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The present paper aims to develop a reconstruction method for the right side of a system of ODEs in 

polynomial form from sparse and irregularly distributed time-series data. This method doesn’t require 
any additional knowledge about the system and has several steps. The scarcity of the data through the 

trajectory length is compensated by the artificially generated points using approximating 
trigonometrical polynomials. Then, we get uniformly spread data points with the step conditioned by 
the desired accuracy of derivatives approximation in ODEs. This let to further use conventional 
reconstruction algorithms described in the literature. We test the proposed method on time series data 
generated from known ODE models in a two-dimensional system. We quantify the accuracy of the 
reconstruction for the system of ODEs as a function of the amount of data used by the method. 
Further, we solve the reconstructed system of ODEs and compare the solution to the original time 
series data. The method developed and validated here can now be applied to large data sets for 

physical and biological systems for which there is no known system of ODEs. 
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1. Introduction 

The modeling and identification of dynamical systems from time-series data is a field of 
increasing interest mainly because of forecasting and model-based control applications. A 
mathematical description of interconnections between the measured data is a helpful tool to 
understand the considered dynamical system, predict its behavior or respond to different control 
actions.  

System identification problems can be categorized into two groups: reconstruction of the 
mathematical form of the measured data (i.e. a solution of the system) or the reconstruction of the 

equations of motion of the underlying system. Irrelative to the type of problem, when the structure of 
the model is known the only necessary thing is to estimate the unknown coefficients from the time-
series data either in general solution or in the right side of the differential equation. Otherwise, 
identification requires a prior step of choosing the most suitable mathematical form. The situation 
becomes more complicated when the measured data demonstrates nonnegligible nonlinear system 
dynamics. Unlike linear models for which a complete theory exists, nonlinear modeling still lacks 
well-established identification algorithms. 

The previous work of the authors [1] introduces an algorithm of learning dynamical systems 
from time-series data including both of mentioned above methods as two sequential steps. At first, 

reconstruction of ordinary differential equations (ODEs) with a polynomial right side with only one 
measured system trajectory. Then, applying the Taylor mapping technique to represent the solution of 
ODEs. The solution is written in a polynomial form establishing a relationship between the phase 
variables at the current and past moments of time. In other words, a regression formula with 
predefined weights initialized from the reconstructed ODEs. Such a representation is convenient for 
further fine-tuning of the weights according to other available training data. 

The present paper aims to strengthen the previous research [1] by enhancing a reconstruction 
algorithm of ODEs with polynomial right side when only rare or irregular measurements are available. 
Under ideal conditions, i.e. noise-free and high sampling frequency a variety of schemes, including 
sparse regression schemes [2-3], reservoir computing [4] and neural approaches [5-6]. However, real 

life data are often corrupted by noise and/or observed partially. In such situations, the above-
mentioned approaches are most likely to fail to uncover unknown governing equations. To address this 
challenge, we need to jointly solve the reconstruction of governing equations and the identification of 
the hidden dynamics [1].  

Here, we develop a method to build a polynomial right side of a system of ODEs that will 
correspond to the time-series data of a dynamical system. This method doesn’t need any input except 
the time series data and includes several steps. We first identify a basis to approximate the sparse time 
series data. Here we use trigonometrical bases, but it can be chosen arbitrarily. The second step is an 
augmentation of a measured system trajectory by a linear segment to satisfy the periodicity condition 
at the ends of the time interval. Then, a choice both the order of trigonometrical polynomials and data 

points used for approximation. After the best approximation function consistent with the measured 
data is found, we use it further for data points generation through the trajectory length and solving a 
system of linear equations. We test our ODEs reconstruction method on time series data generated 
from known ODEs models in a two-dimensional system. We quantify the accuracy of the 
reconstruction for the system of ODEs as a function of the amount of data used by the method. 
Further, we solve the reconstructed system of ODEs and compare the solution to the original time 
series data. The method developed and validated here can now be applied to large data sets for 
physical and biological systems for which there is no known system of ODEs. 

The rest of the paper is organized as follows. Sec. 2 introduce a step-by-step description of the 
proposed reconstruction algorithm, while sec. 3 contains the presentation of a test model with the 

known system of ODEs and the results of its equation reconstruction in polynomial form. Sec. 4 draws 
the conclusion remarks and discusses the obtained results.  
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2. Reconstruction algorithm 

Let us denote the set of the parameters describing the process as vector 𝑋 with changing in 

time components 𝑋𝑗(𝑡), 𝑗 =  1, 𝑛̅̅ ̅̅ ̅. And we suppose to know the values of the vector function 𝑋(𝑡) 

measured in 𝑀 discrete times 𝑡0, … , 𝑡𝑀+1: 𝑋(𝑡0),… , 𝑋(𝑡𝑀+1). 

The main our assumption about the collected time-series data describing the multi-parametric 
dynamical process is that it approximately follows an autonomous ODEs system. We will find its 
right-hand side in polynomial form, so that the system looks like 

𝑑𝑋

𝑑𝑡
= ∑ 𝑃𝑘𝑋[𝑘]𝑁

𝑘=0        (1) 

where 𝑡 is an independent variable, 𝑋 ∈ ℝ𝑛 is a state vector corresponding to the parameters of the 

dynamical process, and 𝑋[𝑘] means k-th Kroneker’s power of vector 𝑋. For example, for 𝑋 = (𝑥1, 𝑥2) 
we have 𝑋[2] = (𝑥1

2, 𝑥1𝑥2, 𝑥2
2), 𝑋[3] = (𝑥1

3, 𝑥1
2𝑥2, 𝑥1𝑥2

2, 𝑥2
3) after reduction of the same terms. 

 Matrices 𝑃𝑘 are unknown and should be found from the measurements that we have 

𝑋(𝑡0),… ,𝑋(𝑡𝑀+1). If the available data is of high sampling frequency, we can easily compute 𝑃𝑘 

solving the system of liner equations, that comes in by replacing the derivatives 
𝑑𝑋

𝑑𝑡
 in the left side of 

(1) with finite differences: 

𝑋(𝑡𝑖+1)−𝑋(𝑡𝑖−1)

𝑡𝑖+1−𝑡𝑖−1
= ∑ 𝑃𝑘𝑋[𝑘](𝑡𝑖),    𝑖 = 1,𝑀̅̅ ̅̅ ̅̅ .

𝑁
𝑘=0    (2) 

Equation (2) can be expressed in matrix form 

𝐴𝑃 = 𝐵,      (3) 

where: 

𝐴 =

(

 
 
𝑌(𝑡1) 𝑌[2](𝑡1) … 𝑌[𝑁](𝑡1)

𝑌(𝑡2) 𝑌[2](𝑡2) … 𝑌[𝑁](𝑡2)
⋮

𝑌(𝑡𝑀)
⋮

𝑌[2](𝑡𝑀)
⋱ ⋮

… 𝑌[𝑁](𝑡𝑀))

 
 
, 𝑌[𝑗](𝑡𝑖) = (𝑋

[𝑗](𝑡𝑖))
𝑇
, 

𝑃 = (𝑃1, … , 𝑃𝑁)𝑇 , 

𝐵 = (
𝑋(𝑡2)− 𝑋(𝑡0)

𝑡2 − 𝑡0
⁄ ,… ,

𝑋(𝑡𝑀+1) − 𝑋(𝑡𝑀−1)
𝑡𝑀+1 − 𝑡𝑀−1
⁄  )

𝑇

. 

 The system (3) includes 𝑛 ⋅ (𝑛 + 𝑛2 +⋯+ 𝑛𝑁) unknowns and 𝑛 ⋅ 𝑀 equations. Here 𝑛 is the 

dimension of the vector 𝑋 and 𝑛𝑖 , 𝑖 ≥ 2 is the dimension of its Kronecker degree 𝑋[𝑖].  Thus, to obtain 
a system with an equal number of equations and unknowns, the following condition must be met for 
the number of measurements M 

𝑀 = 𝑛 +𝑛2 +⋯+𝑛𝑁 .      (4) 

 However, in case of sparse measurements in time, this approach can hardly be applied 
because system (3) may be underdetermined (condition (4) is violated) as well as a derivative’s finite 
difference approximation can have insufficient precision.  

To address this challenge, we propose at first to approximate the collected measurement by a 
set of trigonometrical polynomials. The choice is due to the uniform properties of this set of basis 
functions. For example, approximating a function by finite sum of Chebyshev polynomials has 
drawbacks related to the behavior of their derivatives [7]. The algorithm includes the following 
sequential steps. 
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1. Periodization of the input dataset. Choosing a closing coefficient (𝑐𝑐). 

Let us denote the lattice 𝑇0: {𝑡𝑖
0 ∈  [𝑡0, . . , 𝑡𝑀+1], 𝑖 = 1,𝑚0̅̅ ̅̅ ̅̅ ̅} where the data 𝐹0: {𝑋(𝑇0)}𝑛×𝑚0  is 

collected.  In general case the collected data doesn’t correspond to a periodic or oscillational dynamic 

process, meaning that 𝐹0(𝑇1
0) ≠ 𝐹0(𝑇𝑚0

0 ). To fulfill this condition necessary for trigonometric 

approximation, we introduce a close coefficient 𝑐𝑐 > 1 that enlarge the given time interval till the 

value 𝑡𝑐 = 𝑡0 + 𝑐𝑐(𝑡𝑀+1 − 𝑡0). This complements the lattice 𝑇0 with the following values 

𝑇11: {𝑡1
11, … 𝑡𝑚11

11 } , where 𝑡1
11 = 𝑇𝑚0

0  and 𝑡𝑚11
11 = 𝑡𝑐. Let 𝑇1 = 𝑇0 ∪ 𝑇11 and lattice function 𝐹1 =

𝐹0 ∪𝐹11 , where  𝐹11: {𝑋(𝑇11)}𝑛×𝑚11 = {𝑎𝑗𝑡𝑖
11 +𝑏𝑗}𝑖=1,𝑚11̅̅ ̅̅ ̅̅ ̅̅

𝑗=1,𝑛̅̅̅̅̅

 . Unknown coefficients are defined from 

the following conditions: 

{
𝐹𝑗1
0 = 𝑎𝑗𝑡𝑚11

11 + 𝑏𝑗

𝐹𝑗𝑚0
0 = 𝑎𝑗𝑡1

11 + 𝑏𝑗
      (5) 

Satisfying to (5) means that 𝐹1(𝑇1
1) = 𝐹1(𝑇𝑚1

1 ) where 𝑚1 = 𝑚0 +𝑚11.  

2. Determine coefficients of trigonometrical polynomials. Choosing an order of polynomials (K). 

The order of trigonometrical polynomials K defines the number of lattice points 𝑚2 = 2𝐾 +1 

which are used for the weight coefficients 𝛼0
𝑗
,𝛼𝑘
𝑗
, 𝛽𝑘
𝑗
 , 𝑗 = 1, 𝑛̅̅ ̅̅ ̅,𝑘 = 1,𝐾̅̅ ̅̅ ̅ calculation in approximation 

formula 

𝑓𝑗(𝑧) =
1

2
𝛼0
𝑗
+ ∑ (𝛼𝑘

𝑗
cos(𝜔𝑘𝑧) + 𝛽𝑘

𝑗
sin(𝜔𝑘𝑧))

𝐾
𝑘=1 , 𝑗 = 1, 𝑛̅̅ ̅̅ ̅   (6) 

where 𝜔𝑘 =
2𝜋𝑘

𝐿
, 𝐿 = 𝑡𝑐 − 𝑡0, 𝑧  - a lattice point where the polynomial value is computed.  

 Let us choose 𝑚2 points from the lattice 𝑇1 being at an equal distance from each other and 

select corresponding lattice function values 𝐹1. Those points form lattice 𝑇2: {𝑡1
2, … , 𝑡𝑚2

2 } and lattice 

function 𝐹2: {𝑋(𝑇2)}𝑛×𝑚2. According to [8], the unknown coefficients in (6) are found from the 

equality condition of trigonometrical polynomial values and lattice function in the 𝑇2 mesh nodes 

𝐹𝑗
2 = 𝑓𝑗(𝑇

2). It should be noted that we take an odd number of nodes. In this case, the formulas are 

𝛼0
𝑗
=
2

𝑚2
∑𝐹𝑗𝑖

2

𝑚2

𝑖=1

,          𝛼𝑘
𝑗
=
2

𝑚2
∑𝐹𝑗𝑖

2 cos
2𝜋𝑘𝑖

𝑚2

𝑚2

𝑖=1

,    𝛽𝑘
𝑗
=
2

𝑚2
∑𝐹𝑗𝑖

2 sin
2𝜋𝑘𝑖

𝑚2

𝑚2

𝑖=1

. 

3. Generating a dense lattice for derivatives approximation. Choosing a stride (𝑠𝑑).  

Trigonometrical approximation (6) fitted in the lattice points 𝑇2 is used further to generate a 

new lattice function 𝐹3: {𝑓(𝑇3)}𝑛×𝑚3 with a mesh 𝑇3: {𝑡1
3, … , 𝑡𝑚3

3 } frequent enough to approximate 

derivatives (2) with central finite differences. Before doing that and solving a linear system (3) to 

obtain necessary matrices 𝑃𝑘, 𝑘 = 1,𝑁̅̅ ̅̅ ̅  in (1), we should delete the part of the lattice 𝑇31 = {𝑇3: 𝑡𝑖
3 >

𝑡𝑀+1, 𝑖 = 1,𝑚3̅̅ ̅̅ ̅̅ ̅} corresponding to the added linear closer in p.1. It results in a lattice 𝑇4 = 𝑇3 ∖
𝑇31: {𝑡1

4, … , 𝑡𝑚4
4 } and lattice function 𝐹4: {𝑓(𝑇4)}𝑛×𝑚4.  

Condition (4) defines the necessary number of points we should take from 𝐹4 to solve (3). For 

sake of convenience, let us introduce a stride parameter 𝑠𝑑  to resample 𝑇4 to M groups of 3 points 

(2 outermost to calculate the finite difference in the central). Then, 𝑇5: {𝑡1
5, … , 𝑡𝑚5

5 }, 𝑡𝑖
5 = 𝑡1

4 + 𝑖 ⋅

𝑠𝑑 , 𝑖 = 1, 𝑚5̅̅ ̅̅ ̅̅ ̅ and 𝐹5: {𝑓(𝑇5)}𝑛×𝑚5 defines the matrix A and vector B in the linear system (3) that can 

be solved with a suitable numerical method. 

The algorithm described above has three parameters introduced at each step that make an 
impact on the solution of (3). Thus, generally they should be chosen as a solution of optimization 
problem 𝑐𝑐 , 𝐾, 𝑠𝑑 = argmin‖𝑋 − 𝑌‖, where 𝑌 is a numerical solution of (1) and 𝑋 is the 
measurements that we have. 
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a) b) 

b) a) 

3. Test model and numerical results 

As a training dataset for the introduced reconstruction algorithms let us consider points 
(𝑥(𝑡), 𝑦(𝑡)) artificially generated by a model of two-dimensional particle motion in cylindrical 
deflector: 

{
�̇� = 𝑦,

�̇� = −2𝑥 +
𝑥2

𝑅
.
       (7) 

We numerically find a particular solution of (7) at the time interval [0, 4] with the initial 

condition 𝑿0: (𝑥0, 𝑦0) = (−2, 4), parameter 𝑅 = 10 and integration step ℎ = 0.01. As a training set 

we consider every 20-th point in the generated trajectory, so 𝑇0 includes 20 points (𝑚0 = 20). 

Figure 1,a demonstrates 𝐹1 lattice function with the closed orbit used for trigonometrical 

approximation (step 1), figure 1,b (blue line) illustrates 𝐹4 lattice function (step 2-3) used further for 

calculating unknown matrices 𝑃𝑘, 𝑘 = 1,𝑁̅̅ ̅̅ ̅. 

 

Figure 1. a) Training set 𝐹1 and b) calculated lattice function 𝐹4 with approximation (6) 

The final reconstruction results depending on the amount of data used by the method are 
presented in figure 2 (a) 𝑚0 = 20, b) 𝑚0 = 13). The blue line corresponds to the true solution of (7) 

𝑿, and the red line – to 𝒀 solution of (7) with the reconstructed matrices 𝑃𝑘. The title of each graphics 
contains the computed values 𝑐𝑐 , 𝐾, 𝑠𝑑 minimizing the norm of deviation 𝑿 from 𝒀. 

 

Figure 2. True (blue) and reconstructed (red) solutions of (7) when a) 𝑚0 = 20, b) 𝑚0 = 13 
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4. Conclusion 

The paper introduces a reconstruction algorithm for the system of ODEs right side in 
polynomial form from irregularly distributed time-series data. The presented algorithm aims to 
amplify the results of the authors’ previous work [1] built on the assumption that the collected 
measurements are frequently and uniformly spread in time. Although the solution of reconstructed 

ODEs doesn’t fully congruent to the solution of true ODEs [fig. 2], it captures the dynamics of the 
system what is more important. According to [1, 9], the reconstructed ODEs are only used for initial 
weights initialization in the regression formula or neural network. After then, the weights are anyway 
fine-tuned with additional data, so we claim mild requirements for the accuracy of the ODEs 
reconstruction. 
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