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Abstract  
Maintaining cognitively demanding instruction is a primary goal of classroom teachers. Yet students’ 

cognitive demand is difficult to measure and track during the enactment of a rigorous task. This in-progress 

research addresses this problem space by predicting and modeling students’ cognitive demand with computer 

vision and convolutional neural networks, providing an in-the-moment analysis of cognitive demand during 

an eighth grade mathematics task enactment. The findings suggest that models which leveraged behavior-

based visual proxies for cognitive demand (e.g., gesturing, using a computer) achieved substantially higher 

accuracy than the baseline model. Taken together, the results of this work build toward a classroom analytic 

tool for teachers and have implications for the contributions of computer vision in real-world classroom 

studies.  
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1. Introduction 

There has been much interest in applying artificial intelligence analytic tools to classroom 

settings in the past decade. Although many educational applications that leverage AI examine 

speech data with natural language processing [26, 29], there exists a growing enthusiasm for 

computer vision-based research in classrooms to analyze and improve teachers’ instructional 

practices [2, 7, 10]. This study explores the extent to which students’ cognitive demand, one 

aspect of classroom instruction, can be modeled with computer vision via the analysis of 

classroom video recordings in eighth grade mathematics.  

The maintenance of students’ cognitive demand, the amount of intellectual work required 

to create meaning for a mathematical task and solve it [14], is crucial for teachers to measure 

and track from students because of its direct relationship to learning outcomes [27]. When 

students exhibit high cognitive demand, they develop deeper understandings and connect 

concepts across the discipline [28]. However, cognitive demand is not a static construct and 

can be influenced by a number of instructional factors, including the initial presentation of the 

task to students [14], resources provided to the students while solving the task [19], and teacher-

student and student-student interactions during enactment [15]. Because measuring cognitive 

demand in-the-moment is difficult, yet potentially beneficial for teachers, we are curious to 

explore the extent to which computer vision may be used to provide cognitive demand 

measurements as students solve a mathematical task in small groups. Such data may assist 

teachers by providing indicators for which students continue to exhibit high cognitive demand 

throughout the task’s enactment, and conversely, which students struggle to uphold high 

demand after the task is launched.  

Since cognitive demand is not a purely visual construct, our model draws upon five proxy 

student behaviors to identify potentially cognitively demanding activity while solving a 
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mathematics task, then uses the presence of the five behaviors to predict the level of cognitive 

demand. Though this approach omits cues from students’ speech, we hypothesized that 

modeling cognitively demanding visual behaviors may yield additional contributions toward 

predicting overall demand. We therefore ask: to what extent can computer vision model 

changes in students’ cognitive demand during mathematical problem solving?  

2. Literature Review 

Modeling cognitive demand with computer vision is a novel task in classroom analytics 

research. Our exploration of relevant literature investigates the extent to which other computer 

vision-based methods have demonstrated success in tasks with adjacent features. By 

incorporating these features: transfer learning, multiclass binary classification, and use of pre-

trained networks, into the present study, we aim to utilize the affordances of computing toward 

a classroom setting. We discuss each feature in detail. 

 
Transfer Learning. This research leverages transfer learning using ImageNet pre-trained 

weights; an approach that is not uncommon for developing novel applications in image 

classification. Since its onset, ImageNet has been established as a reliable, general-purpose 

benchmark for transfer learning on a variety of learning tasks, number of classes, and amounts 

of trainable data [17]. Numerous past studies have investigated the relationship between factors 

that impact transfer learning and fine-tuning of convolutional neural network (CNN) models, 

including the perils of model overfitting [6, 30] and the layers of ImageNet that should be 

optimized for transfer learning [16]. We drew upon this research when considering the duration 

of hyperparameter tuning and the overall fit of the training data to each binary classification 

model, as it suggests that model overfitting may be perilous to transferring learning to 

validation and testing sets.  

 

Pre-Trained Networks for Multiclass Classification. Additionally, we relied on MobileNet V2, 

a neural network specifically constructed for classification tasks, for binary and categorical 

classifications of cognitive demand. MobileNet V2 was developed for “lightweight 

classification tasks” [11] in transfer learning, image classification, and localization. It is 

commonly used in object recognition and classification tasks, such as detecting human tissue 

abnormalities in medical research [3]. As our investigation involves the classification of certain 

objects in order to detect human behavior (e.g., detecting the presence of a computer in the 

“using a computer” proxy behavior class), MobileNet V2 served as a reasonable choice for a 

first-pass exploration of the data.  

One drawback experienced was the amount of labeled training data needed to optimize 

transfer learning using ImageNet and MobileNet V2. Past studies and experiments suggest that 

a large quantity of labeled training data is required for transfer learning, particularly in tasks 

that involve feature localization [1, 31] and modification of architectures that improve transfer 

learning [4]. Using unlabeled data has been an appealing area to explore in this research space 

[20] and some self-supervised methods have attempted to improve feature generalization in 

auxiliary tasks [5], although none have outperformed ImageNet’s performance on purely 

supervised learning tasks. Weak supervision, which applies noisy labels from non-expert users 

[18], is now seen as a plausible middle-ground for large-scale ImageNet transfer learning tasks. 

We utilized weak supervision when applying hand labels to binary classes in the training data, 

as one member of the research team was unfamiliar with coding student and teacher behaviors 

in mathematics education research. 

 



3. Methods 

Our approach to modeling cognitive demand through convolutional neural networks consisted 

of three primary steps. First, we constructed the baseline cognitive demand model for 

comparison, which predicted demand from still images alone. Next, we devised the 

experimental model, which utilized binary classification for students’ cognitive demand proxy 

activities (computer use, leaning in, pointing to the task, talking to the teacher, and writing on 

the task) to predict cognitive demand. Finally, we compared performance between the two 

models.  

Both models applied transfer learning from ImageNet weights. Although the MobileNet 

V2 network, which relies upon ImageNet weights, contains approximately 2.3 million 

parameters, our method applies transfer learning to the bottom Dense bottleneck trainable 

parameters (approximately 1,300 layers). These layers solely focus upon the localized features 

of the five binary classes. Figure 1 shows a depiction of our model as well as a schematic of 

the trainable network architecture that was applied.  

 

 
Figure 1: Architecture of Trainable Neural Network Layers 

 

Both the experimental and baseline models freeze a majority of MobileNet V2’s layers to 

preserve the classification architecture and build upon the network’s ability to detect edges, 

objects, and groups of objects. This model consists of 16 repeated blocks which contain a 2-

dimension convolutional layer, batch normalization, and a RELU activation layer to contend 

with nonlinearity. 

Categorical cross-entropy loss was used in the baseline model to classify levels of students’ 

cognitive demand, where level 1 indicated the least demanding activity and level 4 indicated 

the most demanding activity. Binary cross-entropy loss was used in the experimental model to 

categorize each of the five feature classes, as we aimed to assess whether each student behavior 

was present. Finally, we implemented a support vector machine classifier to transform 

intermediate binary feature predictions to cognitive demand scores on testing data. SVMs 

potentially work well with smaller datasets, such as ours, and are ideal for categorizing data 

into linear classes [24]. 

 

 

 



4. Data and Preprocessing 

The data were collected from two eighth grade mathematics classrooms that focused on 

building students’ capacities for cognitively demanding work through engagement with 

mathematical tasks. Four 30-minute video recordings were taken in Spring 2017 that featured 

students solving “The Washing Machine Problem” with Desmos, a dynamic graphing 

calculator application. The video recordings were rated for cognitive demand on a 1-4 scale 

called the Instructional Quality of Assessment Rubric [8, 9], a research-backed tool for rating 

cognitive demand of students’ mathematical activity. Demand was rated at the level of the 

entire student group, and importantly, cognitive demand ratings were not uniformly distributed 

between the 1-4 scale. This is to be expected, because students were more likely to achieve 

moderate cognitive demand throughout the task (level 2 or 3) than extreme ratings (level 1 or 

4). Initial ratings were assigned in Winter 2021 by two mathematics education experts (Delaney 

& Kinsey) who reached 87.9% inter-rater agreement. 87.9%, classified as “very good 

agreement” [21] serves as the upper accuracy threshold for human performance on this task.  

The video recordings were spliced into still images taken at 1-second intervals, and we 

assigned 1-4 cognitive demand labels to each image from Delaney and Kinsey’s ratings. We 

then hand-labeled each image in the five binary classes according to the following schematic: 

 Computer class: the image received a “1” if students were using the computer to solve 

the task, and a “0” otherwise. 

 Leaning class: the image received a “1” if more than one student was leaning into the 

center of the table to collaborate with the group, and a “0” otherwise.  

 Pointing class: the image received a “1” if one or more students were visibly pointing 

to gesturing to the task or computer, and a “0” otherwise.  

 Teacher class: the image received a “1” if the teacher and students were conversing 

with one another at the same table, and a “0” otherwise. 

 Writing class: the image received a “1” if one or more students were writing on the 

task card, and a “0” otherwise.  

 

The five binary classes were generated based on our hypothesized relationship of each 

indicator to students’ cognitive demand. Prior research has demonstrated that students’ use of 

computational tools to assist with problem solving can either raise or lower cognitive demand, 

contingent upon how students use it [13]. Similarly, conferring with a teacher should increase 

cognitive demand, as teachers may draw students’ attention to cognitively demanding features 

of the task during small-group interactions [15]. Finally, the ways in which students work 

collaboratively and use one another as resources may increase cognitive demand, as visually 

indicated through pointing, collective writing, and leaning in toward the “middle space” [22].  

In total, the data set contained 2000 images distributed uniformly across the four classroom 

video recordings. Each image was rescaled to 224 by 224 pixels to accommodate the maximum 

weight size of MobileNet V2.  

5. Results 

5.1. Experiment 1: Training the Baseline Model  

The first model classifies cognitive demand from images alone. We expected the accuracy of 

this model to be relatively low because, in comparison with the five binary class indicators in 

the experimental model, the baseline model’s feature space was high-dimensional. We 

experimented with various combinations of hyperparameters: learning rates, batch sizes, 



epochs, and optimizers to investigate the training accuracy of the baseline. We aimed to achieve 

accuracy of around 25%, the expected accuracy that would be generated from a balanced 

cognitive demand distribution over the four levels. Table 1 shows the training and validation 

accuracy as we tuned hyperparameters over 20 epochs.  
 
Table 1 
Hyperparameter Tuning with Baseline Cognitive Demand Model 

 Learn Rate: .001 

Batch Size: 32 

 

Learn Rate: .0001 

Batch Size: 32 

 

Learn Rate: .0001 

Batch Size: 16 

 

Learn Rate: .00001 

Batch Size: 16 

Categorical Cross-Entropy  Train_Acc: 7.2% 

Val_Acc: 4.8% 

Train_Acc: 8.4% 

Val_Acc: 4.8% 

Train_Acc: 8.8% 

Val_Acc: 3.2% 

Train_Acc: 24.6% 

Val_Acc: 29.8% 

Sparse Categorical Cross-Entropy  Train_Acc: 3.5% 

Val_Acc: 2.1% 

Train_Acc: 3.8% 

Val_Acc: 2.1% 

Train_Acc: 5.4% 

Val_Acc: 3.3% 

Train_Acc: 9.1% 

Val_Acc: 6.7% 

 
Categorical Cross-Entropy Loss was selected to model the data with a batch size of 16 and 

a learning rate of 0.0001. Conceptually, we anticipated that Sparse Categorical Cross-Entropy 

Loss would have been a better fit because it is designed for integer input; however, this was 

not the case during training. The final combination of hyperparameters caused the training 

accuracy to increase quickly, then level off after approximately 10 epochs.  

5.2. Experiment 2: Training the Experimental Model using Binary 
Behavioral Proxies 

5.2.1. Phase 1: Binary classification using MobileNet V2  

The experimental model sought to improve cognitive demand predictions by first identifying 

five binary student behaviors that might impact demand, then applying predicted binary class 

labels for the behaviors to testing data for prediction. Each of the five binary class sub-models 

were trained using MobileNet V2 with ImageNet weights. Data were split into 80% training, 

10% validation, and 10% testing. We ensured that both the validation and testing sets contained 

all four cognitive demand levels. 

Hyperparameters were tuned for each class separately, although many classes showed 

optimal training accuracy using similar inputs. Similar to Experiment 1, all binary classes were 

tuned for learning rate, number of epochs, loss optimization function, and batch size. The 

ADAM optimizer was used in all classes because it handled the noisy classroom data well, an 

important consideration for localization of class features. 

We anticipated that the Teacher and Computer classes would achieve high training 

accuracy faster, because there was less ambiguity in labeling those classes compared to 

Writing, Leaning, and Pointing. We hypothesized that the latter classes would take longer to 

converge because they were based on pose estimation, and were more likely to vary per student. 

For example, we associated students’ elbows on the table with the “leaning” class, but since 

not every student in the group need to have exhibited the “leaning” action in order for the image 

to be classified as “leaning,” this nuance may have been difficult for the model to detect. Table 

2 shows the training and validation accuracies as we tuned hyperparameters for all five student 

behavioral proxies trained over 50 epochs.  

 

  



Table 2 

Training and Validation History of Five Binary Behavior Proxy Classes 

 Learn Rate = .0005 

Batch Size = 32 

Learn Rate = .001 

Batch Size = 16 

 

Learn Rate = .0001 

Batch Size = 16 

Learn Rate = .0005 

Batch Size = 16 

 

Learn Rate = .00065 

Batch Size = 16 

Computer 

Class  

Train_Acc: 96.4% 

Val_Acc: 94.8% 

Train_Acc: 55.7% 

Val_Acc: 53.0% 

Train_Acc: 96% 

Val_Acc: 97.5% 

Train_Acc: 99% 

Val_Acc: 98.5% 

Not tested 

Leaning 

Class  

Train_Acc: 77.2% 

Val_Acc: 68.3% 

Train_Acc: 72.3% 

Val_Acc: 69.4% 

Train_Acc: 74.3% 

Val_Acc: 68.2% 

Train_Acc: 85.7% 

Val_Acc: 70.9% 

Train_Acc: 85.6% 

Val_Acc: 76% 

Pointing 

Class 

Train_Acc: 76.3% 

Val_Acc: 60.2% 

Train_Acc: 74.1% 

Val_Acc: 63.9% 

Train_Acc: 78.7% 

Val_Acc: 64.2% 

Train_Acc: 90.2% 

Val_Acc: 67.8% 

Not tested 

Teacher 

Class 

Train_Acc: 81.8% 

Val_Acc: 66.5% 

Train_Acc: 79.3% 

Val_Acc: 64.2% 

Train_Acc: 84.1% 

Val_Acc: 69.4% 

Train_Acc: 88.5% 

Val_Acc: 75.2% 

Train_Acc: 97.5% 

Val_Acc: 81.6% 

Writing 

Class 

Train_Acc: 78.3% 

Val_Acc: 76.7% 

Train_Acc: 68.4% 

Val_Acc: 66.6% 

Train_Acc: 76.3% 

Val_Acc: 71.2% 

Train_Acc: 75.2% 

Val_Acc: 73.4% 

Train_Acc: 88.0% 

Val_Acc: 77.1% 

 

The models performed best given low learning rates, smaller batch sizes, and longer 

training duration to achieve high training and validation accuracy. This is not surprising, given 

the localization required for the network to learn and classify each of the five feature behaviors. 

Models were trained until each obtained a training accuracy over 85%, a value similar to human 

accuracy applied for the original cognitive demand labels. In the event that multiple models fit 

this criterion, the model whose parameters the highest validation accuracy was selected. The 

final selected hyperparameters are highlighted in yellow in Table 2.  

Figure 2 illustrates one example of our error analysis per each binary class. As we 

interrogated the nuances these errors, it appeared that some class models learned to identify 

subtleties in the data better than others. For example, the highly-accurate Computer class 

differentiated between closed computers and open computers after 50 epochs of training. In a 

majority of images, the Teacher class teased apart differences between the teacher’s presence 

at the table versus the teacher performing other actions in the image background. Classification 

errors occurred when the teacher was only partially visible in the image, which made sense, as 

teachers were not actively monitoring their body position and placement during the original 

video recordings. Errors in the Pointing, Writing, and Leaning classes occurred when the 

students did not clearly demonstrate the intended action; for example, when the point was 

blurry or incomplete, when only one student was writing or leaning, or when the leaning action 

was subtle.  

 
Figure 2: One example of error analysis in the Pointing Class’s training data 

 



5.2.2. Phase 2: Labeling Cognitive Demand using Trained Multiclass Models 
and a Support Vector Machine 

Once the binary multiclass models were established, we utilized a small test set of data (n = 40 

images, 10 per cognitive demand class) to examine the Computer, Leaning, Pointing, Teacher, 

and Writing models’ abilities to (1) correctly predict the five binary classes of students’ 

behaviors in the test set and (2) calculate cognitive demand based on labels generated by the 

five models. We tested both a linear and a generalized support vector machine to predict final 

cognitive demand labels. Regularization parameters were tuned in both models (e.g., the kernel 

and gamma parameters in the generalized SVM, and the loss function in the linear SVM). 

Figure 3 summarizes the results for both classifiers and provides a confusion matrix to 

summarize classification errors.  

 

 
Figure 3: Testing accuracy for cognitive demand classification with a support vector 

machine 

 

After tuning the regularization rate and aforementioned hyperparameters, it did not appear 

that the models’ predictive accuracies for cognitive demand varied substantially. The general 

SVM classifier was the better overall choice because it improved cognitive demand 

classification from the baseline model (55.7%), although it does not surpass human 

performance (87.9%). This result is not surprising, because cognitive demand is an abstract 

concept that was previously rated by human experts using both speech and visual cues. 

However, the drastic improvements in cognitive demand classification from the baseline model 

validate our current approach despite the relatively small size of the data set. 

6. Discussion  

The experimental two-phase model did not approach human-level performance, but showed 

both improvements from the baseline model and promise for future work. Compared to the 

baseline model, the SVM classifier performed better than unsupervised classification. This 

result presents a case for weak supervision to be used when training data are identified, sorted, 

and labeled, which could draw upon the expertise of more teachers in future iterations of this 

work. We hypothesize that teachers’ involvement during data labeling would offer 

improvements to the model due to their developed practices in interpreting students’ behaviors 

in their day-to-day experiences. 

Future developments in this study will increase the sample sizes and apply data 

augmentation to re-examine outcomes. Increasing the sample size will improve predictive 

stability in the binary models, particularly the Pointing class, which contained a smaller 

proportion of positive cases with respect to the others. Future data augmentations to be tested 

include varying the brightness in classroom photos, rotating classroom images, and including 

more classroom images with noisy features (for example, the presence of additional individuals 

in the image frame who are not the teacher). Although MobileNet V2 appeared to be a suitable 



classifier for binary class inputs, it was likely not the best choice for the baseline categorical 

model. Other neural networks, such as VGG net, may have produced better transfer learning 

[12], and will be tested in future iterations of this work.  

A key long-term goal of this project is to build toward a cognitive demand classification 

tool that can be used to support and empower teachers’ professional learning. By analyzing 

their students’ variations in cognitive demand throughout a mathematical task, teachers may 

better understand the range and variation in students’ enacted demand, and adjust their future 

instructional practices accordingly.  Such a tool may be useful in teachers’ video clubs [25], a 

form professional development activity designed to hone teachers’ noticing and inquiry of 

student behavior. By supplying teachers with a cognitive demand classifier, teachers may 

attend to student behavioral features that impact cognitive demand more frequently, and adjust 

their practices in response. We aim to test this theory in future iterations of this work.  
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