
Co-evolutionary Algorithm for the Placement of VLSI Elements

Oleg B. Lebedev1, Artemy A. Zhiglaty2

1 Southern Federal University, 105 Bolshaya Sadovaya st., Rostov-on-Don, 344006, Russia
2 Southern Federal University, 105 Bolshaya Sadovaya st., Rostov-on-Don, 344006, Russia

Abstract
To improve the efficiency, enhance the convergence of the algorithm and the ability to exit

local optima, an approach to co-hybridization of the placement algorithm based on an ant

colony is proposed. Simultaneously, several subpopulations evolve in the search space for a

solution to the problem. The algorithms differ in search strategies. The authors have

developed modifications of the canonical paradigm of the ant algorithm, methods for

constructing the interpretation of the solution by agents.

Keywords 1
VLSI, placement, swarm intelligence, ant algorithm, adaptive behavior, subpopulation, co-

evolution, optimization.

1. Introduction

In connection with a decrease in the topological dimensions, an increase in the degree of

integration of VLSI and a reduction in design time, there are fundamentally new requirements for the
design of VLSI [1-2]. The modern CAD design platform [3] is a complete set of tools for VLSI

design. Within the ecosystem of the Synopsys design platform, many algorithms and functions have

been merged, in particular the functions of optimization of placement. IC Compiler II is a tool for

topology design. It is developed on the basis of a new architecture and data structure, focused on
achieving the highest speed of work and high quality results. Particular attention is paid to the support

of large complex «systems-on-a-chip» with a multilevel physical hierarchy, containing more than 100

million cells.
Work on optimizing algorithms and reducing design time along the route continues with each new

release of the tool. It is worth mentioning that in recent releases, developers have paid special

attention to improving algorithms for both global cell placement and their legalization, which

provides improved traceability by detailed accounting of trace parameters. Continuous analysis of
algorithms and their optimization allows you to improve the quality of the results. Additionally, it is

worth noting the development of optimization using parallelization of computations on several cores.

The placement problem [2] can be formulated as follows. A set of rectangular elements (modules)
R={ri|i=1,2,…,m} with terminals (outputs) located on them is given, where m is the number of

modules; W={wi|i=1,2,…,m} is the vector of the widths of the rectangles; L={li|i=1,2,…,m} is the

vector of the lengths of the rectangles. A set of circuits connecting the terminals of the modules is
given. The commutation field (CF) is set, on which the elements can be placed. A rectangular

coordinate system XOY is introduced, in which the OX and OY axes coincide, respectively, with the

lower and lateral sides of the control panel. It is necessary to place the elements on the checkpoint

with the optimization of some quality criteria. Input information includes: a description of the
modules, which indicates the shape, dimensions, location of terminals on the modules, a list of

circuits indicating the interconnections of the modules and a description of the switching environment

(SE) − a list of positions and their coordinates [4]. The output information is a list of X, Y coordinates

Proceedings 19th Russian Conference on Artificial Intelligence (RCAI-2021), October 11-16, 2021, Russia, Taganrog,

EMAIL: lebedev.ob@mail.ru(A.1); artemiy.zhiglaty@gmail.com(A.2)

ORCID: 0000-0001-6678-2947(A.1); 0000-0002-4924-487X(A.2)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:lebedev.ob@mail.ru
http://orcid.org/0000-0002-4924-487X

of positions on the commutation field in which all modules are placed. The solution to the problem is
represented as a set of elements <X,Y>, where X={xi|i=1,2,…,m}, Y={yi|i=1,2,…,m} are the vectors

of coordinates of rectangles, (хi,уi) − coordinates of the lower left corner of the rectangle along the OX

and OY axes, respectively.

The hypergraph Н=(X, E) is used as a model of the circuit, where X={xi|i=1,2…,n} is the set of

vertices modeling elements, and E={ej|ejX, j=1,2,…,m} is a set of hypersurfaces modeling chains
connecting elements.

The distance between two vertices with coordinates (xi,yi) and (xj,yj) is determined by the formula:

dij=|xi–yi|+|xj–yj|.
The main task of placement is to create the best possible conditions for subsequent routing. There

is no formal definition of this concept. Therefore, they introduce criteria and estimates, the

optimization of which leads to the best conditions. By now, the most widespread are estimates of the

minimum total length of joints. As an estimate lj of the length of the chain tj modeled by the
hyperedge ej, the following are most often used: the length of the semiperimeter of the rectangle

describing the set of vertices ej.

With this in mind, the optimization criterion is as follows:





m

j

jlF
1

Existing allocation algorithms are divided into two main classes: constructive and iterative [4].

The first class is characterized by a relative speed, but at the same time a low quality of the solution.

The second class is more laborious, but it allows you to get better solutions [4].

Among the iterative algorithms are deterministic and probabilistic. In deterministic algorithms, the
change in the partition (solution) is implemented on the basis of a clear, deterministic dependence on

the solution being changed. The disadvantage is the frequent hit in the local optimum («local pit»).

In hybrid algorithms, the advantages of one algorithm can compensate for the disadvantages of
another. Integration of metaheuristics of population algorithms provides a broader view of the search

space and a higher probability of localizing the global extremum of the problem. This approach

allows to partially solve the problem of premature convergence, provides a way out of local optima
and increases the speed of obtaining the result [5].

The metaheuristic of the ant algorithm (AA) is based on a combination of two techniques: the

general scheme is built on the base method, which includes an inline procedure. The basic method is

to implement an iterative procedure for finding the best solution based on the mechanisms of the
adaptive behavior of the ant colony. An embedded procedure is a constructive algorithm for the agent

to construct some specific interpretation of the solution [6]. The AA is used to solve the problem of

finding the shortest route in a complete graph. Each ant in the colony forms its own route, which is an
interpretation of the solution of a certain problem on the complete graph of the search for solutions

(GSS). As the ant moves, it marks a path with a pheromone, and this information is used by other ants

to choose a path.
The authors have developed modifications of the canonical paradigm of the ant algorithm: the

structure of the GSS and the construction of the representation (interpretation) of the solution on it;

methods for constructing an interpretation of a solution by an agent on GSS (development of a

constructive algorithm).
To increase the efficiency, enhance the convergence of the algorithm and the ability to exit local

optima, an approach to co-hybridization [6] of the placement algorithm based on the model of the

adaptive behavior of the ant colony is proposed. Simultaneously, several subpopulations evolve in the
search space for a solution to the problem, each of which solves the original optimization problem and

has its own optimization strategy. The partitioning problem is solved by two groups A1, A2 of agents.

Agents of the A1 group build routes in accordance with the C1 strategy. Accordingly: the agents of the

A2 group − with the C2 strategy. Strategies C1 and C2 differ in constructive algorithms for splitting the
scheme by agents.

To solve the placement problem, a co-evolutionary algorithm based on the ant colony method has

been developed. The essence of the co-evolutionary approach is that the evolving population is
divided into subpopulations that evolve in parallel [5].

Periodically, agents move from one subpopulation to another, passing on their experience. The co-
evolutionary approach provides a broader view of the solution space and a higher probability of

localization of the global extremum of the problem [5].

2. Development of a co-evolutionary placement algorithm based on models
of adaptive behavior of an ant colony

The complete bipartite graph D=(X∪P,E), is used as the solution search graph, where

X={xi|i=1,2,…,n} is the set of vertices (first share) corresponding to the set of vertices of the graph
H(X,U), and P={pv|v=1,2,...,n} is the set of vertices (second part) corresponding to the set of

positions. E is the set of edges (xi, wv) connecting the vertices xiX with the vertices of the set P.

|E|=n2 of the solution search graph D, Fig. 1.

The problem of a constructive algorithm is reduced to searching on a complete bipartite graph

D=(X∪P,E), a bipartite subgraph Dk=(X∪P,Ek), which defines a one-to-one relation between the sets
of vertices X and P with the minimum value estimates F. The bipartite subgraph Dk is used as a

representation of some k-th solution to the location problem specifies the distribution of the set of

vertices X over the set of nodes P.

Figure 1: Solution search graph example

The main restrictions of the generated bipartite subgraph Dk=(X∪P,Ek) are as follows:

|Ek|=|P|=|X|.

- each edge (xi,pv)=ek
ivEk, on the one hand, is incident to only one vertex pvP, on the other hand,

it is incident to one and only one vertex xiX;

- the local degree of the vertex xiX is equal to one, ρ(xi)=1;

- the local degree of the vertex pvP is equal to one, ρ(pv)=1.

The paper considers two equivalent constructive placement algorithms that are part of the search

placement algorithm. Agents of subpopulation Z1 build a solution using a constructive algorithm on
the set of vertices X. Agents of subpopulation Z2 use a constructive algorithm on the set of vertices P.

Since the constructed graph Dk is completely determined by the set of edges Ek, we will consider Ek as

an interpretation of the solution. The process of finding solutions is iterative. Each iteration l includes
three stages. At the first stage, each agent zk forms its own solution Ek. At the second stage, agents

deposit (add) a pheromone on the edges of the solution search graph D. To store the pheromone

accumulated during the operation of the algorithm, the memory matrix Q=||qiv||nn is used, where qiv

is the amount of pheromone deposited by the agents on the edge eivE. The work uses the cyclical

(ant-cycle) method of ant systems. In this case, the pheromone is deposited on the edges of the graph

D after the complete formation of solutions at each cycle by all agents of both subpopulations. For

these purposes, an auxiliary matrix Δ=||δiv||nn is used, where δiv is the total amount of pheromone

deposited by agents during one iteration on the edge eiv.
The subgraph Dk (set Ek) is formed by each agent step by step on the basis of the set E of edges of

the complete bipartite graph D=(X∪P,E) (step by step).

At the initial stage, the same (small) amount of pheromone ϴ=ξ/ε , where ε=|E|, is deposited on all

edges of the graph D=(X∪P,E). In other words, all elements qiv of the memory matrix Q are assigned

the value ϴ.

Agents have memory. At each step t in the memory of agent zk there is:

- the list of vertices X1k(t)X already located in the positions P1k(t)P;

– the list of vertices X2k(t)X X that remain unplaced, X1k(t)X2k(t)=X;

- the list of free positions P2k(t)P, P1k(t)P2k(t)=P;

- qiv(t) − the amount of pheromone, on each edge eiv=(xi,pv) of the graph D;

- ρv(t) is the local degree of the vertex ρv(t) of the graph Dk(t) at step t;
- ρi(t) is the local degree of the vertex xi(t) of the graph Dk(t)at step t.

At the first stage of each iteration, first, each of the agents zkZ1, using the first allocation

algorithm, sequentially generates a set of edges Ek, where k is the agent's number. Then, by the second

algorithm, the sequential formation of the set of edges Ek is performed by each of the agents zkZ2.

Consider the first constructive placement algorithm.

The agents generate solutions Ek on the set of edges E of the graph D=(X∪P,E).

The memory of the agent zk is initialized:

X1k(1)=; X2k(t)=X; P1k(1)=; P2k(1)=P; Ek(1)=, v(ρv(1))=0. i(ρi(1))=0.

The auxiliary matrix Δ=||δiv||nn is set to zero.

The process of forming Ek includes two stages, which are performed at each step t.

At the first stage of step t, a set of vertices P2k(t)P is formed such that for each vertex pvP2k(t)

its current local degree ρv(t)=0. Similarly, a set of vertices X2k(t)X is formed such that for each vertex

xiX2k(t) its current local degree ρi(t)=0.

For each vertex xiX2k(t), a set of edges Ui(t), |Ui(t)|=|P2k(t)|, connecting xi with the vertices of the

set P2k(t) is defined. For each edge eiv=(xi,pv)Ui(t) incident to the vertex xiX2k(t), the parameter qiv(t)

is determined − the total pheromone level on this edge eiv. For each vertex xiX2k(t), the average

amount of pheromone per one edge of the set Ui(t) is determined:

µik(t)=∑v(qiv(t))/ |Ui(t)|.

The value µik(t) is declared the value of the vertex xi. After that, agent zk with probability

Ψik(t)=µik(t)/∑i(µik(t)), proportional to µik(t), chooses the vertex x*
iX2k(t).

At the second stage of step t, among the edges Ui(t) incident to the selected vertex x*
i, with

probability Ψvk(t)=qiv(t)/∑v(qiv(t)), the edge e*
iv=(x*

i,p
*

v), which is included in the set of edges Ek(t)

formed by the agent zk.

Next, the post-procedures are performed.

Ek(t+1)=Ek(t)e*
iv.

X1k(t+1)=X1k x
*

i; X2k(t+1)=X2k\x
*

i.

P1k(t+1)=P1kp*
v; P2k(t+1)=P2k\p

*
vi.

The local degree of the vertices x*
i and p*

v takes the value 1, ρi=ρv=1.

Go to the next step.

The process of forming the set Ek by the agent zk ends when X2k(t)=P2k(t)=.

Calculation of the estimate Fk(l) of the allocation given by the graph Dk=(X∪P,Ek).
Calculation of the amount of deposited pheromone proportional to the estimate Fk(l).

The second constructive placement algorithm is equivalent to the first. The difference lies in the

inverted search space. To do this, symmetric re-indexing of variables and arrays is performed.
i=v; v=i; x=p; p=x; xi=pv; xi=pv; eiv=evi; (xi, pv)=(pv, xi,);

X1k(t)=P1k(t); P1k(t)=X1k(t); X2k(t)=P2k(t); P2k(t)=X2k(t);

Ek(t)={eiv|i=1,2,…,n; v=1,2,…,n}, Ek(t)={evi v=1,2,…,n; i=1,2,…,n}.
The first constructive allocation algorithm solves the problem of assigning the set of vertices X of

the original graph D=(X∪P,E) to the set of vertices P. After the symmetric reindexing of variables and

arrays, the same algorithm solves the problem of assigning the set of vertices P of the original graph

D=(X∪P,E) to the set of vertices X. The solution Ek obtained by the second algorithm after reverse
reindexation is the solution Ek of the problem of assigning the set of vertices X of the original graph

D=(X∪P,E) to the set of vertices P. After calculating the estimate Fk(l) of the allocation given by the

graph Dk=(X∪P,Ek) the amount of pheromone is calculated proportional to the estimate Fk(l).

3. Co-evolutionary placement algorithm

1. In accordance with the initial data, a complete bipartite solution search graph D=(X∪P,E) is

formed.

2. The number of agents Na in each of the subpopulations Z1 and Z2 is specified.
3. The values of the control parameters are set.

4. The number of iterations is set − Nl.

5. The initial amount of pheromone is deposited on all edges of the initial graph D=(X∪P,E). The

auxiliary matrix Δ=||δiv||nn is set to zero.

6. l=1. (l is the iteration number).
Start of work of 1 constructive algorithm.

7. k=1. (k − agent number).

8. The initial values of the memory parameters for the agent zk of the population Z1 are formed.

t=0. X1k(1)=. X2k(1)=X. P1k(1)=. P2k(t)=P. Ek(1)=. v(ρv(1))=0. i(ρi(1))=0.

9. t=t+1. (t is the step number).

10. (Stage 1). For each vertex xiXk2(t), a set Ui(t) of incident edges eiv=(xi,wv)Ui(t) is defined

that connect xi with all vertices pv of the set P2k(t).

11. For each edge eiv=(xi,pv)Ui(t), the parameter qiv(t) is determined − the amount of pheromone
placed on eiv.

12. The average amount of pheromone per one edge of the set Ui(t) is determined:

µik(t)=∑v(qiv(t))/|Ui(t)|. µik(t) is the cost xiX2k(t).

13. Among the set of vertices X2k(t) with probability Ψik(t)=µik(t)/∑i(µik(t)), a vertex x*
i(t)X2k(t) is

chosen.

14. (Stage 2). Among the edges U*
i(t) incident to the selected vertex x*

i(t), with the probability

Ψvk(t)=qiv(t)/∑v(qiv(t)), the edge e*
iv=(x*

i, p
*

v), which is included in the set of edges Ek(t) formed by the
agent zk.

15. Execution of post-procedures after step t.

Ek(t+1)=Ek(t)e*
iv.

X1k(t+1)=X1k x
*

i. X2k(t+1)=X2k\x
*

i. P1k(t+1)=P1kp*
v. P2k(t+1)=P2k\p

*
vi.

The local degree of the vertices x*
i and p*

v takes the value 1, ρi=ρv=1.

16. If X2k(t)=, then go to 17, otherwise go to 9.

17. Calculation of the estimate Fk(l) of the solution. Calculation of the amount of pheromone

proportional to the estimate Fk(l): τk(l)=Q / Fk(l).

18. In the cells of the auxiliary matrix Δ=||δiv||nn, corresponding to the edges Ek, a pheromone is

deposited in an amount proportional to Fk(l): for each edge eivEk, δiv=δiv+τk(l).

20. If k<Na, then k=k+1 and go to 8, otherwise go to 21.

21. Symmetric re-indexing of variables and arrays described above is performed.
Start of work 2 constructive algorithm.

22. k=1. (k − agent number).

23. The set Ek is formed.
24. The reverse reindexing of the interpretation of the solution Ek obtained by algorithm 2 is

performed. In other words: (eivEk)[i=v;v=i].

25. In the cells of the auxiliary matrix Δ=||δiv||nn, corresponding to the found set of edges Ek, a

pheromone is deposited (added) in an amount proportional to the estimate Fk(l): for (eivEk)

[δiv=δiv+τk(l)].
26. If k<Na, then k=k+1 and go to 22, otherwise go to 27.

27. The deposition of the pheromone accumulated by all agents at the iteration is carried out into

the memory matrix Q=||qiv||nn: (qivQ)[qiv=qiv+eiv].

28. The pheromone evaporation procedure is performed on the edges of the set E of the graph D.

29. If l<Nl, then то l=l+1 and go to 7, otherwise go to 30.
30. End of the algorithm.

4. Experimental research

Based on the developed placement algorithm, a coevolution placement (CP) program was created.

The experiments were carried out by analogy with the well-known method BEKU (Partitioning

Examples with Tight Upper Bound of Optimal Solution) [8]. Examples with a known optimum Fopt
containing up to 1000 vertices were studied. The average dependence of the quality of solutions on

the number of iterations (Fig. 2), and the size of the population (Fig. 3) was constructed. The quality

is assessed by the value of Fopt / F.

Figure 2: Dependence of the quality of the algorithm solutions on the number of iterations

Figure 3: Dependence of the quality of the algorithm solutions on the population size

It was found that for a population size of M=100, the algorithm converges on average at 120 iterations.
To compare the experimental data of placement algorithms, the most famous algorithms GASP [7],

ESP [8] TimberWolf 4.3 [9-10].

Based on the study of the data, the following dependencies were built (Fig. 4): 1st dependence

corresponds to the developed co-evolutionary placement algorithm (CP); 2nd − GASP; 3rd − ESP;
4th − TimberWolf.

optF

F

1 2 3 4

 50 100 150 200 T

Figure 4: Comparison of algorithms

The developed (1) and compared (2,3,4) algorithms allow obtaining solutions close to optimal.

However, the developed algorithm has a high performance − fewer generations (iterations) are required.

Testing was carried out on benchmarks 19s, PrimGA1, PrimGA2. The results compared to existing
algorithms are improved by 6-7%. The probability of obtaining a global optimum was 0,96. On

average, the solutions differ from the optimal one by less than 2%. The time complexity of the

algorithm for fixed values of M and T lies within O(n).

5. Conclusion

To improve efficiency, enhance the convergence of the algorithm and the ability to exit from local

optima, a co-evolutionary approach to the construction of a placement algorithm is proposed. To solve

the placement problem, the authors have developed a modified metaheuristic by analogy with the
models of the adaptive behavior of the ant algorithm. Simultaneously, in the search space of the

optimization problem, two subpopulations evolve, each of which solves the same initial optimization

problem, but having different search areas and optimization strategies. The co-evolutionary approach
provides a broader view of the solution space and a higher probability of localizing the global

extremum of the problem. Distinctive features of the interaction between subpopulations are that they

are based on the use of a common graph for finding solutions, common evolutionary memory, and the

formation of a single interpretation of a solution in the form of a bipartite graph.

6. Acknowledgements

This research is supported by grants of the Russian Foundation for Basic Research of the Russian

Federation, the project №20-07-00260.

7. References

[1] A.V. Tuchin, E.N. Bormontov, K.G. Ponomarev, Introduction to computer-aided design systems

for integrated circuits, Voronezh State University Publishing House (2017) 110 p.

[2] G.G. Kazennov, Basics of designing integrated circuits and systems. Binom, Knowledge

Laboratory, Moscow, (2010) 295 p.
[3] K. Rose, D. Radchenko, Synopsys platform for designing digital systems − a new level of SoC

design technologies, ELECTRONICS, (2018).

[4] B.K. Lebedev, O.B. Lebedev Hybrid bioinspired algorithm for the formation of lines of standard
cells in the design of VLSI topology, Problems of the development of promising micro- and

nanoelectronic systems, IPPM RAS, Moscow, (2018) pp. 180-187.

[5] A.P. Karpenko, Modern search engine optimization algorithms. Algorithms Inspired by Nature:
A Study Guide. 2nd edition, Moscow, (2016) 448 p.

[6] B.K. Lebedev, O.B. Lebedev, A.A. Zhiglatiy, Placement of VLSI elements based on swarm

intelligence models, Problems of the development of promising micro- and nanoelectronic

systems, IPPM RAS, Moscow, (2020) pp. 118-126.
[7] S. Gavrilov, D. Zheleznikov, R. Chochaev, Simulated Annealing Based Placement Optimization

for Reconfigurable Systems-on-Chip, 2019 IEEE Conference of Russian Young Researchers in

Electrical and Electronic Engineering, Moscow, (2019) pp. 1597-1600.
[8] V.V. Kureichik, E.V. Kuliev, Integrated algorithm for elements placement on the printed circuit

board, IOP Conference materials science and engineering, Institute of Physics and IOP

Publishing Limited, (2020) pp. 121-146.

[9] V.V. Kureichik, S.I. Rodzin, State, problems and prospects for the development of bioheuristics,
Software systems and computational methods, (2016) pp. 158-172.

[10] B.K. Lebedev, O.B. Lebedev, E.M. Lebedeva, A.A. Zhiglaty Hybrid Optimization Method Based

on the Integration of Evolution Models and Swarm Intelligence in Affine Search Spaces,
Artificial Intelligence Methods in Intelligent Algorithms, Springer, Czech Republic, (2019) pp.

32-39.

https://link.springer.com/chapter/10.1007/978-3-030-19810-7_4
https://link.springer.com/chapter/10.1007/978-3-030-19810-7_4

	1. Introduction
	2. Development of a co-evolutionary placement algorithm based on models of adaptive behavior of an ant colony
	3. Co-evolutionary placement algorithm
	4. Experimental research
	5. Conclusion
	6. Acknowledgements
	7. References

