
Proceedings of the  9th International Conference "Distributed Computing and Grid Technologies in Science and 
Education" (GRID'2021), Dubna, Russia, July 5-9, 2021  

597 
 

POPULATION ANNEALING METHOD AND HYBRID 

SUPERCOMPUTER ARCHITECTURE 

L.N. Shchur
 1,2 

1 Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia 

 2 HSE University, 101000, Moscow, Russia  

E-mail:  lev@landau.ac.ru 

A population annealing method is a universal algorithm applicable to statistical mechanics systems 
and optimization problems. It is potentially scalable on any parallel architecture. We review recent 
developments in the area, emphasizing the implementation of the algorithm on a hybrid parallel 
program architecture combining CUDA and MPI. The problem is to keep all general-purpose graphics 
processing unit devices as busy as possible by efficiently redistributing replicas. We provide testing 
details on hardware-based Intel Skylake/Nvidia V100, running more than two million replicas of the 
Ising model samples in parallel. As the complexity of the simulated system increases, the acceleration 

grows toward perfect scalability. 
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1. Previous work 

Population annealing algorithm proposed by Hukushima and Iba [2] to simulate statistical 
mechanics systems with the complex energy landscape. The central idea is to simulate the enormous 
number of system replicas, splitting simulation into two steps, resampling replicas at each cooling 
step, and equilibrating replicas independently at the current temperature. The exciting feature of the 

algorithm is that it estimates the free energy at each cooling step using the average over the number of 
replicas. It was shown by Machta [3] that it is possible to estimate the behavior of statistical errors and 
systematic errors using weighted averages as a function of the number of replicas $R$. The statistical 
errors decay as $1/R1/2$, and the systematic errors decay as $1/R$ for a large enough number of 
replicas $R$.  

There are successful applications of the method to the spin glasses [4,5], molecular dynamics 
[6], first-order phase transitions [7], and optimization problems [8]. A detailed description of the 
method and the analysis of the accuracy dependence on the essential parameters of the simulation can 
be found in the recent publication [9]. 

The algorithm was successfully implemented using CUDA [10], and it was found that the 
optimal number of replicas per one GPU V100 node should be about ten times larger than the number 
of threads. It gives the possibility to run 20 thousand replicas on one GPU node. 

Recently, we extended the range of population annealing (PA) simulations up to more than 
two million replicas running in parallel on the HSE University supercomputer cHARISMa with 104 
GPU Nvidia V100 [11].  

2. CUDA/MPI realization of PA algorithm 

The main question in the multi-node realization of the PA algorithm is how to keep the 
distribution number of replicas at each node as flat as possible? It can happen that at some nodes, the 

number of replicas will grow while cooling, and at some nodes, the number of replicas can become 
very small. In such a case, the computing time at nodes becomes very different, and simulation could 
be inefficient. 

The possible solving of the problem consists of the grouping of replicas in the blocks with the 
moderate size 1024 and using twenty blocks per GPU [11]. Blocks redistribute replicas. Before the 
redistribution step, the algorithm calculates the excess value of blocks at each node as the difference 
between the optimal number of blocks and the allowed excess number or the shortage number of 
blocks, depending on which one has a positive value. The decision is performed at the master node, 
and the master starts the redistribution of replicas depending on the information on the excess and 
shortage values.  

The number of replicas during the simulations is relatively flat with the block algorithm and 
fluctuates within the allowed window, which is one or two excess/shortage blocks [11]. 

3. Testing at HSE supercomputing facilities 

The block PA algorithm was tested in [11] on the example of Ising model with square lattice 
with 642 spins running GPU code published in [7] on the HSE cluster with 26 nodes, with 104 GPUs 

available. The program environment was OPENMP 4.0.1, CUDA version 10.2, and NVIDIA driver 
version 440.33.01. The scalability is shown in Figure 1, each GPU simulates an average of 20 blocks 
with 1024 replicas, and the volume of computations grows with the number of GPUs from 1 to 104. 
Therefore, the HSE computer simulated up to 1024x20x104 = 2 129 920 replicas of the Ising model in 
parallel. More than 50 percent of possible simulation power was used. We have to note that the value 
of the relaxation parameter was relatively moderate in simulations, and with the large value of the 
relaxation be deduced for the simulation of systems that takes more time for equilibration or need 
more time for the calculation at each step. 
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Figure 1. Acceleration of simulations as function of number of GPU used. The red line is the 

maximum possible acceleration. 

4. Future plans 

 Nowadays, the HSE supercomputer cHARISMa has been upgraded with the 184 GPU 
available. We plan to use the block PA algorithm to simulate the statistical mechanic's complex 
behavior at low temperatures.   

In addition, there is an extension of the PA algorithm in which the variable parameter 

temperature is replaced with the variable parameter energy [12]. This algorithm is based on the 
program code for GPU from paper [10] and demonstrates the possibility of catching the models' non-
equilibrium properties. We are working on the combined GPU/MPI implementation with the spirit of 
the block PA algorithm. 
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