CEUR-WS.org/Vol-3041/326-331-paper—-60.pdf

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

USAGE OF TIME SERIES DATABASES IN THE GRAFANA
PLATFORM FOR THE NETIS SERVICE

E.l. Alexandrov?, M. E. Pozo Astigarraga’®, G. Avolio®
on behalf of the ATLAS Software and Computing Activity

! Joint Institute for Nuclear Research, Joliot-Curie 6, RU-141980 Dubna, Russia
? European Organization for Nuclear Research, CERN

E-mail: ® aleksand@jinr.ru

Netls is a service used to monitor the Data Acquisition network of the ATLAS experiment. The first
version was developed at CERN in 2010. Over the years, the need to replace Netls with an improved
service emerged. Indeed, the effort to maintain Netls has considerably increased together with the size
and complexity of the network system; additionally, the Round Robin Database used to store the data
results in a loss of granularity over time that makes the tool unsuitable for retrieving accurate values
from the past. The graphs produced by Netls are generated by the backend server and they are quite
static, though the GUI is familiar to many users. The main idea was to exploit the recent advancements
in time series databases and visualization tools like Grafana in order to present data to the users in a
more dynamic way. The Persistent Back-End for the ATLAS Information System, developed in
ATLAS for permanent storage of operational data, was already integrated with Grafana and
successfully collecting network monitoring statistics. Grafana, despite being a very popular
visualization web application, does not support some GUI elements that are used in Netls such as a
tree or position of drop-down. Javascript code integrated with Grafana was used to overcome these
limitations.

Keywords: ATLAS, network, monitoring, Grafana

Evgeny Alexandrov, Mikel Eukeni Pozo Astigarraga, Giuseppe Avolio

Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

326

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

1. First version of the ATLAS network monitoring tool and motivation for
upgrade

The ATLAS experiment is one of four LHC accelerator experiments at CERN [1]. The
computing and network infrastructure of the experiment consists of 4,020 computing nodes, 285
network switches and 14,778 switch interfaces (ports). The Netls system was designed to monitor this
network [2]. The first version of Netls was developed in 2010 based on the cyclic time series Round
Robin Database (RRD) [3]. Over the years, the need to replace Netls with an improved service
emerged. Indeed, the effort to maintain Netls has considerably increased together with the size and
complexity of the network system; additionally, the RRD used to store the data results in a loss of
granularity over time that makes the tool unsuitable for retrieving accurate values from the past.
Another inconvenience of using the first version is that graphs displayed by Netls are generated by the
server backend and they are quite static. This interface has a dynamic tree for selecting nodes,
switches or interfaces and information panels as depicted in the image (Figure 1). A new Grafana-
based monitoring version using the Persistent Back-End for the ATLAS information system (P-
BEAST) [4] database has been developed in recent years.

View type Interval Filter GotoLR
Lggregates v 2016-07-05 12:48

NETWORK::Traffic
Aggregates
. Settings E Aggregate
~[_] Data Flow Sections
E-ly}y Control core Name: Agg: | SUM ¥ | Mode: | Only aggregate plots ¥ | Scale: | Default ¥ | Lower: Upper: Apply
W] Ctri ATCN SDX backbone pattarn: :UPLINK.*(D3178). *-sw-ctrl-
care-.*
) ctrl backbone SDX-USA ERAGEIC v
) ctri / ROS switches S AGGREGATE SUM UPLINK *(D3178) #--sw-ctrl-core- +:. TRAFFIC
D Ctrl / TPU switches net / interface
D Ctrl / Monitoring machines
D Ctrl / Online machines Da"?fsucr":r . 250M
D Ctrl / Uphr?ks L 200m
- DataEdge switch i
" . Date end: i
- DataCollection switch 2016-07-06 12:48 E 150 M
- luly ROS subsystem 5
o
@-|ul) TPU computers Plot name / func: 100 M
@-ul) SFO computers R L -
) HLTSV computers -
[Calibration Filters 0 4
gLl Trunks Tue 18:00 Wed 00:00 Wed 06:00 Wed 12.00
net.interface.pattem:UPLINK. *(D3178). *--sw-ctri-core-*
E-lb Important endnodes Tue 05 Jul 2016 12:48 - Wed 06 Jul 2016 12:48
[Infrastructure last Avg Min Max
- |ul) Starpoint SDX B Switch Input B 341M 436M 5SM 2684M
@[] Starpoint USA1S ? ‘szlt:fh oudtp:tﬁ? 606: M B0.EM 72M 1182M
BT 2 B e plots found; O files missing; O ds missing;
& Miniplots
Link aggregation: | Trunks and trunk members ¥ | Leftmost plot:: Scale: | Default ¥ | Lower: Upper: Apply
e T R I
1. sw-ctrl-core-0111 UPLINK: d3178-2-rhp82-1.B1|
nafl | D Y PO Y B BULEﬂLJ
2. sw-ctrl-core-0211UPLINK: d3178-2-rhp82-2.C1] W..MMMMMWW}M

Figure 1. A screenshot of the legacy Netls [2]

2. The common structure of the Netls monitoring

The common structure of the legacy Netls monitoring had two data sources: the first for
creating dashboards and the second for obtaining the network topology (Figure 2). In this version, the
monitoring data was retrieved from switches using the Simple Network Management Protocol
(SNMP) and was stored in a MySQL database to be later converted into RRD files by a separate
service. The Matplotlib [5] library generated images from the RRD data sources and the Django
framework [6] passed these images to the client. The second data source was used for navigation and it
was implemented with a JavaScript tree object from the dhtmlixTree library [7]. The data source of the
tree was the Central DB (CDB) that contains a description of the whole system. The new NetlS

327

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

version has similar structure, but the monitoring data fetched with SNMP are placed in the P-BEAST.
P-BEAST was developed in ATLAS for permanent storage of operational data, and it has already been
integrated with Grafana [8]. Grafana was chosen as a new data visualization service, but it has some
limitations in the GUI implementation that makes the navigation less intuitive than in the legacy
version. The main problem is that Grafana doesn't support the visualization of hierarchical data
structures.

i Legacy :
@ —
== sNMP | S~ —~ L — :
* L New "~_Get data
: _ 2 H
. (PBEAsT . : =
*‘;ga | : -
1Simple Network Management protocol o~ . . .

2 Persistent Back-End for the ATLAS Get network Dj

ersistent Back-End for the ango or
topolo j1ang

Information System(P-BEAST) @ pology Grafana

3Apoll DB
*Round-robin database
>Central Database

Figure 2. General structure of the Netls Monitoring

3. The Graphics interface implementation of the Tree

The tree is the main GUI navigator in Netls, but as mentioned Grafana does not support the
Tree element. It is possible to add a tree to Grafana in the following ways: create a custom plugin or
inject JavaScript code dashboards using the Grafana text panel widget. Both approaches have their
pros and cons.

Creating a new panel is the main way to add new functionality to Grafana. This path requires
the presence or acquisition of skills to improve Grafana itself. The plugin must be compiled as part of
the Grafana developer workflow and installed on the server side. Within this path, to add any new
function, for example, in our case we need to set the position for the dropdown menu, a new plugin is
required. Unfortunately, this path does not guarantee compatibility with new versions. Sometimes
some plugin does not work with new version.

The most effective way to add a tree into Grafana is to add JavaScript code to the text panel.
This approach does not require a Grafana developer workflow because all the code will be placed in
the Grafana text panel. The tree is not an element of Grafana itself and cannot use the data retrieval
methods. It should directly use the JavaScript objects of the Grafana library to interact with other
Grafana elements. This method can be easily adopted for any HTML/JavaScript object, including a
dropdown menu.

The new version of Netls uses JavaScript code in a text panel to implement the tree (Figure 3)
and some other elements. The text panel is a basic element of Grafana. It supports HTML code and
JavaScript inside it. This external JavaScript tree interacts with the just using the Grafana JavaScript
code downloaded by the browser, which is included in the main HTML page. Using this library, the
user can receive data from other panels and update dashboards. The Netls uses tree as the navigation
panel.

328

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

Load Load JS

Text Panel |—— HTML IS Tree
Load
Dashboard
Grafana IS Panel
3 Get i Dashboard
W Template Panel

Figure 3. The scheme of interaction of the external JavaScript tree with Grafana

The initial data to build the tree for Netls is stored in the CDB MySQL database. Grafana has
a plugin for MySQL, but as already mentioned, the tree is not an element of Grafana so it cannot
directly interact with a Grafana data source. Instead, the tree receives data using the Grafana template
element. The template stores the data as a list of strings that needs to be created first out of the data
retrieved from several tables in the MySQL database. The strings have the following structure:
Function:Device::Linecard::Interface. Some devices do not have a linecard component, so in this case
when converting data for such devices a special token, PORTS or LAG, needs to be generated.

The Netls uses standard edition of the dhtmlxTree library for the tree implementation in
HTML. The Initial method gets all strings of the template, parses them and generates the tree. Netls
uses special ID of tree node for detection the level of tree and getting the data required for the
dashboards. The ID has the following format:

Root level (function in CDB): _RR_FunctionName

Level 1 (device in CDB): Deviceld

Level 2 (linecard in CDB): _LL_Deviceld:Linecardld

Level 3 (interface in CDB): _Il_Deviceld:Linecardld:Interfaceld

Different levels of the Netls tree have different context structures, with the exception of the tree area,
which is always present in the upper left area. The tree uses the ID of selected node to generate content
of the page using Grafana‘s JavaScript library. This approach allows the developers to make deeper
changes in the structure of the monitoring page than those that can be done using standard Grafana
tools.

4. View of Netls monitoring

Figure 4 presents the Netls view for a device (level 1). It has two dashboards with aggregated
data for all the interfaces belonging to the device and two mini dashboards with aggregated data for
each linecard of selected device. The first dashboard can change the network metrics displayed (e.g.
from Packet/s to Octets/s) using the dropdown button on top of it. The following types of metrics are
available: Discards/s, Errors/s, Link load, Octets/s and Packets/s. The second dashboard show “packets
detailed” data, which includes a breakdown of the traffic into Unicast, Broadcast and Multicast
packets. For the mini dashboards the same set of metrics as for the uppermost dashboard is available
with its own dropdown button. The second mini dashboard displays links speed and status. To the left
of the miniplots there is a table summarizing the host and linecard information.

329

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

B UtherAILN Packets I
~ B Other TDAQ
~ B Read-out CTRL
~ B Resd-outDATA Packets.
~ B SDX1ATCN
100W
~ B SFOCTRL
. 7.5 W 1
3 W TDAQinfra g i\
wlm G 50M
sw-ctri1dq-01 3 A
g 5 23M SRR A} ——
w[]m swotrhtdg-D-bek g — N T — = — § =
o - 0 T T — — —
CIm swcutidg-0z 1030 11100 1130 1200 1230 1300 1330 1200 1430 1500 1530 1600
ctri1dg-02-bek
oI Gy =i Min:624K Max 1400 = out Min: 536 K Max 6.91 b
w] swetldg-02
w [sw-ctiidg-03-bek
3} B TDAQ routers
Packets Detailed
~Em 1004
wEN 3 _—
vHlm s @ 50k
~
el 5 25
@m0 7
wE. 1030 1100 1130 1200 1230 1300 1330 1400 1430 1500 1530 1600
~vEm 2 — Switch Broadcast Pitsln Min: 16 Max 24 — Switch Broadcast Phts Out Min: 27 Maxc 33 — Switch Multicast Pitsln Min:736 Max 805 — Switch Multicast Pits Out Min: 2K Max 2K
TR = Switch Unicast Pits in Min: 624K Max 1.40 M = Switch Unicast Phts Out Min: 594K Max .91 b
~ @ LA
w[M swcore-sdx-02

Load I Status I

Hostw Linecard Load Status
sw-core-sdx-01 1 : . 5 a0
= o} g 30
5 IO A Yo
2 T N — I e H
L R ——— 210

Figure 4. Netls view for linecard (level 2)

The linecard view (level 2) has the same structure but uses the metrics gathered for the
selected linecard and its interfaces. The interface view (level 3) does not display aggregated data
(Figure 5), but instead it has a text area with additional information about the interface itself.

w mm LU Touters
w I Other ATCN
w [Other TDAQ
% [Read-outCTRL
% B Read-out DATA

Device: sw-core-sdx-01
‘SNMP index:et-1/0/0

Traffic (B/s) Packets Detailed (pkts/s)
~ [SDX1ATCN
155 20
~ B SFOCTRL 0oL A
3} B8 TDAQinfra 130 [— 15
w[M swerlidg0l - 1 10
w[] W swctrHdg-Ol-bok
120 =
w [| swctrHdg-02
A AT AN P e,
w [B swctrdg-02bok 135 100 1240 1340 1400 1500 1600
o swerbidg 03 1100 12400 1300 1400 1500 1600

= Switch Broadeast Piagin Min: 0 Max 0 Avg:0
= Switch Broadcast Pits Qut Min: 0.007 Max 0.062 Avg:0.022
= Siwitch Multicast Pids n Min- 1027 Max 1038 Avg-1033 I

= Switch input Min: 13631 Max 14004 Awg: 13733
= Switch Output Min: 14598 Max 15397 Awg: 15087

w [swerrlidg 03 bok
> B TDAQ routers

3 [% sw-coresdx-01 Swcn MRieao Dis 0on A1 798 Mg 1 819 G 701

PEDE Packets Total (pkts/s) Load (%)
ackets To B :

m

1M erions 20— —T 00000040

O W e-1ons 7 : L 00000035

&t-1/0116

g : AT 1.50 00000030

1R e-1701 125 00000025

C1W evvwze 9 o —— P

1l etvwzs 1100 1200 1300 1200 1500 16:00 100 12400 1300 1400 1500 16:00

= Switch input Pias Min- 1.029 Max 1.089 Avg-1.040

= Switch Output Pids Min- 1 787 Max 1901 Avg- 1456

= Switch Input Load Min:0.000003000 Max 0000003000 Avg: 0.000003000
== Switch Output Load Min-0 000003000 Max 0000003000 Awg- 0000003000

Ermors (pkts/s)

Line speed (Mb/s)

Figure 5. The interface view

5. Conclusions

The new version of Netls was successfully implemented, tested and put into production. These
services are based on Grafana and P-BEAST. The use the P-BEAST time-series database avoided the
loss of data over time of the stored samples and does not degrade the resolution of the dashboards.
Grafana makes the Netls page navigation more dynamic and flexible. Maintaining the new system
should be easier than before because only knowledge of Web and JavaScript technologies is required

to support the Netls service. The monitoring system will be evolved and updated following operational
experience.

330

Proceedings of the 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021

References
[1] ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3
S08003 doi:10.1088/1748-0221/3/08/S08003

[2] D. Savu, A. Al-Shabibi, B. Martin, R. Sjoen, S. Batraneanu and S. Stancu 2010 Integrated System
for Performance Monitoring of the ATLAS TDAQ Network, Journal of Physics: Conference Series. 331
052031 d0i:10.1088/1742-6596/331/5/052031

[3] RRDtool: https://oss.oetiker.ch/rrdtool/index.en.html

[4] A. Sicoe, G. Lehmann, Luca Magnoni, S. Kolos, I. Soloviev 2012 A persistent back-end for the
ATLAS TDAQ online information service (P-BEAST), Journal of Physics: Conference Series 368
(2012) 012002 doi:10.1088/1742-6596/368/1/012002

[5] Matplotlib: https://matplotlib.org/

[6] Django: https://www.djangoproject.com/

[7] JavaScript Tree: https://dhtmix.com/docs/products/dhtmixTree/
[8] Grafana: https://grafana.com/

331

