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Machine learning methods and in particular deep neural networks are often used to solve the problem 

of image classification. There is a trend towards an increase in training data and an increase in the size 
of neural network architectures. The process of training a deep neural network with millions of 
parameters can take thousands of hours on modern computing devices. Distributed computing systems 
can be used to reduce training time. The wide scalability of grid systems and the ease of connecting 
new computational nodes can significantly reduce the training time for deep neural networks. But at 
the same time, you should take into account the peculiarities of data exchange between the nodes of 

the desktop grid system. Methods of organizing distributed deep learning are proposed using the 
example of the image classification problem. The technique of random formation of a local dataset is 
proposed. The results of using synchronous and asynchronous approaches to distributed learning are 
shown. 
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1. Introduction 

Machine learning methods and deep neural networks are quite relevant and effective for 
solving various problems of image classification in applied problems [1]. Training deep neural 
networks is computationally hard. Deep learning with large datasets can take weeks or even months on 
modern personal computers or servers. With the help of modern video cards (GPU), training time can 

be significantly reduced compared to using only the CPU. To minimize the training time for deep 
neural networks, high-performance computing systems are used. Unfortunately, not all researchers 
have access to supercomputers. As a result, they use either reduced datasets or simplified deep neural 
network architectures.  

Therefore, the use of distributed computing systems is a logical step to reduce training time. 
Distributed computing systems have a number of features [2]: heterogeneity of computing nodes; 
possible failure of nodes and communication channels; occurrence of errors and delays in calculations 
and data transmission; autonomy of calculations at the nodes and the difficulty of coordination. 

Some types of distributed computing systems have a control node (server). Such centralized 
distributed systems include desktop grid systems and mobile grid systems. There are various software 
for organizing such grid systems, for example: BOINC [3], HTCondor, Grid Engine and etc. 

BOINC is one of the popular platforms for organizing distributed computing and voluntary 
distributed computing. On the basis of this platform, more than 100 projects have already been 
deployed to solve various scientific problems. BOINC consists of a client and a server. The computing 
node of the desktop grid (BOINC client) periodically requests new tasks on the server and sends the 

results [3]. The server part is deployed under the Linux operating system and consists of several 
separate applications (daemons). The BOINC backend has a shared MySQL database or a MariaDB 
distributed database. These daemons can be run asynchronously. Main BOINC daemons: work 
generator, scheduler, feeder, transitioner, validator, assimilator, file deleter and database purger. If 
necessary, each of their daemons can be modified or changed. For example, the validator's algorithm 
can be changed in validator-daemon to check the correctness of the results obtained. 

Data exchange between the nodes of the desktop grid, bypassing the server, is not expected. 
This imposes additional restrictions on the formation of input data for subtasks and scheduling the 
distribution of tasks among computational nodes. It is necessary to adapt the deep learning for 
computing on a desktop grid system. The separation of one computational learning task into many 

autonomous subtasks should occur both between computational nodes (parallel execution) and over 
time (sequential execution) [4]. With time separation, coordination between nodes becomes possible 
via the server. 

Deep neural networks can be used not only to determine the presence of objects in images, but 
also to classify texture images. In images where there are no objects with clear contours or the number 
of objects is so large that it is difficult and meaningless to select all the objects separately. In these 
cases, it is best to use all the information in the image and define it as a texture. This approach is often 
used for multiple images obtained using optical microscopy techniques. 

2. Big datasets 

One of the main goals in preparation for training deep neural networks is the dataset creation. 

For the problem of image classification, a dataset is a set of images of the same size. In this case, only 
one class value can be assigned to one image. 

There are reference datasets with texture images. They can be used to check the adequacy of 

the chosen architecture of a deep neural network. The reference classification problem can be used to 
test scheduling systems and the quality of deep learning in a desktop grid system. For example, the 
following datasets can be cited: Kylberg Texture Dataset (28 classes; image size: 576х576 pixels) [5], 
Brodatz (112 classes; image size: 512x512 pixels), KTH-TIPS2 (11 classes; image size: 200x200 
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pixels). The image size in these datasets is small and does not exceed 600x600 pixels. This is due to 
the size of the input layer on popular deep neural network architectures. Such architectures for solving 
problems of classification of texture images include: VGG16, AlexNet, T-CNN [6], InceptionV3, 
ResNet50. 

As a rule, when obtaining images by various microscopy methods, the size of the images is 
significantly higher, for example: 2272x1704 or 1920x1080 [7]. This means that the original image 
should be divided into fragments. At the same time, it should be taken into account that important 

information can get to the border of the fragment. This situation can be corrected by the method of 
splitting into fragments, where fragments from the original image will be taken with an overlap of 
30% -50% (Figure 1). 

 

Figure 11. Dividing the image into fragments 

As a result, the number of images for the dataset increases significantly. In addition, it should 
be taken into account that the orientation of the images obtained using microscopic methods is not 
known. This means that you should place not only fragments of the original images, but also 

fragments of images rotated at different angles. As a result, from one original image of size 
2272x1704, you get: 192 fragments, taking into account 50% overlap in each coordinate, and 6972 
fragments, taking into account the rotation angle from 0 to 355 degrees with a step of 5 degrees. 

As a result of augmentation, a dataset of 4,559,688 fragments is obtained from 654 source 
images. The number of rotation angles during augmentation may be less, but the size of the dataset 
will still be large. On disk, such a dataset will occupy about 65 GB. 

3. Distributed deep learning 

To train most architectures of convolutional neural networks, the SGD (Stochastic Gradient 
Descent) method and its variations are used, for example: ISGD, Adagrad, Adam [4]. Several 
approaches are used to distribute train the same deep neural networks. First of all, distinguish between 
the approaches of partitioning by model and partitioning by data. This paper assumes that the training 

model will be the same on all nodes of the desktop grid. The use of a large dataset does not make it 
possible to transfer it to all nodes of the desktop grid, which makes the data partitioning approach the 
only possible one. In accordance with this approach, the results of training local models will be 
aggregated on the server. The process of training a local model on a computational node consists of 
sequential iterations. The input data for each iteration will be the current gradients from the aggregated 
global model on the server. According to the methods of aggregating local gradients, a synchronous 
and asynchronous approach to learning is distinguished. 

In the synchronous approach (all reduce), each iteration ends up collecting all the results of the 
local models. In the case of a heterogeneous distributed computing system, fast nodes will wait for 
slow nodes to finish. After the completion of the iteration, the local results are aggregated and a global 

gradients are formed. This set of gradients will be the input data for the next iteration of the local 
training models. The synchronous approach provides a relatively fast learning rate. The disadvantages 
of the synchronous approach include the irrational use of computing resources – small values of 
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utilization of computing nodes. This disadvantage can be partially compensated for when the results 
are collected only from a certain percentage of nodes (for example, 80% [8]). 

In contrast to the synchronous approach, in the asynchronous approach there is no 
synchronization when aggregating the results of local models. The global model gradients on the 
server are updated asynchronously. But because of this, there is an effect of "aging of gradients", 
which significantly slows down learning process. There are modifications of asynchronous methods, 
including gradient sparsification [9]. 

Despite significant differences in the synchronous and asynchronous approaches, both of them 
can be implemented on the desktop grid. With any approach, the problem of a large dataset remains. 

Its location on the BOINC server will make it a bottleneck when transferring data and results. To 
unload the BOINC server, it is necessary to place the dataset on several FTP servers (Figure 2). Then 
each node has the opportunity to download data from one of the FTP servers, and at the same time it 
will not waste the resources of the main server of the grid system. 
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Figure 12. Data exchange schema 

Taking into account the features of the desktop grid system, a logical step was the formation 
of a random local dataset for training the neural network at one iteration. The size of the local dataset 

can vary, and the presence of a large number of nodes in the desktop grid will allow you to cover the 
entire dataset. However, the dataset consists of fragments of the original images, therefore, when 
dividing into training and test samples, a restriction should be introduced. So for the formation of a 
local test sample, fragments of images that are currently participating in the training sample cannot be 
used. The balance requirement for all classes for the local dataset was taken into account. 

4. Results 

Experiments on distributed deep learning for solving the image classification problem were 
carried out. Synchronous (Table 1) and asynchronous (Table 2) approaches have been implemented. 
SGD algorithm and its modification DGS (Deep Gradient Compression) were implemented. 
Distributed learning implementations varied significantly among themselves. Various datasets were 
used: for the synchronous approach, a combined dataset was used (12 classes from Kylberg Texture 

Dataset + 3 class from selfmade big dataset [8]), and for the asynchronous approach, one of the 
CIFAR reference datasets was used. 
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Table 4. Results with synchronous distribute learning 

Algorithm Number of 

iterations 

Number of 

nodes 

Size of local 

train set 

Size of local test 

set 

Accuracy 

synSGD 18 5 6 000 2 700 0.792 

Table 5. Results with asynchronous distribute learning (reference dataset) 

Algorithm Number of 

iterations 

Number of 

nodes 

Size of local 

train set 

Size of local test 

set 

Accuracy 

SGD 50 6 50 000 10 000 0.939 

DGS 50 6 50 000 10 000 0.926 

Despite the small number of nodes in test grid systems, the training results allow us to 

conclude that it is possible to conduct distributed deep learning on desktop grid systems. The overhead 
costs for the local datasets creation have been moved to the computational nodes side. 

5. Conclusion 

 The implementation of synchronous and asynchronous approaches of distributed deep learning 
showed the possibility of using desktop grid systems to solve image classification problem. Placing a 
large dataset on independent FTP-servers relieved the load on the desktop grid server. The proposed 
method of forming local datasets will allow for a desktop grid with a large number of nodes to cover a 
dataset of a big size. 
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