lower value of competitive ratio than EI and UCB strategies for almost all problem 
input ranges. 

We have proposed a method for measuring task processing speed in its runtime and have 

validated it using test applications that mimic HPC workloads. Results of the evaluation (figure 2) 
showed that this metric measures task processing speed with a very high accuracy in different 
conditions. These results allow to apply proposed scheduling strategies in schedulers implementations.  
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