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The modern Big Data ecosystem provides tools to build a flexible platform for processing data streams 

and batch datasets. Supporting both the functioning of modern giant particle physics experiments and 
the services necessary for the work of many individual physics researchers results in generating and 
transferring large amounts of semi-structured data. Thus, it is promising to apply cutting-edge 
technologies to study these data flows and make the services' provisioning more effective. In this 
work, we describe the structure and implementation of our data analysis platform, built on the Apache 
Spark cluster. With the official support for GPU computing now available in Spark version 3, we 
propose a change in the architecture to utilize these more performant resources while keeping the 

platform's functionality provided by using mainstream Big Data software. Furthermore, the necessity 
for GPU support entails a change in the computing resource management infrastructure from Apache 
Mesos to Kubernetes. Finally, to demonstrate the features and operation of the system, we use the task 
of network packet analysis for security monitoring and anomaly detection in both batch and stream 
modes. 
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1. Introduction 

High-energy physics experiments, such as those being conducted at the Large Hadron Collider 
(LHC) at CERN and will be conducted at the Nuclotron-based Ion Collider fAсility (NICA) at JINR, 
produce actual experimental data at the scale of terabytes per second [1]–[3]. This data is usually 
processed and analyzed using specialized libraries on dedicated computing platforms [4]. In addition, 

modern large experiments and institutions generate many streams of ancillary data that plays a critical 
role in supporting their operations. This information has an immediate technical purpose, but it can 
also be collected for a more thorough cross-referential analysis. 

Projects in the Big Data ecosystem provide robust and scalable software to build a platform 
for collecting and processing such datasets. A prototype of such a platform was proposed and 
implemented in [5]. This work aims to build on the given progress by implementing support for GPU 
computing resources. The speedup that GPU processing ensures for different processing and analysis 
operations can be then measured for more effective scale-out and task scheduling in the future. We 
expect GPUs to be especially effective for accelerating the training of machine learning models built 
with deep artificial neural networks. 

2. Platform architecture 

 

Figure 9. General platform structure and functionality 

2.1 Big Data and Apache Spark 

The core processing and analysis framework of the platform is Apache Spark, which facilitates 
batch and stream processing, contains machine learning libraries, and can interface with many data 
management and storage tools in the Big Data ecosystem. 

Distributed storage is provided within the platform by the MooseFS file system. This does not 

give the performance benefits of data locality afforded by HDFS, which stores data directly on 
compute nodes. However, data locality is reported to be less essential for modern Big Data platforms 
than it was at the inception of the Hadoop ecosystem [6]. 
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2.2 Resource management in the Spark cluster 

The Spark cluster can be run standalone, or use a resource manager: YARN, Mesos or 
Kubernetes. Mesos was used as the resource management tool of the prototype framework in [5], 
however, Spark does not yet support GPU resource management with Mesos. Kubernetes was selected 
as the resource manager for the future, as it allowed consolidating the management of the computing 
resources and the containerization of platform services. 

Running Spark in the standalone cluster mode is straightforward, but it is less flexible and less 
desirable in a production environment than the other modes. YARN is a resource manager specialized 
for the Big Data ecosystem; it would be preferable if we had an established Hadoop-based platform to 
add Spark onto. 

2.3 GPU resource support in Spark 

To use NVIDIA GPUs as resources in Spark jobs running on the Kubernetes cluster, the 
underlying containers need to support NVIDIA hardware. The libraries and tools provided by NVIDIA 
for this support are multi-layered [7]: 

● libnvidia-container provides an API and CLI to set up containers with NVIDIA GPU support 
● nvidia-container-toolkit provides a runC prestart hook to apply these compatibility tweaks on 

container startup 

● nvidia-container-runtime wraps runC, adding this prestart hook to any container config started 
through this wrapper 

● nvidia-docker2 installs the runtime into the local Docker configuration, allowing to start GPU-
enabled containers more easily 
The actual need for these tools and the compatibility between Kubernetes and the NVIDIA 

driver version is not very well-documented. Kubernetes suggests using k8s-device-plugin, which 
purportedly requires a specific NVIDIA driver version (384.81) [8], [9]. NVIDIA themselves provide 

more up-to-date and complete documentation on installing a Kubernetes cluster with GPU support 
[10]. 

We used the NVIDIA DeepOps approach suggested by that article. It provides an easy way to 

deploy and configure most of the Kubernetes components needed to run a production cluster by 
building on top Kubespray for Kubernetes deployment with Ansible [11]. The specific up-to-date 
procedure allowed us to quickly deploy and test the cluster for our platform, but it can create support 
and configuration issues in the future when we might want to deviate from the suggested cluster 
architecture. 

An important aspect of managing GPU resources with Kubernetes for Spark is resource 
discovery. That is, finding and annotating the GPUs present on the Kubernetes node to direct specific 
Spark jobs to utilize such resources. DeepOps configured the containerized service for resource 
discovery by default. 

3. Platform testing 

3.1 Distributed Tensorflow machine learning 

To test GPU resource support on the platform, a sample distributed machine-learning job was 
run on the platform. Spark-tensorflow-distributor [12] provides a method for distributing Tensorflow 

workflows across the Spark cluster, basically utilizing Spark as a resource and workload manager. It 
also provides a sample script to demonstrate the training of a small convolutional neural network for 
the classic problem of handwritten digit classification on the standard MNIST dataset. As Tensorflow 
can run with or without a GPU, the same test script was used for testing throughout this project to 
ensure that the GPU virtualization of the NVIDIA T4 GPU worked with the standalone Spark node, 
that the distributor library worked correctly on the Kubernetes cluster, and that GPU resources were 
available to Spark through the Kubernetes node. 



Proceedings of the  9th International Conference "Distributed Computing and Grid Technologies in Science and 
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021  

177 
 

3.1 Network packet analysis 

 

Figure 10. Data flow through the platform in the network packet analysis problem. 

To demonstrate a more practical application of the platform at a scale closer to Big Data, a 
prototype pipeline to collect and process network packets was implemented on the new framework, in 
an approach similar to the way the same problem was solved on the prototype framework [5]. 

Network packets from one local laboratory subnetwork were duplicated and sent to one 
physical machine that did not take part in the main Kubernetes cluster. Raw packet headers were 
extracted with tshark[13] running in a Docker container and dumped into temporary 10Mb files 
continuously. They were parsed by running 7 tshark instances with GNU parallel[14] in another 
container, with the communication of files to be parsed managed by incrontab and a named FIFO pipe. 
The parsed JSON files were immediately compressed into ~14Mb zstd archives and stored on the 

distributed storage. This collection step ran for continuous capture for 7 days, resulting in a parsed 
dataset of 700Gb ready for analysis. 

The analysis was carried out in Spark, with the processing steps submitted from the Zeppelin 
notebook-style web interface running entirely within the same Kubernetes resource cluster that runs 
the resulting Spark jobs. Thanks to building our own Docker images hosted on a private Gitlab 
repository, mounting the distributed storage into the Zeppelin and worker nodes, version 
compatibility, and adding support for reading zstd-compressed files were minor problems. 

The analysis consisted of using the Numeric Aggregate and Mode (NAGM) method to 
aggregate and extract network node features from the network packet TCP and IP headers. This 
method, specifically for Darknet packet analysis, is described in detail in [15]. We apply it to normal 
network packets to test the performance of the framework and engineer network node features with an 
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existing established method for further analysis. The same approach was used to test the prototype Big 
Data framework in [5]. 

4. Conclusion 

Most of the platform changes from the 2020 prototype to the current state were motivated by 
the inclusion of GPU resources, which necessitated the change of the resource manager, the update of 

Apache Spark, the use of Ansible for initial deployment. A list of changes and the motivation for them 
are presented in Table 3. 

Table 3. Framework components modified from the prototype to today 

 2020 prototype 2021 framework Motivation 

Resources CPU nodes 
CPU nodes + Nvidia 
T4 

GPU 

Analysis core Spark 2.4 Spark 3.1 GPU 

Container repository DockerHub Gitlab.com Performance 

Resource 

management Mesos Kubernetes 
GPU 

Configuration 

management 

None with plans for 
Puppet 

Ansible with plans 
for Puppet 

GPU 

Supporting services Docker swarm Kubernetes 

The Kubernetes cluster is 

already set up for Spark 

Coordination Zookeeper etcd Deepops default 

Authentication None FreeIPA in progress 
Auth is important for the 
platform 
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