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Classical  methods  use  statistical-moments  to  determine  the  type  of modulation in question. This 

essentially correct approach  for  discerning amplitude modulation (AM) from frequency modulation 
(FM) fails  for  more demanding cases such as AM vs. AM-LSB (lower side-band  rejection) - radio 
signals being richer in information  than  statistical moments. Parameters with good discriminating 
power were selected in a data conditioning phase and binary deep-learning classifiers were trained for 
AM-LSB  vs.  AM-USB, FM vs. AM, AM vs. AM-LSB, etc. The parameters  were  formed  as  
features, from wave reconstruction primary parameters: rolling pedestal,  amplitude, frequency and 
phase. Very encouraging results were obtained for AM-LSB vs. AM-USB with stochastic training, 

showing that this particularly  difficult case (inaccessible with stochastic moments) is well solvable  
with  multi-layer perceptron (MLP) neuromorphic software. 
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1. Introduction 

Signals Intell (SIGINT) is a branch of the military and civilian intell services monitoring 
(mainly) the RF communications. Automated Modulation Classifiers (AMC’s) are of 2 types: 

likelihood classifiers (LC’s) [1] and feature classifiers (FC’s) [2]. LC’s use a likelihood function on 
the received signal, while FC’s neuromorphic software for feature extraction. LC methods have high 
CPU demand and need prior information from transmitters. FC’s do not require this, however perform 
relatively well. They consist of (i) feature extraction - parameters constructed from amplitude, 
frequency, and phase distributions [3]. Features from advanced processing, such as Fourier (FFT) and 
wavelet transforms [4], or high-order statistical cumulants [5] require longer signal samples and are 
CPU intensive, for instance noise jammed signals can be analysed with the FFT of the cyclic 

autocorrelation function [6] and decrypted. Secondly, (ii) classification – such as: linear, k-means [7], 
clustering algorithms, neural software [8] and support vector machine (SVM) with kernels [9]. Typical 
identification purities are 95% [10] (S/N of 0dB) for a variety of deep-learning methods, and 90% [11] 
(S/N of -10dB). Existing methods assume equal signal-to-noise (S/N) in the training and witness sets.  

2. Signal conditioning and feature creation 

Before attempting to constitute any particular feature quantities, it is important to foresee how 
the procedure would be immune to noise and jamming. The best approach is to base the features on 
physially understood quantities, thus the reconstruction of the fundamental wave: 

 

where f, p, A are slowly varying functions of time. 

Pedestal reconstruction - for this the simplest method is to 
perform the wave average between ti and tf: 

 

 

where sinc(x) = sin(x) / x and Ae = Asinc(f) – with  the duration of one sample. Since the sin term 

does not vanish, we try to zero the sinc term. For tf-ti = n, the n  m/f, condition must be met, with 

m  N. Basically m is scanned until the relation gives a close-enough integer (in our case n = 11) - 

and then p = u.  

Amplitude reconstruction – following the same idea, we designed a similar formula for the 
amplitude:  

 

Through a coincidence the “magic number” n for double the frequency is very similar to n = 11 from 
pedestal determination and we can use the same loop for the averages. 

Frequency reconstruction - similar to amplitude, we determined frequency with an OII dipolar 
moment, which basically differentiates the sine wave:  

 

 

 

where k indexes u(t-k). We used k=1.  

Phase reconstruction – similar to frequency we determined phase with an OII dipolar moment 
taking reference to a fixed phase sine:  

 

where for  = 0 the error may be significant, however phase is not absolute, rather relative to the 
previous sample’s phase, as such such errors tend to systematically cancel out.   
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Figure 1. Distribution dN/df of number of samples with a given (intermediate) frequency. AM 
modulation (red) is evidently narrower in band, vs. FM modulation (blue). Thus the FWHM and the 
tail length are features of this histogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution of number of histograms for the full width at ¼ maximum for the phase 
distribution histograms – with red AM modulation and blue FM modulation. Yellow represents AM 
excess over FM and light blue excess of FM over AM. 

Feature creation – having pedestal, amplitude, frequency and phase for each sample, we 
accumulated these quantities in histograms looking for discriminating features. We devised similar 
other parameters (in number of 12) to capture the differences between various modulation types. As an 
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example, the figure above shows the distribution of the full width at ¼ maximum for the phase 
distribution histograms - with red, again, AM modulation and with blue, FM modulation. 

2. Deep-learning performance and conclusions 

Using this set of 12 parameters we trained (with BFGS – Broyden-Fletcher-Goldfarb-Shanno 
algorithm for AM vs. FM, or stochastic for AM-LSB vs. AM-USB) deep learning neural networks for 
binary sets of modulations. 

The results were excellent for instance AM vs. FM, and the most difficult case (and notable 
result too) was AM-LSB vs. AM-USB which are essentially the same type of modulation, and is 

known to be practically impossible to discern with the classical statistical-moments method. The 
figure below shows this result. 

 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

Figure 3. Showcase result, featuring the difficult case of discriminating AM-LSB vs. AM-USB 
modulation. The neural net output above 0.5 signals AM-USB (95% correct flags) and below AM-
LSB. Given the similarity of the two modulations this is a remarkable result. The training method was 

stochastic-training. 

Concluding, our deep learning neuromorphic software approach to AMC’s confirms the 
promising results of a pleiad of other such approaches. What distinguishes our approach is a 2 step 
feature creation method. The first step reconstructs the basic signal parameters, pedestal, amplitude, 
frequency and phase and creates histograms with 1000 such samples (each n=11, “magic number” 

samples long). The second step analyses these histograms and draws parameters out of them. We 
found these parameters to be much better performing than the primary raw parameters. 

As showcase for this conclusion stands the difficult case of discriminating AM-LSB vs. AM-
USB modulation, which flags the correct modulation in 95% of cases. 
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