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Obtaining a long term reference trajectory on the chaotic attractor for the coupled Lorenz system is a 
difficult task, due to the sensitive dependence on the initial conditions. Using the standard double-
precision floating point arithmetic, we cannot obtain a reference solution longer than 2.5 time units. 
Combining OpenMP parallel technology together with GMP library (GNU multiple precision library), 
we parallelize the Taylor series algorithm for the coupled Lorenz system and obtain a reference 
solution in the rather long time interval - [0,400]. We performed two large computations, each using 

one CPU-node (32 cores), based on two Intel® Haswell processors. First computation was with 2158 
decimal digits of precision and 2480-th order method, and second computation was for verification - 
with 2254 decimal digits of precision and 2580-th order method. The needed time for the second 
(larger) computation was 6.3 days. The parallel speedup when using these 32 cores is 23.1 with 
parallel efficiency 72.1 %. 
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1. Introduction 

To compute a reliable long term trajectory for a chaotic dynamic system, we need a multiple 
precision floating point arithmetic library in order to deal with the sensitive dependence on the initial 
conditions. This is not enough, we also need a numerical method that steps efficiently at the level of 
the high precision, i.e. we need a method that allows arbitrary high order of accuracy. In this paper we 

use a numerical procedure called “Clean numerical simulation” to obtain verified long term 
trajectories for chaotic dynamical systems [1]. The procedure is based on the multiple precision Taylor 
series method [2]. In the case of very long time of integration, the computational problem can become 
pretty large and we need a parallelization of the algorithm. Although in our recent work [3] we 
reported a general MPI+OpenMP parallelization for the classical Lorenz system, pure OpenMP 
parallelization has its own importance and deserves special attention. In this paper we combine 
OpenMP parallel technology together with GMP library [4] to parallelize the Taylor series method and 
compute a reliable trajectory on the chaotic attractor for the more difficult coupled Lorenz system. The 
work can be regarded as a continuation and improvement of the results in our previous work [5]. 

2. The model problem – coupled Lorenz system 

We consider as a model problem the coupled Lorenz system from [6]: 
 
𝑑𝑥

𝑑𝑡
=  𝑎 (𝑦 −  𝑥),          

𝑑𝑦

𝑑𝑡
= 𝑟𝑠𝑥 −  𝑦 –  𝑥𝑧 − 𝜀𝑠𝑋𝑌,                   

𝑑𝑧

𝑑𝑡
=  𝑥𝑦 −  𝑏𝑧 

      

                       
𝑑𝑋

𝑑𝑡
=  𝑐𝑎 (𝑌 −  𝑋),       

𝑑𝑌

𝑑𝑡
=  𝑐(𝑟𝑓𝑋 −  𝑌 –  𝑋𝑍)+ 𝜀𝑓𝑋𝑦,          

𝑑𝑍

𝑑𝑡
=  𝑋𝑌 −  𝑏𝑍 

                                       

(1) 

where a = 10, b = 8/3, c = 10, rs = 28, rf = 45, 𝜀𝑠  = 10-2, 𝜀𝑓  = 10. The first three and last three equations 

are called slow and fast dynamics respectively. The first three equations (without the last term in the 
second equation) exactly represent the classical Lorenz system. For the above parameters the system 
has a chaotic attractor, which means a sensitive dependence on the initial conditions. This dependence 

is described by the relation 𝛿(𝑡) ~ 𝛿(0)𝑒𝜆𝑡, where λ is the maximum Lyapunov exponent and 𝛿(𝑡) is 
the distance between two adjacent trajectories. Solving the above relation with respect to t, we obtain 

the following relation for the predictability horizon (the Lyapunov time T): 𝑇~ 
1

𝜆
 𝑙𝑛(

𝑡𝑜𝑙

𝜀
). Here tol is 

our tolerance and ε is the round-off unit (precision). For the coupled Lorenz system λ = 11.5. If we use 
the standard double precision (ε = 2-53) and tolerance tol = 10-3, then T ~ 2.5. This means that with the 
general double-precision arithmetic we cannot obtain a reliable solution longer than 2.5 time units. Let 
us mention that for the classical Lorenz system λ = 0.905 and hence the coupled Lorenz system is 
much harder to simulate. 

3. Taylor series algorithm for coupled Lorenz system 

Let us denote the normalized i-th derivatives (the derivatives divided by i!) at point t with xi, 

yi, zi, Xi, Yi, Zi. Then the N-th order Taylor series method with step-size 𝝉 for system (1) is [2]: 

𝑥(𝑡 + 𝜏) ≈ 𝑥0 +∑ 𝑥𝑖𝜏
𝑖𝑁

𝑖=1 ,              𝑦(𝑡 + 𝜏) ≈ 𝑦0 + ∑ 𝑦𝑖𝜏
𝑖𝑁

𝑖=1 ,                 𝑧(𝑡 + 𝜏) ≈ 𝑧0 + ∑ 𝑧𝑖𝜏
𝑖𝑁

𝑖=1  
 
𝑋(𝑡 + 𝜏) ≈ 𝑋0 + ∑ 𝑋𝑖𝜏

𝑖𝑁
𝑖=1 ,            𝑌(𝑡 + 𝜏) ≈ 𝑌0 + ∑ 𝑌𝑖𝜏

𝑖 ,𝑁
𝑖=1                  𝑍(𝑡 + 𝜏) ≈ 𝑍0 + ∑ 𝑍𝑖𝜏

𝑖𝑁
𝑖=1  

                 
The normalized derivatives are computed with the so called automatic differentiation [2]. If 

we apply the Leibniz rule for the derivatives of the product of two functions to system (1), we obtain 
the following procedure for computing them. For i = 0, … , N – 1 we compute: 
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𝑥𝑖+1 =
1

𝑖+1
𝑎(𝑦𝑖 − 𝑥𝑖),  𝑦𝑖+1 =

1

𝑖+1
(𝑟𝑠𝑥𝑖 −𝑦𝑖 − ∑ 𝑥𝑖−𝑗𝑧𝑗 − 𝜀𝑠∑ 𝑋𝑖−𝑗𝑌𝑗

𝑖
𝑗=0 )𝑖

𝑗=0 ,  

𝑧𝑖+1 =
1

𝑖+1
(∑ 𝑥𝑖−𝑗𝑦𝑗 − 𝑏𝑧𝑖)

𝑖
𝑗=0   

𝑋𝑖+1 =
1

𝑖+1
𝑐𝑎(𝑌𝑖 − 𝑋𝑖), 𝑌𝑖+1 =

1

𝑖+1
(𝑐(𝑟𝑓𝑋𝑖 − 𝑌𝑖 −∑ 𝑋𝑖−𝑗𝑍𝑗) + 𝜀𝑓∑ 𝑋𝑖−𝑗𝑦𝑗

𝑖
𝑗=0 )𝑖

𝑗=0 ,  

𝑍𝑖+1 =
1

𝑖+1
𝑐(∑ 𝑋𝑖−𝑗𝑌𝑗 − 𝑏𝑍𝑖)

𝑖
𝑗=0   

(2) 

 
These are the formulas for the automatic differentiation. After computing the normalized 

derivatives (the Taylor coefficients) up to the N-th order, we evaluate the Taylor polynomials by 
Horner’s rule. The pseudocode for the Taylor series algorithm for coupled Lorenz system is 
straightforward:  
 

                                            while (time < T) {     
                                                   for (i = 0; i<N; i++) { 
                                                         s1=s2=s3=s4=s5=0.0; 
                                                         for (j=0; j<=i; j++) { 
                                                               s1+= x[i-j]*z[j];   s2+= x[i-j]*y[j];  
                                                               s3+= X[i-j]*Y[j]; s4+= X[i-j]*Z[j]; 
                                                               s5+= X[i-j]*y[j]; 

                                                         } 
                                                         // Computing x[i+1], y[i+1], z[i+1], 
                                                         // X[i+1], Y[i+1], Z[i+1] from formulas (2) 
                                                    } 
                                                    //  Computing the optimal step-size τ 
                                                    ................................................................. 
                                                    //  One step forward with Horner's rule  
                                                    //  for the new x[0], y[0], z[0], X[0], Y[0], Z[0] 
                                                    ................................................................. 
                                                    time+=tau; 

                                             } 
 

It is obvious that we need O(N2) floating point operations for computing the Taylor 
coefficients and that parallel reduction for the sums in the inner loop is the crucial part of the 
parallelization. To make the method more robust, we choose a simple variable step-size strategy taken 
from [7]: 

𝜏 =
0.993

𝑒2
min {(

1

||UN−1||∞
)

1

N−1
, (

1

||UN||∞
)

1

N
}  (3) 

 where Ui = (xi, yi, zi, Xi, Yi, Zi ). This choice of  𝜏 ensures both the convergence of the Taylor series,  
 and the minimization of the computational work per unit time. 

4. OpenMP parallelization of the algorithm 

OpenMP [8] has its own importance for the above algorithm, because: (I) OpenMP is simpler 

than MPI since the communication between threads is realized by the shared memory and we do not 
need to learn special libraries for packaging and unpackaging of multiple precision numbers. (II) 
OpenMP is slightly faster than pure MPI, most likely because of the additional overhead for grouping 

GMP data for MPI massages. (III) OpenMP uses less memory, since the algorithm does not allow 
domain decomposition and the computational domain has to be multiplied by the number of MPI 
processes. Although OpenMP has a build-in reduction clause, we cannot use it, because we use user-
defined types for multiple precision numbers and user-defined operations. Thus, we have to do the 
reduction manually. To avoid false sharing, a padding strategy is applied for the shared containers for 
the partial sums of the threads [8]. The main points of the parallelization are: (I) For given i make an 
explicit parallel reduction for the sums in (2). (II) After computation of sums for given i, compute each 

formula for xi+1, yi+1, zi+1, Xi+1, Yi+1, Zi+1  independently in parallel.  (III) After computation of all the 
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derivatives up to the N-th, compute the variable step-size in a single section. (IV) At last use Horner’s 
rule for evaluation of all 6 components of the solution independently in parallel. It is important to note 
that our approach for parallelization can be simply applied to a large class of chaotic dynamical 
systems, because we usually have formulas like (2), which comes from the automatic differentiation 
rules. The sketch of the OpenMP code for one time step in terms of GMP library reads as follows: 

                                      #pragma omp parallel private(i,j,tid) 
                                      { 
                                             tid = omp_get_thread_num(); 
                                             for (i = 0; i<N; i++) {  //N - the order of the method  

                                                    # pragma omp for schedule (static) 
                                                    for (j=0; j<=i; j++) { 
                                                          mpf_mul(tempv[pad*tid],x[i-j],z[j]); 
                                                          mpf_add(sum[pad*tid],sum[pad*tid],tempv[pad*tid]); 
                                                          // The same computations for the other 4 sums 
                                                    } 
                                                   // Explicit tree based parallel Reduction 
                                                    ...................................................... 

                                                    #pragma omp sections 
                                                    { 
                                                      // Computing x[i+1],y[i+1],z[i+1],X[i+1],Y[i+1],Z[i+1] 
                                                      // independently in 6 parallel sections 
                                                    } 
                                                    ....................................................... 
                                                    // Setting elements of the array "sum" to zero 

                                              } 
                                              #pragma omp single 
                                              { 
                                                  // Computing the variable step-size from (3) 
                                              } 
                                              #pragma omp sections 
                                              { 
                                                    // One step forward with the Horner's rule 

                                                    // independently for each 6 components 
                                              } 
                                       } 

5. Performance and numerical results  

The preparation of the parallel program and the many tests are performed in the HybriLIT 
platform at MLIT, JINR [9] and in the Nestum cluster, Sofia, Bulgaria [10]. Following Shijun Liao 
from [1], we first computed a priori estimations for the needed order N of the method and the needed 
decimal digits of precision K. Let Tc be the practical Lyapunov time defined by the time at which the 

Euclidean distance between two adjacent trajectories becomes more then 10-30. We computed the 
following linear Tc-K and Tc-N dependencies. For fixed step-size 0.001: Tc=0.1961N-6, 
Tc=0.1998K-6. For variable step-size: Tc=0.1734N-6, Tc=0.1998K-6 (the same as for the fixed step-
size as expected). Using these estimations we computed a reference solution in the rather long time 
interval [0, 400]. We took as initial conditions those from paper [11] in order to compare with the 
benchmark table there up to time=100. We performed two large computations, each using one CPU-
node based on two Intel® Haswell processors (32 cores) in Nestum cluster: one computation with 

K=2158 and N=2480 and a second computation for verification with K=2254 and N=2580. We obtain 
numerically the following step-sizes for the second (larger) computation: min=0.001156, 
max=0.008854, avg=0.002855. The estimated speedup for the serial program when using variable 
instead of fixed step-size strategy is 2.855(0.1734/0.1961)2~2.23. The measured speedup is very close 
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to that - 2.20. Because the parallel efficiency with variable step-size is slightly better (lager order of 
the method gives more computational work per step), the parallel program with variable step-size is 
2.32 faster than the analogical fixed step-size parallel program. The needed time for the second 
computation using one node (32 cores) in Nestum cluster is 6.3 days. The parallel speedup when using 
these 32 cores is 23.1 with parallel efficiency 72.1%. As we compute the reference solution with some 

reserve of the estimated N and K, we actually obtain the solution with some more correct digits. The 
parallel program and the reference solution with 60 correct digits at every 10 time units can be seen in 
[12]. 
 

6.Conclusions 

 
OpenMP parallelization of the multiple precision Taylor series method with variable step-size 

for the coupled Lorenz system is realized. A very good parallel efficiency for one CPU-node is 
observed. An important observation is that the variable step-size not only makes the method more 
robust and decreases the computational work, but also increases the parallel efficiency, compared to 
the fixed step-size case. Our approach for parallelization can be simply applied to a large class of 
chaotic dynamical systems. OpenMP has some advantages vice MPI, the most important of which is 
its simplicity, and it should be the preferred choice in the case of using a moderately large 

computational resource. 
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