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The wave processes are occurred in different technological applications: the seismic survey process, 

the non-destructive material quality control, the ultrasound medical technique. In this research the 
dynamic loading problem of complex media is investigated. The grid-characteristic approach is 

extended for this case. The general approach on the curvilinear structured mesh is considered. The 
standard splitting technique is used for reducing the initial multidimensional system to a set of one-
dimensional transport equations. This technique also allows to fulfill automatically physically correct 
linear contact conditions. The thin plate loading process is numerically simulated in the full wave 
three-dimensional case. The whole spectrum of elastic waves initiated on the fracture is observed. The 
two-dimensional mode conversion experiment is simulated for the anisotropic inclusion. 

Keywords: anisotropic medium; grid-characteristic method; mathematical modeling; waves 

 

Vasily Golubev 
 

Copyright © 2021 for this paper by its authors.  

 Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 



Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and 
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021 

33 
 

1. Introduction 

The wave processes are occurred in different technological applications: the seismic survey 
process, the non-destructive material quality control, the ultrasound medical technique. This 
phenomenon is described by the hyperbolic equation system. It should be noted that the analytical 
solution can’t be found for general heterogeneous materials or complex domain geometries. Recently, 

numerous numerical methods were developed for this mathematical problem: the discontinuous 
Galerkin method [1], the staggered-grid method [2], the boundary-element method [3] and the grid-
characteristic method [4]. 

The latest one is being actively developed last years. In the paper [5] the numerical algorithm 
for the simulation of periodic non-linear deformable media was proposed. In [6] its application to the 
medicine ultrasound problem was demonstrated. In [7] the domain covered by materials with different 
rheological equations was considered. The proposed method was thoroughly tested in [8, 9]. Recently, 
an effective approach for the simulation of arbitrary oriented fractured inclusions was published [10]. 

This work is directed to the extension of the grid-characteristic approach to the general 
anisotropic media. To illustrate the general concept the problem of the isotropic fractured thin plate is 
considered initially. The final algorithm was successfully applied to the wave mode conversion 
problem. 

2. Mathematical Model and Numerical Method 

The dynamic behavior of elastic media is described by the linear elastic system 

𝜌�̇⃗� = ∇ ∙ 𝜎, (1) 

where �⃗� is the velocity vector, 𝜌 is the medium density, 𝜎 is the stress tensor. For an isotropic 

case, the relationship between stresses and deformations are (𝜆 and 𝜇  are Lame parameters) 

�̇� = 𝜆(∇ ∙ �⃗�)𝐼 + 𝜇(∇⊗ �⃗� + (∇⊗ �⃗�)𝑇). (2) 

In the two-dimensional case, for anisotropic media there is more general connection between 
stress and strain tensors 

(

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
) = (

𝐶11 𝐶12 𝐶16
𝐶21 𝐶22 𝐶26
𝐶61 𝐶62 𝐶66

)(

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦
), 

 

(3) 

where 𝜀 is the strain tensor. 

 Let’s take into consideration the vector of unknown functions �⃗⃗� = (𝑣𝑥 , 𝑣𝑦 , 𝜎𝑥𝑥 , 𝜎𝑦𝑦, 𝜎𝑥𝑦)
𝑇
. In 

both cases, the govern system of equations can be represented in the canonical form 

 ∂�⃗⃗�

∂𝑡
= 𝐴𝑥

 ∂�⃗⃗�

∂x
+ 𝐴𝑦

 ∂�⃗⃗�

∂y
. 

(4) 

For the anisotropic case, the matrixes are 
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𝐴𝑥 =

(

 
 
 
 
 
 
 
 
0 0

1

𝜌
0 0

0 0 0 0
1

𝜌

𝐶11
𝐶16
2

0 0 0

𝐶12
𝐶26
2

0 0 0

𝐶16
𝐶66
2

0 0 0)

 
 
 
 
 
 
 
 

, 𝐴𝑦 =

(

 
 
 
 
 
 
 
 
0 0 0 0

1

𝜌

0 0 0
1

𝜌
0

𝐶16
2

𝐶12 0 0 0

𝐶26
2

𝐶22 0 0 0

𝐶66
2

𝐶26 0 0 0)

 
 
 
 
 
 
 
 

. 

 

 

 

(5) 

 

The grid-characteristic method uses characteristic properties of the hyperbolic equation 
system. Here, its application is shown for the anisotropic medium model. To solve numerically the 

hyperbolic system of equations, we need to split it by two directions. For rectangular grids, it would be 
axes 𝑂𝑥, 𝑂𝑦; for curvilinear grids, it must be an arbitrary direction 𝑂𝜉. After rotating 

counterclockwise, the given coordinate system 𝑂𝑥𝑦 by an angle 𝛽 for a point (𝑥, 𝑦) and stretching 
new coordinates (𝜉, 𝜂) by coefficients (not equal to 1, in the general case) 𝑙𝜉, 𝑙𝜂, respectively, the 

equations will change to 

 ∂�⃗⃗�

∂𝑡
= 𝐴𝜉

 ∂�⃗⃗�

∂ξ
+ 𝐴𝜂

 ∂�⃗⃗�

∂η
, 

(6) 

𝐴𝜉 = 𝑙𝜉(𝐴𝑥 cos 𝛽 + 𝐴𝑦 sin𝛽), (7) 

𝐴𝜂 = 𝑙𝜂(−𝐴𝑥 sin𝛽 + 𝐴𝑦 cos 𝛽). (8) 

Let us consider the homogenous equation along the direction 𝑂𝜉: 

 ∂�⃗⃗�

∂𝑡
− 𝐴𝜉

 ∂�⃗⃗�

∂ξ
= 0⃗⃗. 

(9) 

𝑂𝜉 is given by a unit direction vector 𝑛0⃗⃗⃗⃗⃗ = (cos𝛽 , sin𝛽)
𝑇. Orthogonal vector 𝑛1⃗⃗⃗⃗⃗ is given by 

𝑛0⃗⃗⃗⃗⃗ = (−sin𝛽 , cos𝛽)
𝑇. The hyperbolicity of the equations means that matrix 𝐴𝜉 has a full set of 

eigenvectors. This allows us to represent the matrix using its spectral decomposition: 

𝐴𝜉 = Ω
−1ΛΩ. (10) 

Here, the rows of Ω are left eigenvectors of 𝐴𝜉, the columns of Ω−1 are (right) eigenvectors of 

𝐴𝜉; Λ is the diagonal matrix consisting of eigenvalues, absolute values of which have the physical 

meaning of wave velocities. Substituting it into the initial system and multiplying both sides by the 
matrix Ω on the left, we can introduce a substitution 

�⃗⃗⃗� = Ω�⃗⃗�, (11) 

where �⃗⃗⃗� consists of the Riemann invariants, and we can finally obtain 

 ∂�⃗⃗⃗�

∂𝑡
− Λ

 ∂�⃗⃗⃗�

∂ξ
= 0⃗⃗, 

(12) 

which is a system of independent (as Λ is a diagonal matrix) transport equations.  

For each equation, the value on the next time step is defined by the following expression: 

𝜔𝑖(𝑡 + Δ𝑡, 𝜉, 𝜂) = 𝜔𝑖(𝑡, 𝜉 + 𝜆𝑖Δ𝑡, 𝜂), (13) 

and is calculated using the approximation of the necessary order. 

On each time step, the increment to the original variables is computed and added. Since some 
Riemann invariant corresponding to zero eigenvalues results in zero additive part, it does not need to 
be calculated. Finally, the inverse transformation from the additive parts of the Riemann invariants to 
the given unknowns is done using the appropriate formulae. 
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3. Simulation Results 

In this work, the problem of the elastic wave propagation in a thin plate 1 mm thick was 
considered. A through crack with a length of 10 cm was set on the symmetry axis. A computational 
grid with a step of 0.1 mm was constructed, covering a thin plate in all three dimensions. The 
horizontal dimensions of the computational area were equal to 30 × 20 cm. A non-reflecting boundary 

condition was used on the lateral faces. The elastic medium properties were described through elastic 
wave velocities: 6153 m/s (longitudinal wave), 3099 m/s (shear wave). The material density was 2700 
kg/m3. To specify the source, on the upper and lower plate surfaces, nodes were selected that lie on 
circles with a radius of 2 mm, shifted 10 cm to the right along the OX axis, and 5 cm up along the OY 
axis. A force directed along the radius to the center of the disturbance sources was set as the signal 
source. The time dependence was chosen to be limited in the time with the periodic amplitude 
modulation of the form 3-cycle Hann-window-modulated sinusoidal tone burst with a frequency of 
600 kHz. To solve one-dimensional transport equations, a third-order accurate scheme was used on an 

extended template; the time step was chosen based on the Courant condition. Figure 1a shows the 
distribution of the horizontal 𝑣𝑦 component of the velocity arising on the upper surface of the plate at 

time 3 * 10−5 s. The figure clearly shows the formation of diffracted SH0 and S0 waves, reflected S0 
and SH0 waves and Rayleigh waves propagating along the crack surface. The possibility of using the 

grid-characteristic method for calculating dynamic processes in thin plates with defects was 
confirmed. 

    

а)     b) 

Figure 1. (a) The spatial distribution of the  𝑣𝑦 on the top surface at 𝑡 = 3 ∗ 10−5 s. The fracture is 

represented by the white color. (b) The computational domain of the anisotropic problem. 

In the paper [11] the effect of the energy transfer from P-waves to S-waves was 
experimentally obtained. Our extension of the grid-characteristic approach to anisotropic media 
allowed us to carry out the same experiment numerically. The computational domain is represented at 
Figure 1b. The total size was 1.5 x 1 m. It consisted of four independent rectangular meshes with the 
spatial step equals to 0.5 mm. In the middle, the medium was described by the anisotropic model with 

following parameters: 𝜌 = 1920 kg/m3, 𝐶11 = 12.98 ∗ 10
9 Pa, 𝐶12 = 2.77 ∗ 10

9 Pa, 𝐶16 = 5 ∗ 10
9 

Pa, 𝐶22 = 79.2 ∗ 10
9 Pa, 𝐶26 = 4.88 ∗ 10

9 Pa, 𝐶66 = 13.05 ∗ 10
9 Pa. The other parts were described 

by the isotropic model with parameters: 𝑉𝑃 = 6242 m/s, 𝑉𝑆 = 3144 m/s, 𝜌 = 2700 kg/m3. The time 

step 1.6 ∗ 10−8 s was chosen based on the Courant condition. 

The explicit solution of the contact problem between isotopic and anisotropic media was used. 
It was constructed based on the glue condition involving four independent equalities on the contact 
boundary. The grid-characteristic method allowed to fulfill them automatically. 

In the numerical experiment the incidence P-wave with the main frequency of 90 kHz was 

used. The propagated and reflected waves are depicted at the Figure 2. The initiation of the shear wave 
right after the anisotropic inclusion is clearly seen. 
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Figure 2. The spatial distributions of the 𝑣𝑥 (left) and 𝑣𝑦 (right) are represented by colors 

4. Conclusion 

In this research the dynamic loading problem of fractured and anisotropic media was 
investigated. The grid-characteristic approach was extended for this case. The general approach on the 

curvilinear structured mesh was considered. The standard splitting technique was used for reducing the 
initial multidimensional system to a set of one-dimensional transport equations. This technique also 
allowed us to fulfill automatically any physically correct linear contact conditions. 

The thin plate loading process was numerically simulated in the full wave three-dimensional 
statement. The whole spectrum of elastic waves initiated on the fracture was observed. The two-
dimensional mode conversion experiment was successfully simulated based on described theoretical 
investigations for anisotropic media. The obtained results can be used for the computer simulation of 
complex applied dynamical problems. 
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