
Proceedings of the  9th International Conference "Distributed Computing and Grid Technologies in Science and 
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021  

310 
 

BENCHMARK OF GENERATIVE ADVERSARIAL 

NETWORKS FOR FAST HEP CALORIMETER 

SIMULATIONS  

 

F. Rehm
1,2,a

, S. Vallecorsa
1
, K. Borras

2,3
, D. Krücker

3 

1 CERN, Esplanade des Particules 1, Geneva, Switzerland 

 2 RWTH Aachen University, Templergraben 55, Aachen, Germany 

3 DESY, Notkestraße 85, Hamburg, Germany 

E-mail: a florian.matthias.rehm@cern.ch 

Highly precise simulations of elementary particles interaction and processes are fundamental to 
accurately reproduce and interpret the experimental results in High Energy Physics (HEP) detectors 
and to correctly reconstruct the particle flows. Today, detector simulations typically rely on Monte 
Carlo-based methods which are extremely demanding in terms of computing resources. The need for 
simulated data at future experiments - like the ones that will run at the High Luminosity Large Hadron 
Collider (HL-LHC) - are expected to increase by orders of magnitude, increasing drastically the 
computational challenge. This expectation motivates the research for alternative deep learning-based 

simulation strategies. 
In this research we speed-up HEP detector simulations for the specific case of calorimeters using 
Generative Adversarial Networks (GANs) with a huge factor of over 150 000x compared to the 
standard Monte Carlo simulations. This could only be achieved by designing smart convolutional 2D 
network architectures for generating 3D images representing the detector volume. Detailed physics 
evaluation shows an accuracy similar to the Monte Carlo simulation. 
Furthermore, we quantize the data format for the neural network architecture (float32) with the Intel 

Low Precision Optimization tool (LPOT) to a reduced precision (int8) data format. This results in an 
additional 1.8x speed-up on modern Intel hardware while maintaining the physics accuracy. These 
excellent results consolidate the beneficial use of GANs for future fast detector simulations. 
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1. HEP Calorimeter Simulations 

At present, detector simulations are primarily performed with the Geant4 toolkit [1] which 
relies on Monte Carlo-based methods. Calorimeters are detectors that measure the particles energy in 
high energy physics experiments such as at the Large Hadron Collider (LHC). Due to their 
considerable complexity and high granularity calorimeter simulations remain the tasks which utilize 

the most significant fraction of computational resources. In the future High Luminosity LHC (HL-
LHC) phases the amount of data to be simulated will significantly increase due to the larger 
luminosities. Furthermore, the calorimeter detectors get progressively more complex with higher 
granularities. This predictably causes an increase of the computational requirements which exceed the 
extrapolated computational resources of the Worldwide LHC Computing Grid [2] by far.  

In this research are Generative Adversarial Networks (GANs) - a modern Deep Learning 

approach - applied to speed-up calorimeter simulations. Recent physics publications proved already 
speed-up's of orders of magnitudes [3, 4] while maintaining physics accuracy [5, 6]. As training data 
are 200 000 three-dimensional high granularity shower images with a dimension of 25x25x25 pixels 
used. One demonstrative example shower image is shown in Figure 1. 

 

Figure 1. Shows (left) an example electromagnetic calorimeter 3D shower image with a 
primary particle energy of 500 GeV. (right) Inference of Conv2D model run with different batch sizes. 

With a batch size of 2 048 it reveals the highest inference time with 9 347 showers per second (or 158  

000x speed-up versus Geant4). 

2. 3D Generative Adversarial Network 

Deep learning approaches are today an appropriate choice to deal with computationally 
demanding problems. Generative Adversarial Networks (GANs) comprise an established category of 
models which generate realistic data similar to the data of a training data set. In the GAN principle two 
models are carrying out an adversarial role based on game theory. The generator network tries to fool 
the discriminator network by sending fake images labelled as true images (training images). The 

discriminator on the other hand, tries to distinguish between real data (images from the training data 
set) and fake data (generated images). The training is successful, when the discriminator is no more 
able to distinguish between the original images and synthetic results producing a classification 
prediction of 50% for each class.  

The generator and the discriminator model are parameterized by deep neural networks. Since 
we interpret the calorimeter output as a three-dimensional image, we can build neural networks 
consisting primarily of convolutional layers. Although the generated images are three-dimensional, we 
designed an architecture which utilizes only 2D convolutional (Conv2D) layers in order to reduce the 

computational time. The generator architecture is shown in Figure 2 and the discriminator architecture 
in Figure 3. 
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Figure 2. Conv2D generator architecture  

The networks consist of three branches corresponding to the three image canonical axes. The 
generator input latent space comprises 200 random numbers drawn from a uniform distribution 

between zero and one multiplied by the primary particle energy 𝐸𝑝. The generator output is the three-

dimensional image with 25x25x25 pixels. In addition to Conv2D layers, the generator network 
includes transposed 2D convolutional (Conv2D_transpose) layers to increase the image size, batch 
normalization (BatchNorm), a rectified linear units activation function (ReLU), linear ReLU activation 

functions (LeakyReLU) and dropout layers (Dropout). With the help of the three branches, the 
network is capable to learn the correlations between all three image dimensions.  

For the discriminator we employ a model similarly consisting of three branches. The input 

represents either the real images from the training set or the generated images. The discriminator 
outputs three values: the first is the typical GAN true/fake probability [7] which is used to calculate a 
binary cross entropy loss [8]. The second loss (named AUX, for AUXiliary loss) represents the result 
of a regression task on the initial particle energy 𝐸𝑝, that the discriminator estimates from the images 

using a dense layer. It is implemented as a Mean Absolute Percentage Error (MAPE) [9]. The third 

discriminator output comes from a Lambda layer, calculating the sum over the pixels of the input 
image which, therefore, corresponds to the total energy of the input image. It is entitled ECAL and 
uses the MAPE loss function likewise. 

 

Figure 3. Conv2D discriminator architecture 

3. GAN Evaluation 

We evaluate the Conv2D GAN model in terms of physics accuracy and computational speed 
and compare it to a previous architecture taken from Ref. [10] which uses Conv3D layers for the same 
simulation use case. Ultimately, the new Conv2D model is compared to the Geant4 simulation which 
is aimed to be replaced. The goal is to speed-up the simulation time while providing the equivalent 
level of necessary accuracy to evaluate the physics results. The inference is run on a Nvidia Tesla 
V100 GPU with Python version 3.6.8 and TensorFlow version 2.2.0. We run 20 warm-up batches and 
evaluate afterwards 100 inference steps including 20 batches each. The inference process of the 

Conv2D model is optimized with different batch sizes and we measure the speed-up versus Geant4 
simulation and the percentage of the GPU utilization. The results are presented in Figure 1. One can 
see that, for increasing batch sizes, the GPU utilization, and the number of showers per second rises 
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almost linear until the batch size of 2 048, where it reaches its peak with 9 347 showers per second. 
This results in a tremendous 158 000 speed-up compared to the Geant4 simulation which requires 17 
seconds to reproduce one single shower image (taken from a previous measurement in Ref. [11]). One 
can see that at the batch size of 2 048 the GPU is almost completely utilized which results in a drop of 
showers per second for the measurements with higher batch sizes. 

In Table 1 we compare the new Conv2D network to the previous Conv3D architecture. One 
can see that the Conv2D model provides a much larger speed-up versus Geant4 compared to the 

Conv3D model, in spite of the fact that the new Conv2D model has a much higher number of 
parameters and convolutional layers. It should be noted, however, that no batch size optimization was 
performed for the Conv3D model. However, the GPU utilization of the Conv3D model with a batch 
size of 128 is already quite high. This is the reason why no significant speed-up of the Conv3D model 
is expected. 

Table 1. The number of parameters and the number of convolutional layers for the Conv2D and 
Conv3D generator model. The speed-up is given with respect to Geant4 and the last column shows the 

GPU utilization during inference. 

Model Parameters Nb. Conv Layers Speed-up vs Geant4 Utilization 

Conv3D 752 000 4 6 200x 78.75% 

Conv2D 2 052 000 28 158 000x 98.50% 

In order to better quantify the physics agreement of the GAN output with Geant4, we define 

an accuracy metric based on the mean squared error (MSE). It is calculated by building two-
dimensional projections of the particle shower distributions along the 𝑥-, 𝑦- and 𝑧-axis (averaged over 
20 000 samples) and measuring the MSE between the corresponding GAN model and Geant4. The 

Conv2D architecture has an MSE of 0.027 which is lower than the MSE of the previous Conv3D 
architecture with 0.065 (because this quantity is a measure for the error, the lower the MSE the better 
the accuracy). The same behavior we can observe in the shower shape plots in Figure 4. (left). The 
Conv2D model (green) is closer to Geant4 (red) and performs better than the Conv3D model (blue). In 
particular, the new Conv2D model is able, for the first time, to correctly reproduce the lower energy 
tails of the shower shape distributions, usually largely overestimated or underestimated by GAN, see 
Ref. [12]. 

4. Reduced Precision Research 

Modern Deep Learning (DL) dedicated hardware, developed by various vendors to accelerate 
DL workloads implements different kind of reduced precision strategies. In order to evaluate the effect 
of reduced precision (int8 in particular) on the inference process of our GAN model, we quantize the 
neural network parameters from float32 down to the int8 format. We intend to verify whether it is 
possible to further speed-up the inference and to reduce the memory consumption, while maintaining 
the physics accuracy. For quantizing model, we use the Intel Low Precision Optimization Tool 
(LPOT) [13]. LPOT optimizes in an iterative process, based on a predefined accuracy metrics, how 

many and which weights are quantized. We compare the results with models quantized by the 
TensorFlow Lite library [14]. 

We run inference on an Intel 2S Xeon 8280 CPU, "Cascade Lake" architecture, with various 
numbers of data streams and cores. The best result is achieved with the configuration of 8 streams and 
56 cores. We gain a speed-up of 1.8x from the initial float32 Conv2D model to the int8 Conv2D model 
(float32 2 372 showers/second, int8 4 158 showers/second). On the previously mentioned Intel CPU 
the speed-up of the quantized int8 model represents 68 000 (different value as in the previous section 
because it is run on CPU for the research here and on GPU previously) with respect to Geant4. There 
are multiple reasons why we do not achieve the theoretical expected 4x speed-up. The first is, that the 
operations for quantizing of the input and de-quantizing the output takes already 20% of the 
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computation time. Additionally, the batch normalization layers alone require around 30% of the 
computation time. In a future LPOT version the batch normalization layer will be combined with the 
convolutional layer and the activation function which is expected to considerably decrease the 
simulation time. Due to the quantization, the model memory size is reduced by a factor of 2.26x from 
8.08 MB down to 3.57 MB. 

 

 

 

 

 
 

 

Concerning physics accuracy evaluation, we consider the physics metrics introduced in the 
previous section. The MSE of the initial float32 model is 0.061, the LPOT int8 is 0.053, the TFLite 
float16 is 0.253 and TFLite int8 is 0.340. One can see, that the quantized LPOT model reaches an even 
lower MSE and therefore a higher accuracy as the float32 model. This is understood by the fact that 

the MSE metric was used in the LPOT tool for optimization likewise. Furthermore, the TFLite models 
perform worse. The reason could be that TFLite quantize the network parameters without any 
optimization. In Figure 4 (right) the shower distributions are shown for the different quantized models. 
The LPOT model follows Geant4 very closely, whereas the TFLite models are clearly off for lower 
energy cells. 

5. Conclusion 

We introduced a novel Conv2D neural network architecture to successfully solve a 3D image 
generation task using GANs for the simulation of high granularity calorimeters in HEP experiments. 

Our GAN model is capable to achieve a tremendous 158 000x speed-up compared to the Geant4 
simulation which we aim to replace. The physics accuracy evaluation demonstrated equally accurate 
results for the Conv2D GAN model as for Geant4 simulation. 

In addition, we investigated the effect of data quantization, from float32 down to the int8 
format, using the Intel Low Precision Optimization Tool. We obtained a further 1.8x speed-up as well 
as a 2.26x reduction in model memory size while retaining a good level of physics accuracy. 

Figure 4. Shower shape plots for measuring physics accuracy. (Left) Comparison of the new Conv2D 

vs a previous Conv3D architecture. (Right) Quantization of the Conv2D model into lower precision. 
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