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The recognition of particle trajectories (tracks) from experimental measurements plays a key role in 

the reconstruction of events in experimental high-energy physics. Knowledge about the primary vertex 
of an event can significantly improve the quality of track reconstruction. To solve the problem of 
primary vertex finding in the BESIII inner tracking detector we applied the LOOT program which is a 
deep convolutional neural network that processes all event hits at once, like a three-dimensional 
image. We used mean absolute error to measure the quality of the trained model, but a thorough 

analysis of the results showed that this metric by itself is inadequate without considering output 
distributions of the vertex coordinates. Correcting all errors allowed us to propose special corrections 
to the loss function that gave quite acceptable results. The process of our problem investigation and its 
outcomes are presented. 
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1. Introduction 

One of the most important problems of modern high-energy physics is the reconstruction of 
events occurring during the interaction of particles in experimental detectors. Reconstruction consists 
in recognizing for each event all trajectories of particles - tracks, determining their parameters, finding 
the coordinates of the event vertex in order to determine the type of event and identify interacting 

particles from this data. It should be noted that most reconstruction methods, such as the Kalman filter 
or some modern deep neural network methods, are local, i.e. do not use information about the entire 
picture of the event, but reconstruct each track separately, in order to find the coordinates of the event 
vertex later, as the point closest to all tracks. This does not allow us to evaluate the global picture of an 
event, to see the dependence between individual tracks or groups of tracks, to observe such 
phenomena as secondary vertices, as it is done in global tracking methods that perform track 
recognition across the entire picture of the event. Such a global approach is implemented in a new 
neural network model LOOT (Look Once On Tracks) [1] with an u-shaped architecture [2] and Dice 

loss function [3]. The resulting model with slight modifications was applied for direct reconstruction 
of event vertices in the internal detector of the BES-III experiment [4].  

The inner tracker detector of the BESIII experiment has a total of three cylindrical GEM type 
stations. This means not only that there are many fake hits due to strip readout of information in the 
GEM detector, but also that if a particle is registered only at two out of three stations, then its track in 
a magnetic field cannot be restored without knowing additional information about the coordinates of 
the vertex. In addition, knowledge of the coordinates of the vertex would give a significant reduction 
in the algorithmic complexity in the search for two-hit seeds – from O (𝑛 ^ 2) to O (n), because the 

primary vertex can be considered as a first hit of every track candidate, and no longer need to sort out 
all combinations of hits at the first two stations. Also, the knowledge about primary vertex is important 
for determining the momenta of particles, their spatial angles of emission, and recognizing the 
trajectories of short-lived and neutral particles. 

In [4], we proposed a method of modification of the original LOOT architecture in order to 
use it for vertex finding. The initial model has a form of autoencoder, because it needs to extract useful 

features for the tracking in a contracting path, and then use these features in an expansive path to 
disentangle tracks in the original dimension. We have removed the decoder part, since a set of features 
that is extracted in the bottleneck of the network is sufficient to predict the position of the primary 
vertex. And for predicting the vertex location, an output layer with three neurons (for X, Y and Z) 
coordinates was added. The resulting model should solve the regression task, so the common metrics 
for evaluation of the regression models were used to report the quality of the algorithm. The metrics 
looked satisfactory at the first sight, nevertheless we continued interpreting the results and eventually 

found out that the low value of mean absolute error (0.009) does not mean that the model works 
correctly. 

This work is a continuation of the research begun in [4]. It consists of three steps, which 

ultimately made it possible to improve the loss function and achieve physically acceptable results. The 
second section of the article describes the ways of how to better interpret the model result and 
correctly evaluate the quality. The third section is devoted to our first attempt to gain the better results 
from the existing pipeline. The fourth section narrates the steps of improving the loss function that 
allow us to obtain the acceptable results in the primary vertex finding.  

2. Evaluation and interpretation of the model 

Metrics are used to assess the quality of a model in machine learning problems. The metric 
used is determined by the type of the problem being solved. For regression or prediction, the most 
commonly used metrics are MAE (mean absolute error) and MSE (mean square error). 

The first results of the model's operation were measured using the sum of the distances in all 

three coordinates from the real vertex to the vertex predicted by the network. This is called the mean 
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absolute error and for the first version of the model, it was 0.009. The main problem was that the value 
of the metric in this case turned out to be uninformative. This value does not make it possible to 
understand the real picture of the location of the predicted vertex relative to the true one.  

The fact is that the initial data were presented in the Cartesian coordinate system, but the 
LOOT model can only work with data from detector stations located consistently one after another, 
representing them as separate feature channels in the convolution operations. Since the detector is 
cylindrical, when preparing the data, we transformed the coordinates into a cylindrical system. Next, 

the input coordinates should be normalized to simplify the process of the model weights optimization. 
Therefore, initially, normalized values of coordinates in a cylindrical system were fed to the input of 
the metric. 

To get the metric in the required units namely centimeters, it is necessary to translate the 
coordinates values to the original format to the input of the function that calculates the metric. 
Therefore, before calculating the metric, a new stage was added to reverse the transformation of the 
normalized values into the original units. It consists of two stages: denormalization and conversion 
from a cylindrical coordinate system to a Cartesian one (see the formula 1), and is applied to the 
network prediction while the corresponding real locations of the primary vertices remain the same – in 
the original cartesian coordinates. After adding this backward conversion, the metric value became 0.4 
cm. 

𝑥 = 𝑋 ∗ sinY, 
𝑦 = 𝑋 ∗ cos𝑌,                                                                 (1) 

𝑧 = 𝑍.   
 

But the metric still gives an idea of the sum of the distances along all coordinates and it is 
impossible to understand which coordinate is predicted worse or better than the others by the value of 
the metric. Therefore, for a better understanding of the operation of the model, a graph of the 
distribution of the coordinates of the true vertex and the predicted one was built (Fig. 1). 

 

Figure 1. Distribution of the coordinates of the true and the predicted vertex 

The graph shows that the distribution does not correspond to each other, which indicates the 
incorrect operation of the model. The measures taken do not allow obtaining the correct accuracy, 
therefore, in the next stage, we used the structural features of the detector for a detailed analysis.  

3. Using features of the structure of the BES-III detector 

The BES-III detector is designed in such a way that X and Y coordinates of the event's 
primary vertex are known. Therefore, an intermediate verification step was undertaken: predicting Z 

coordinate of the primary vertex separately, while taking X and Y coordinates as a fixed value. This 
stage showed a decrease in the value of the network error, but at the same time the plot of the 
distribution of Z coordinate shows that the predicted values do not correspond to the true ones (Fig. 2).  
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Figure 2. Distribution of Z coordinate of the true and the predicted vertex 

Since the model is wrong, predicting even one coordinate, the problem may lie in the learning 
process. In the next step, we checked the loss function, which is used to train the model. 

4. Loss function improvement 

Loss function takes two parameters as input - true and predicted values. The function shows 
how well the model performs during prediction. The higher its value, the worse the model works. 

Since we are trying to solve the regression problem the MSE-loss function was chosen for 
optimization. At the same time, we ran into a problem with model training. Predicted values are 
actually normalized coordinates from a cylindrical system. In order to calculate the loss function, the 

true vertex coordinates were converted to the same format as the prediction. The whole point of MSE 
is in the squaring the distance between real and predicted values, but squaring such small values in the 
loss function gives the function value close to zero. Besides the normalized coordinates make equal 
contribution to the loss function despite that the dispersion of original Z coordinate is much greater 
than for X or Y ones. All the above hampers the network from making accurate predictions. 

To improve the quality of network predictions we changed the process of calculation of the 
loss function by adding the same step as for metrics calculation namely denormalization and 
conversion to the cartesian system before the loss estimation. This made it possible to avoid falling 
into the local minimum during training.  

We retrained the model with the improved loss function and with prediction of all coordinates, 
not only Z, and observed that the distribution of the predicted coordinates is much closer to the real 
ones than it was before all optimizations (see the figure 3). 

To train the LOOT model with modified loss function, we used 200K training events and 50K 
test events generated by the Monte Carlo for the BESIII inner detector. The model was trained for 150 
epochs using Adam optimizer [5] with a learning rate of 0.001. The batch size is 64. 

 

Figure 3. Result distribution of the coordinates of the true and the predicted vertex. 
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The model was trained with the help of Ariadne library [6]. The goal of this library is to offer 
a researcher a handy framework for rapid prototyping a new NN model for the tasks related to events 
reconstruction and provide a step-by-step fully reproducible pipeline including data preparation, 
training and evaluation phases. It is planned that the LOOT model will be part of the library in the 
future. 

5. Conclusion 

We have modified the loss calculation and significantly improved the quality of prediction. 
The value of MAE after all changes to the loss and being computed on the denormalized and 
translated to cartesian system predictions equals 1.9 cm. One can see that the new metric value is 
almost three times greater than the value of the first poor working version of the model. Thus, we 
showed that the metric selected at the beginning is confusing and we can’t rely on it in our decision 
which model is better. The distribution of the coordinates of the true and the predicted vertices is much 
more informative and demonstrates that the model now operates well and gives acceptable results in 
the primary vertex finding. 
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