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Very-high-energy gamma ray photons interact with the atmosphere to give rise to cascades of 

secondary particles – extensive air showers (EASs), which in turn generate very short flashes of 
Cherenkov radiation. This flashes are detected on the ground with Imaging Air Cherenkov Telescopes 
(IACTs). In the TAIGA experiment, in addition to images directly detected and recorded by the 
experimental facilities, images obtained as a result of simulation are used extensively. Earlier we 
applied a machine learning technique called Generative Adversarial Networks (GAN) to quickly 

generate images of gamma events for the TAIGA experiment. The initial analysis of the generated 
images showed the applicability of the method, but revealed some features that require additional 
refinement of the network. In particular, it was important to teach the network that in our case images 
have a specific shape and orientation. In this paper we discuss the possibility of improving the 
generated images by preprocessing the training dataset. We also present an example of a GAN built 
and trained with these requirements in mind. Testing the results using third-party software showed that 
more than 95% of the generated images were found to be correct, while the generation is quite fast: 
after training the network creates about 400 event images in 1 second. 
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1. Introduction 

Very-high-energy gamma ray photons interact with the atmosphere to give rise to cascades of 
secondary particles – extensive air showers (EASs), which in turn generate very short flashes of 
Cherenkov radiation. This flashes are detected on the ground with Imaging Air Cherenkov Telescopes 
(IACTs) [1]. The TAIGA experiment (Tunka Advanced Instrument for cosmic ray physics and 

Gamma Astronomy) [2] consists of different detector systems and measures air showers, which are 
initiated by charged cosmic rays or high energy gamma rays. The TAIGA Cherenkov telescope array 
(TAIGA-IACT) is used for gamma astronomy. In the TAIGA-IACT experiment, in addition to images 
directly detected and recorded by the experimental facilities, images obtained as a result of simulation 
are used extensively [3]. The problem is that direct modeling of the underlying physical processes 
(such as interactions and decays of a cascade of charged particles in the atmosphere) is a 
computationally demanding task, since it tracks the type, energy, position, direction and time of arrival 
of all secondary particles born in EAS. On average, using direct computational models, one can get 

only about 1000 images per hour. This can result in computational bottleneck for the experiment due 
to the lack of model data. 

To address this challenge, we opted for a machine learning technique called Generative 
Adversarial Networks (GAN) [4] to quickly generate images of gamma events for the TAIGA-IACT 
experiment. GANs are an increasingly popular approach to learning a generative model using deep 
neural networks, and have shown great promise in generating clear samples from natural images [5]. 
Our previous work [6] outlines the very first results of this study. We checked the quality of the 
generated images with the third party software tool that is used for image classification in the TAIGA-
IACT experiment [7]. This software tool determines gamma likelihood – the probability that an image 

is a gamma image. Initial analysis of the images generated by our GAN showed the applicability of the 
method, but not all the generated images were considered correct. Further analysis showed that the 
network was not good enough at capturing the features of the real gamma images. Because of this, the 
image validation tool rejected some images that appeared to be good, and the percentage of generated 
images recognized as gamma events was only about 90%. 

In this paper, we show how we managed to increase the percentage of correctly generated 
images by preprocessing the training set. We also provide a detailed description of the network 
architecture used to generate gamma images in the TAIGA-IACT experiment. 

2. GAN architecture for gamma events 

Each classical GAN [5] is a system of two neural networks that are trained simultaneously in 
an adversarial game: a generative network (Generator) that captures the data distribution, and a 

discriminative network (Discriminator) that estimates the probability that a sample came from the 
training data rather than Generator. The training procedure for Generator is to maximize the 
probability of Discriminator making a mistake. The system as a whole corresponds to a minimax two-
player game. 

The following is a description of the features of the network for generating gamma event 
images for the TAIGA-IACT experiment. 

The generator takes as input a point in the latent space – a random vector of 8192 (128x8x8) 
entries, and outputs a single 32x32 grayscale image. The generator has 4 layers of convolution. All 
layers except the output layer use 4x4 filters and a leaky ReLU function with alpha=0.2 as the 
activation function. The output layer has one 6x6 filter and uses a sigmoid for its activation. We also 
apply batch normalization (BN) [9] in the generator. The main advantage of this technique is that it 
greatly speeds up the learning process. In our case, BN makes the generator and, as a result, the entire 
GAN more stable. We adopted BN between convolutional layers before each activation function. 

The architecture of the generator for gamma events is shown in Figure 1. 
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Figure 1. Architecture of the generator 

The discriminator takes as input one 32x32 grayscale image and outputs a binary prediction as 
to whether the image is real or fake. It uses a 2x2 stride to downsample, and the Adam version of 
stochastic gradient descent with a learning rate of 0.0002 and a momentum of 0.5. In the convolutional 
layers, the convolution filter size is 4x4; the leaky ReLU function with alpha=0.2 is used for the 
activation. The output layer uses a sigmoid function for its activation. 

The architecture of the generator for gamma events is shown in Figure 2. 

 

Figure 2. Architecture of the discriminator 

Also worth mentioning are two more hyperparameters of the GAN learning process: a batch 
size and a number of epochs. The batch size is a number of training images that need to be processed 

before updating the network weights. The number of epochs controls the number of complete passes 
through the training dataset. During training, we used the batch size of 128 images and 300 epochs. 

3. Training set preprocessing 

The real images of gamma events are small, and usually we have only a few light pixels (event 
track) on a black background. An event track is usually elliptical in shape. When observing gamma 
events, the telescope is pointing towards the source of gamma quanta, so the recorded ellipses can 
come from different directions, but all must be pointed towards the center of the image. Our basic 
GAN has learned very well to reproduce the elliptical shape of the image, but some generated images 

had problems with the position of the ellipse within the image. To address this issue we had to modify 
our training set to force our network to learn the rotational symmetry of the images. 
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To account for rotational symmetry, each image of the training set was flipped horizontally, 
and then both images were flipped vertically. Thus, in addition to the original image, we get three 
rotated copies of it. An example of the original image and its copies is shown in Figure 1. 

 

Figure 3. The original image from the training set (the first one) and its three rotated copies 

4. Results 

In our previous work [6], we selected 25,000 gamma events as the training sample. The 
training on the Tesla P100 GPU took about 6 hours. Accordingly, now we took the same images and 
applied the aforementioned flipping procedure to them. This procedure increased the sample size by 4 

times, respectively increasing the training time of our GAN: it took about 22 hours to train the network 
on the resulting dataset using the same server. At the same time, the image generation rate has not 
changed, and the network creates about 400 event images in 1 second. 

For verification, we generated a sample of 4000 gamma images and classified them using the 
third party software tool that is used for classification in the TAIGA-IACT experiment [7] that 
determines the probability that an image is a gamma image. 

 

Figure 4. The gamma likelihood for gamma events 

The plot in Figure 4 shows the results of the classification – the distribution of the number of 
generated gamma events by probabilities. The X-axis in the plot represents the probability that the 
image is a gamma event and the Y-axis is the number of generated gamma events classified as gamma 
events with a given probability. The plot shows that for more than half of the generated events, the 
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calculated probability is 90-100%. Moreover, for 97% of generated events, the probability exceeds 
50%, thus, these events are recognized as gamma events. So, the quality of generating gamma images 
has improved: about 3% of the generated gamma images, which were previously highly likely to be 
recognized as non-gamma events, became highly likely to be recognized as gamma events. 

5. Conclusions 

Summarizing the above, we can conclude that additional preprocessing of the input image set 
used for training can further improve the accuracy of modeling event images for the TAIGA-IACT 
experiment. On the other hand, the training time increases significantly, but the network learns the 
rotational symmetry better, which is important specifically for gamma images. As a result, the number 
of correctly generated images increased by approximately 3% and reached 97%. At the same time, the 
preprocessing of the input set does not affect the image generation speed. 
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