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Abstract  
This article discusses the basis of the mathematical apparatus of the recently proposed 

mathematical model of spots [1], which represent vague regions. The main feature of our 

approach is that both the shape of the spot and its surrounding space can be initially unknown. 

They can be only identified using qualitative information about the spot’s elementary relations 

with other spots. We regard that crisp figures are a special limiting case of spots that provides 

a way for the creation of a theory of “qualitative geometry”.  

The suggested model is considered as a mathematical object that is adequate for the 

representation of qualitative data or the semantic aspect in data of any nature. Although the 

concept under consideration is substantially new, it shares common ideas with other theories, 

related to the vagueness aspect, including Region Connection Calculus, Fuzzy Sets, Rough 

Sets, Soft Sets, and Granular Computing.  

The present work introduces L4 numbers, which are 2x2 logical tables, for the description of 

elementary relations between spots. Based on them we also define L4 vectors, L4 matrices, 

and corresponding mathematical operations that can be a base for apparatus of Granular 

Computing. At least, developed mathematical model is a movement towards creation of 

Artificial General Intelligence and can be used for knowledge representation and processing, 

for modeling qualitative reasoning, learning, and natural language processing.  

The introduced apparatus was verified by solving problems of the image reconstruction of 

unknown plane crisp figures, utilizing only qualitative data of its elementary relations with 

many other known figures.  
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1. Introduction 

In this paper, the basis of the mathematical apparatus of the recently proposed new mathematical 

model of spots for the presentation and processing of qualitative information is considered [1]. In 
particular, this theory offers a universal basis for representing the semantic information of human 

knowledge and thought in the form of “semantic space”. The spot is a model of a vague spatial object, 

which allows us to represent and process qualitative (non-numerical) data starting from an extremely 

low, elementary, information level. On the other hand, the considered mathematical theory can 
represent the vagueness of the categories and mental images that allows us to model human reasoning 

in Artificial Intelligence (AI).  

The notion of a mental representation is a basic concept of the Computational Theory of Mind and 
can be in general interpreted as a mental object with semantic properties [2]. The concepts are regarded 

as the building blocks of thoughts that are crucial to such psychological processes as categorization, 
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inference, memory, learning, and decision-making. One of the basic models for representations of 
concepts or ideas is mental images.  

Kosslyn [3] regards mental representations as mental imagery that themselves have spatial properties 

– i.e., pictorial representations, or images, which are not literally pictures in the head but represent in a 

way that is relevantly like the way pictures represent [4]. Mental imagery has often been believed to 
play a big, even pivotal, role in both memory and motivation. According to a long-dominant 

philosophical tradition, it plays a crucial role in all thought processes and provides the semantic 

grounding for language [5]. Authors of [6, 7] investigated a similar concept - secondary images, which 
are mental images that formed in previous experience and embodied in concepts extracted from 

memory, or representations, accumulating various semantics in themselves.  

Intuitively, the spots model is based on the qualitative and vague properties of the mind or semantic 
images, which models concepts or ideas and are objects of research in the Representational Theory of 

Mind and Cognitive Neuropsychology [2−7]. In this paper, we will apply the term semantic images 

which are not direct perception images (visual, sounds, or smells), but represent the meaning, and 

consider the following concept of them. More generally, we regard semantic images as objects for 
representation the semantic information [8, 9] and as building elements for the semantic space. 

The creation of any semantic image is associated with the understanding of some object or 

phenomenon, while:  

 each concept corresponds to a semantic image,  

 each word corresponds to a semantic image (or several, for polysemous words, such as a spring, 
etc.),  

 each phrase corresponds to a semantic image or several images,  

 the text of a book or article forms a system of semantic images.  

We consider that semantic images have elementary spatial properties, corresponding to some vague 

regions located in a vague environment. The spatial properties of concepts are intuitively reflected in 
natural language. For example, we are talking about the facets and different sides of a subject matter, 

about points of view, about the area of knowledge, about the proximity or remoteness of concepts, about 

the connection of concepts, or about the fact that two concepts in question are not connected or from 

different areas, etc. The obvious geometric analogy to relations of concepts of general and specific is 
the relation between the geometrical figure and its part: a more general concept includes specific 

concepts. This corresponds to the taxonomy in biology. For example, the class of ray-finned fish is part 

of the animal kingdom but is divided into orders, families, genera, and species of fish. Similarly, the 
taxonomy of concepts is introduced in AI [10, p. 440].  

It should be also noted that even complex concepts of the semantic content of colloquial speech or 

text can have a simple geometric interpretation. For example, the dependence of the meaning of the 
narrative on the context is similar to a model where identical geometric figures have different positions 

in space. Then the meaning of a statement is represented not only by the “shape of the figure”, but also 

by its environment in the semantic space (that is, in context). 

 The proposed theory turned out to be ideologically close to the research directions of mereotopology 
and qualitative special representation, the idea of which was laid down by Whitehead in 1929 [11–18]. 

On the other hand, basic ideas of the spots model are also close to the rough set theory [28-33], the 

formal concept analysis [32], and the fuzzy set theory [34], including fuzzy geometry [35, 36], and also 
to the soft set model [37, 38]. Moreover, the suggested concept is in good agreement with the ideology 

of Granular Computing [39-48].  

The mereotopology has been developed particularly within the research community of the 

Qualitative Spatial Reasoning (QSR), which is an approach that excludes the processing of quantitative 
data. One of the important fields of mereotopology is Region Connection Calculus (RCC) [15, 16], 

which defines eight qualitative spatial relations between regions (RCC-8), including disconnection, 

overlapping, part of, external connection, and some others. Although RCC-8 relations represent 
qualitative information, traditionally, regions are crisp continuous-space models. However, some 

papers consider vague regions and discrete quantitative data [17, 18]. 

Bennett [19], and then Jonsson and Drakengren [20] considered a shortened version of these 
relations - RCC-5, which does not include a connection (touch) of the boundaries of regions. The 



peculiarity of their approach is the consideration of calculus for spatial regions with indeterminate 
boundaries when it is impossible to distinguish interior points from boundary points there.  

Although most authors considered spatial relations as binary elements, Egenhofer et al. [21, 22] 

encoded them in form of logical tables. Namely, they introduced the concepts of 4-intersection [21] and 

9-intersection [22] matrixes, which are logical matrices that encode topological spatial relations 
between spatial regions. Notice that these matrixes are similar but differ from the L4 numbers I have 

proposed in that they also include relations with the boundaries of the regions (see below Par. 2.2). 

Clementini et al. [23] generalized 9-intersection matrixes, replacing intersections for the crisp boundary 
with the intersections for broad boundaries. Stell [24] also considered the way of representation for 

spatial relations using 3x1 logical vectors created on the base of notions part and compliment only. At 

least, Butenkov [24] considered a 2x2 logical table for the Cartesian granules that is equivalent to my 
definition of L4 number for spots and applied them in algorithms for intelligent data analysis. 

There are many publications dedicated to the creation of vague mathematical objects, including 

vague regions [17, 25-48]. In particular, the vague regions are regarded as models for certain 

indeterminacy of spatial data in the field of spatial reasoning and are applied in several domains such 
as computer vision, robot navigation, image information systems, and GIS [25]. 

Rough sets of Z. Pawlak [28-33] are based on the concept of indiscernibility that provides the 

creation of granules from subsets. Then a rough set is defined as an image of a subset that is plotted on 
these granules. For the rough set, Pawlak introduced the regions of lower approximation, the upper 

approximation, and the boundary. From the point of view of the spot model, the rough set is an image 

of some subset on the granules basis.  
The egg-yolk model [15, 27] in the RCC domain is a vague region model, which consists of an inner 

part, an outer part, and an indeterminate boundary. “The egg is the maximal extent of a vague region 

and the yolk is its minimal extent, while the white is the area of indeterminacy” [15]. That is, the egg-

yolk model of the vague region has a similar structure to the rough set. 
A similar model of the vague region was considered in the paper of Clementini et al. [23] as a region 

with a broad boundary, which is defined as a region as well. Authors defined an “inner boundary and 

an outer boundary, where the inner boundary is surrounded by the outer boundary”. 
The soft set model [37, 38] is, in essence, a collection of mappings of the set under consideration 

onto subsets of another set, which are considered approximations of the mapped set. This is analogous 

to the representation of spot in the form of its representation onto a set of base spots.  

Lotfi Zadeh in [39, 40] firstly carried out a general formulation and consideration of granules, 
including the problem of information granulation, which was later called the concept of granular 

computing. His definition of granules: “the information may be said to be granular in the sense that the 

data points within a granule have to be dealt with as a whole rather than individually” corresponds to 
the equivalence classes of the universe. Zadeh regards both crisp and fuzzy granules and “considers 

granular computing as a basis for computing with words, i.e., computation with the information 

described in natural language” [41].  
Elements of a granule are indiscernible and “depends on available knowledge” [46] that is similar 

to the spots concept. The importance of the application of granulation and granular computing relates 

to the fact that such approximation leads to simplification in solving practical problems. Note that the 

concept of the spots fits very well into all details of the granules concept which will become clear in 
below Par. 2.  

The graph model is convenient for the representation of the structure of the relations between 

elements of the system under study [49] and nowadays is widely used in AI. For example, graph theory 
is actively used to define semantic properties of network objects, modeling semantic networks, which 

are used in the knowledge base (KB); such KB is called Knowledge graphs [50-52]. Note that, unlike 

spots, the graph is not a specific spatial object and is only an abstraction for the representation of the 
relations of the structure between the entities.  

Despite the ideological closeness with other considered theories, the proposed theory has a 

significantly different base. The main difference is that the spots model is not defined on the base of 

the sets or fuzzy sets and developed for the representation of qualitative information, starting from the 
elementary level of information. Whereas the graphs are discrete mathematical objects, the spots 

combine both the properties of discreteness and continuity. Nevertheless, the existence of mentioned 

close mathematical models permits us to compare, study, and apply some approaches and ideas. 



2. Definitions and Apparatus of Spots 
2.1. Basic Philosophy of Spots 

We want to define spots as mathematical objects that have elementary spatial properties. Therefore, 

spots can be defined as mathematical objects for which the following attributes exist: 

1. interior and environment that do not intersect;  

2. for any two spots connection between their internal parts and environments is defined.  
Such a definition permits to regard as spots the following mathematical models:  

 crisp and fuzzy subsets;  

 geometric figures and regions;  

 rough sets;  

 granules;  

 soft sets.  

However, as far as the main aim of the spots theory is to model vague space objects, we introduced 

peculiar principles for constructing the spots that permit the expansion of the list of existing 
mathematical models. Among the basic principles of building a spot model are the following. 

  The spot is considered as a mathematical object with elementary spatial properties 1.-2 but it 

does not contain elements like the set. The inner spatial structure of a spot and its environment is 

determined using their relations with other spots; it is analogous to a projection image. From this 
point of view, for example, the sets can be regarded as spots represented on the basis of spots-

elements. Thus, the set itself and its elements are considered equal mathematical objects (spots).  

 The “shape” of the spot is determined by the imaging of this spot on the spots of some basis. 

This allows you to represent incomplete information about the shape and structure of objects. 

 There is a possibility of increasing the crispness of the spot’s image, using additional data on 

its relations with other spots.  
In contradiction with traditional geometry, the spot can not possess prior full information about its 

shape and environment, which is a spot as well. For example, the space dimensions or curvature of the 

environment can not be initially defined. Instead, the proposed theory allows us to obtain only 
qualitative information about the spot and its environment in the form of their elementary spatial 

relations with some other known spots. Note, that a large amount of such qualitative data allows 

extracting even numerical information. Therefore, we will consider crisp geometric objects or regions 
as a special, limiting case of spots. To complete the model, we introduce zero spots that occupy zero 

regions of space. Notice that a zero environment corresponds to the case when the spot occupies a whole 

space.  

Let us introduce the basis of spots as a set of known spots that can be in some mutual relations. The 
representation of a spot by their elementary relations with the basis spots we call the mapping or image 

of the spot on this basis. Note that the system of basis spots is similar to the system of basis functions 

and the orthogonality of basis functions is analogous to the separated basis spots. Therefore, we call 
separated spots orthogonal spots.  

From a certain point of view, the spot can be compared with some “volumetric object”, which is 

defined by its different images or projections on different bases. Hence, the synthesis of the spot images 

on various bases into the “volumetric” image provides to improve knowledge of its shape. 
Indiscernibility is one of the fundamental concepts for the spots model that is similar to that of the 

rough set theory. Two spots are considered indiscernible on some basis of spots if their elementary 

relations coincide with each spot of the basis and with its environment. In other words, two spots are 
indiscernible on a basis if their images on this basis are the same. Note that indiscernibility, in contrast 

to equality, is a relative concept and can be a consequence of insufficient information about the spot. 

For example, the optics analogy is the indiscernibility of small objects in an unfocused image. Note that 
concerning a certain basis, the spot can be indiscernible with an infinite number of crisp figures. 

The following simple conclusions can be drawn from the concept of the indiscernibility of spots. 

1) Indiscernible spots on one basis may be discernible on another basis. 

2) If two spots on some basis are indiscernible, and we introduce additional spots to this basis, these 
two spots can become discernible on a new basis. 



3) If two spots are discernible on some basis, then after removing some spots from the basis, they 
can become indiscernible on a new basis. 

These properties of spots are also in agreement with common sense when the indiscernibility of two 

objects is usually associated with a lack of information about them, but when additional information is 

obtained, they can become discernible.  
The relative property of indiscernibility permits us to extend this understanding to the relativity of 

the concept of the correct conclusion which depends on available information. Based on our knowledge, 

we make some inferences, which can be true or false depending on used inference rules. But if to 
consider some additional data, even true conclusions can become false. This understanding is fully 

consistent with the ideology of non-monotone reasoning in AI [10] and is in full agreement with the 

process of human cognition and analysis, in particular, the work of archaeologists, paleontologists, 
historians, detectives, and analysts. 

The principle that information of a spot is determined using their relations with other spots is 

analogous to the case that the semantic meaning of a word or concept can be determined using the 

meanings of other concepts, as is done in an explanatory dictionary. In more detail, the semantic 
meaning is determined by both the details of the concept and its context, which representation with 

spots is depicted in Figure 1. All this suggests the possibility of using the proposed theory for modeling 

semantic images and semantic information in Artificial General Intelligence. 

 

2.2. Definition of L4 numbers, L4 vectors, and L4 matrixes 

The mathematical model of spots is based on the concept of logical connection between spots that 

is like that in the mereotopology. However, as far as the model of spots is not based on the set theory, 

we define connection as the fact of the presence of a common part between spots. The connection of 

two spots 𝑎 and 𝑏, which we denoted as 𝑎𝑏 can be equal to logical 1 or logical 0, depending on the 
connection fact.  

Elementary relations of two spots can be defined, based on the notation of connection between spots 

𝑎, 𝑏 and their environments that we denoted by �̃�, �̃�. Axiomatically, we regard that spots do not connect 

their environments, that is 

𝑎�̃� = 0, 𝑏�̃� = 0 , (1) 

Let us define the elementary relations between spots 𝑎 and  𝑏, which is denoted by a symbol ⟨𝑎|𝑏⟩, 

using a 2x2 logical table composed of the following logical connections between spots and their 

environments: 

 ⟨𝑎|𝑏⟩ = [𝑎𝑏 𝑎�̃�
�̃�𝑏 �̃��̃�

] (2) 

Such logical tables, which we call L4 numbers, make it possible to distinguish 16 different 
elementary relations between spots. The important point is that we regard L4 numbers as universal 

logical numbers for the representation of qualitative information [14], including semantic information 

[8, 9]. Examples of elementary relations described with L4 numbers are shown in Table 1. We call these 

 
Figure 1: Euler-Venn diagrams [53] for the representation of the semantic meaning using spots 
model.  



spatial relations as elementary relations because they carry low-level quality information about spots. 
However, a large amount of such data allows you to display quality information of a higher level, and 

even numerical. 

 

Table 1 
Some elementary relations of spots 

Elementary Relations ⟨𝑎|𝑏⟩ 

Intersection, 𝑎 >< 𝑏 [
1 1
1 1

] 

Separation, 𝑎 <> 𝑏 [
0 1
1 1

] 

Inclusion (more), 𝑎 > 𝑏 [
1 1
0 1

] 

Inclusion (less), 𝑎 < 𝑏 [
1 0
1 1

] 

Indiscernibility, 𝑎 = 𝑏 [
1 0
0 1

] 

 

Notice that relations of spots presented in Table 1 are equivalent to RCC-5 relations [19, 20]. 
However introduced L4 numbers permits the representation of up to 16 elementary relations between 

spots, including relations for zero spots and zero environments.  

As it was noticed above, indiscernibility is a relative concept and has the following definition. Two 

spots 𝑎 and 𝑏 are indiscernible on certain spots basis 𝑋 = {𝑥𝑖} that we denote by (𝑎 = 𝑏)𝑋 if 

(𝑎 = 𝑏)𝑋 ≝ ∀𝑥𝑖 ∈ 𝑋 (⟨𝑎|𝑥𝑖⟩ = ⟨𝑏|𝑥𝑖⟩) (3) 

The proposed theory uses analogies with matrix analysis. For example, elementary relations of spots, 

analogous to the dot product of numerical vectors where L4 numbers are used instead of reals. 
Following this idea, we define the L4 vector representation for the spot (4), elements of which are L4 

numbers of the spot relations with the basis spots. Note that such elements of the L4 vector correspond 

to “coordinates” of the spot on the basis and the L4 vector describes a mapping of the spot on this basis. 

For example, the image of a spot 𝑎 on the basis {𝑥𝑖} can be represented in the form of a vector 𝒂 with 

L4 coordinates: 

𝒂 ≡ [𝛼1; 𝛼2; … 𝛼𝑛] (4) 

where L4 numbers 𝛼𝑖 = ⟨𝑎|𝑥𝑖⟩ and symbol “; " denotes the column vector 𝒂 representation. 

 
A system of spots with elementary relations can be represented as a graph where the vertices 

correspond to the spots and the edges labeled by L4 numbers. Note that this is similar to the weighted 

graphs with real weights denoting the degree of relatedness between vertices [51]. Another 
representation of the relations between the spots can be done by the Euler-Venn diagram [53]. Figure 3 

illustrates the semantic of the definition of the relations, where logic numbers in the matrix (2) 

correspond to a binary measure of the intersection parts 𝐴, 𝐵, 𝐶, and 𝐷 of the spots 𝑎, 𝑏, and their 
environments. Hence, we can present (2) in the following form:  

 ⟨𝑎|𝑏⟩ = [
𝐶 𝐴
𝐵 𝐷

] (5) 

 
Figure 2: Euler-Venn diagram for the elementary relations between spots. 



 
Consider the simplest case when the basis spots cannot intersect each other and other spots. Such 

properties permit us to call atomic these spots and basis. Therefore, the atomic spots can be in the mutual 

relations of separation and indiscernibility and with other spots, in the relations of inclusion (less), 
separation, and indiscernibility. Note that specified properties make the atomic spots to be like points, 

pixels (for 2D figures), voxels (for 3D bodies), or elements of sets. Although the atomic basis is an 

idealized, limited case of the spot’s basis, we can consider the intersection parts of spots, which are 
orthogonal, as some approximation for the atomic basis.  

Application of the atomic basis allows us to introduce the numerical characteristics of spots, which 

simply can be done by counting the number of atomic spots inside spots A, B, C (Figure 3). It should 

be emphasized that this approach is a generalization of the concept of measure of sets, which 
demonstrates the ability to extract quantitative information by processing qualitative data. This allows 

us to introduce the concepts of quasi-measurement and quasi-probability. Also, we can define a quasi-

membership function, which is analogous to that of the fuzzy set or rough set theories. It can be 
formulated the general idea that in the case of an atomic basis the apparatus of the spots model must 

coincide with those of sets, fuzzy sets, rough sets, and the mereotopology.  
Let us define operations union ∨ and the intersection ∧ for the spots, which helps to create new spots. 

We suggest the following definitions, which are similar but different from those of the set theory:  

 
𝑐 = 𝑎 ∨ 𝑏 ↔  ∀𝑥 (𝑐𝑥 = 𝑎𝑥 + 𝑏𝑥)

𝑐 = 𝑎 ∧ 𝑏 ↔  ∀𝑥 (�̃�𝑥 = �̃�𝑥 + �̃�𝑥)
 

(6) 

where symbol + denotes the logical disjunction operation. Note that, in contrast to the sets, (6) does not 

define the image of spots 𝑐 directly, because it depends on spots basis {𝑥𝑖}. Following the equality 𝑐�̃� =
0, see (1), it is possible to derive the following equation from (6):  

𝑐 = ⋁ 𝑥 , 𝑥 ∶ (�̃�𝑥 + �̃�𝑥 = 0) (7) 

The definitions (6) permit to derive simple properties for zero spots ∅:  

 𝑎 ∨ ∅ = 𝑎, 𝑎 ∧ ∅ = ∅ (8) 

and to determine intersection parts 𝐴, 𝐵, 𝐶, and 𝐷 in Figure 3(a), using the intersection operation also: 

𝐴 = 𝑎 ∧ �̃�,  𝐵 = �̃� ∧ 𝑏, 𝐶 = 𝑎 ∧ 𝑏, 𝐷 = �̃� ∧ �̃� (9) 

It is possible to generalize the concept of elementary relations (2), (5) if to represent the spots 𝐴, 𝐵, 

𝐶, and 𝐷 in the vector forms (4) on some basis. Figure 3 provides a vivid illustration of these extended 

relations if to regard the atomic basis spots, on which the spots intersection is mapped. We call these 

new relations structural because they provide information about the inner structure of the spots 𝐴, 𝐵, 𝐶, 

and 𝐷.  
Let us introduce an L4 matrix by analogy with a numerical matrix where numerical elements are 

replaced with L4 numbers. L4 matrix can be used to transform the L4 vector (or spot image) from one 

basis to another basis. For this purpose, the rows of the L4 matrix must correspond to the vector 
representation of the spots of the “new” basis mapped on the “current” basis. If the new and current 

bases are the same, the L4 matrix represents the mutual elementary relations between all spots of the 

basis. L4 matrix of mutual relations between basis spots is like the graph’s weighted adjacency matrix 

with the real connection weights between vertices [51].  

 
Figure 3: Euler-Venn diagrams for the structural relations of spots, mapped at some basis of 
spots, which conditionally illustrated by grid of circles.  



The L4 matrix allows us to simulate such transformations of the spot “shape” that are similar to the 
movement, rotation, and deformation or to transfer the spot image to another “space” also. It also 

permits solving other problems of the theory, including spot “shape” reconstruction, based on his 

images, and inverse problems of the matrix equation for spots. 

Note that the L4 matrix can play a role like that of the data transformation between layers in a neural 
network. For example, each layer of the deep feedforward learning networks includes both the linear 

unite (or matrix) and the nonlinear unite (activation function) [54]. The application of the L4 matrix 

permits the elimination of the activation function in the architecture, due to the inherent non-linear 
transformation property of such a matrix. It should also be emphasized that the developing mathematical 

apparatus for the L4 matrixes and L4 vectors helps to model human reasoning in AI. 

2.3. Operations with L4 objects 

Let us introduce two types of vector products for L4 vectors (4) of spots 𝑎 and 𝑏, at first not strict. 

a) The scalar product, resulting in an L4 number 𝑐, which corresponds to the relation between the spots 

relatively to basis 𝑋 = {𝑥𝑖} which is also used for the representation of vectors 𝒂 and 𝒃: 

𝑐 = 𝒂 ⋅ 𝒃 = ⟨𝑎|𝑏⟩𝑋, (10) 

b) The elementwise (Hadamard) product of L4 vectors, resulting in an L4 vector 𝒄: 

𝒄 = 𝒂 ⊙ 𝒃 = [𝛼1 ∙ 𝛽1;  𝛼2 ∙ 𝛽2; … ; 𝛼𝑛 ∙ 𝛽𝑛] = [⟨𝑎|𝑏⟩𝑥1; ⟨𝑎|𝑏⟩𝑥2; … ; ⟨𝑎|𝑏⟩𝑥𝑛] (11) 

Here 𝛼𝑖 = ⟨𝑎|𝑥𝑖⟩, 𝛽𝑖 = ⟨𝑏|𝑥𝑖⟩, ⊙ is a symbol of Hadamard product, symbol " ∙ " in (10) and (11) 
denotes the dot product operation for L4 vectors and L4 numbers and it must be defined. Following the 

previous comment, we call the elementwise product of (11) as the structural product of L4 vectors, 

since it can be used to determine L4 vectors for parts A, B, C, and D (Figure 3), which defines the 

structure relation between of the spots 𝑎 and  𝑏.  

Based on the rules (10) and (11) for L4 vectors, we can also define two types of multiplications of 

the L4 matrix and the L4 vector. The first type of product is similar to that for numerical matrices and 

vectors, resulting in the L4 vector: 

𝒚 = 𝐀 ∙ 𝒙 (12) 

The second type of multiplication, resulting in a new L4 matrix 𝐌, we call the structural product, which 

is based on the rule (11): 

𝐌 = 𝐀 ⊙ 𝒙 (13) 

Notice that the definition of product operations for L4 vectors is not a trivial task in the general case. 

Hence, firstly, we define it for the case an atomic basis 𝐴 = {𝑢𝑖} when the scalar product (10) must be 

equal to  the following elementary relation ⟨𝑎|𝑏⟩𝐴 relatively to basis 𝐴: 

𝒂 ⋅ 𝒃 = ⟨𝑎|𝑏⟩𝐴 = ∑ 𝛼𝑖 ∙ 𝛽𝑖

𝑛

𝑖=1

= ∑⟨𝑎|𝑏⟩𝑢𝑖

𝑛

𝑖=1

 
(14) 

where  ⟨𝑎|𝑏⟩𝑢𝑖
 is the elementary relation relative to the spot 𝑢𝑖.  

The next step is to define the relations ⟨𝑎|𝑏⟩𝐴 and ⟨𝑎|𝑏⟩𝑢𝑖
 in agreement with (2) and (5), using the 

following equations: 

 ⟨𝑎|𝑏⟩𝐴 ≡ [
(𝑎 ∧ 𝑏) ⋁ 𝑢𝑖

𝑛
𝑖=1 (𝑎 ∧ �̃�) ⋁ 𝑢𝑖

𝑛
𝑖=1

(�̃� ∧ 𝑏) ⋁ 𝑢𝑖
𝑛
𝑖=1 (�̃� ∧ �̃�) ⋁ 𝑢𝑖

𝑛
𝑖=1

] = ∑ ⟨𝑎|𝑏⟩𝑢𝑖

𝑛
𝑖=1  

(15) 

where 

 ⟨𝑎|𝑏⟩𝑢𝑖
≡ [

(𝑎 ∧ 𝑏)𝑢𝑖 (𝑎 ∧ �̃�)𝑢𝑖

(�̃� ∧ 𝑏)𝑢𝑖 (�̃� ∧ �̃�)𝑢𝑖

] 
(16) 

If to introduce L4 numbers 𝛼𝑖 and 𝛽𝑖 for the atomic basis 𝐴, 



 

𝛼𝑖 = ⟨𝑎|𝑢𝑖⟩ = [
𝑎𝑢𝑖 𝑎�̃�𝑖

�̃�𝑢𝑖 �̃��̃�𝑖
]

𝛽𝑖 = ⟨𝑏|𝑢𝑖⟩ = [
𝑏𝑢𝑖 𝑏�̃�𝑖

�̃�𝑢𝑖 �̃��̃�𝑖
]
 

(17) 

then, it is followed from (15) and (16) that  

 ⟨𝑎|𝑏⟩𝐴 = [
∑ 𝑎𝑢𝑖 ∙ 𝑏𝑢𝑖

𝑛
𝑖=1 ∑ 𝑎𝑢𝑖 ∙ �̃�𝑢𝑖

𝑛
𝑖=1

∑ �̃�𝑢𝑖 ∙ 𝑏𝑢𝑖
𝑛
𝑖=1 ∑ �̃�𝑢𝑖 ∙ �̃�𝑢𝑖

𝑛
𝑖=1

] = ∑ 𝛼𝑖 ∙ 𝛽𝑖
𝑛
𝑖=1  

(18) 

Hence, we defined the following rule for product operator for L4 numbers 𝛼𝑖, 𝛽𝑖: 

 𝛼𝑖 ∙ 𝛽𝑖 ≡ ⟨𝑎|𝑏⟩𝑢𝑖
= [

𝑎𝑢𝑖 ∙ 𝑏𝑢𝑖 𝑎𝑢𝑖 ∙ �̃�𝑢𝑖

�̃�𝑢𝑖 ∙ 𝑏𝑢𝑖 �̃�𝑢𝑖 ∙ �̃�𝑢𝑖

] 
(19) 

where the symbol ” ∙ “ denotes the logical conjunction. 

Now let us regard an orthogonal basis 𝑌 = {𝑢𝑖} and we define the product 𝒂 ⋅ 𝒃 of L4 vectors on it, 
using the same equations (18) and (19). In contrast with atomic basis, the spots of an orthogonal basis 

can intersect a testing spot, which makes (15), (16) not equivalent to (18), (19). Nevertheless, we can 

assume that the spot image represented on this basis has a vague boundary, which is outlined by the 

“sizes” of the spots 𝑢𝑖. Notice that such vagueness can be made smaller if to consume the relations data 
with additional basis spots.  

Finally, let us regard the general case when the spots of the basis 𝑋 = {𝑥𝑖} can intersect each other 

and test spots. Obviously, the direct application of the rules (18), (19) does not provide correct results. 

However, there is a simple method to create an auxiliary orthogonal basis 𝑌 = {𝑢𝑖} which contains all 

the intersection parts of the basis spots. Application of such a basis 𝑌 instead of 𝑋 improves the imaging 

“resolution” because each spot 𝑢𝑘 is a part of some “parent” spot 𝑥𝑖. Hence, by increasing the number 

𝑛 of the spots belonging to basis 𝑋 we increase the number of their intersection parts that makes imaging 
resolution finer.  Note that such a method helps to solve the problem of the processing and fusion of 

qualitative data in the general case. 

Let us apply a convenient numbering method of the spot’s parts 𝑢𝑘 utilizing a binary code that 

describes the structure of the intersections. Namely, generalizing (9), each 𝑢𝑘 can be defined by a 

formula that includes spots 𝑥𝑖 or �̃�𝑗 connected with the intersection operators ∧. For example, the code 

101 … 0 corresponds to binary number 𝑘 = 101 … 02 that corresponds to the following spot 𝑢𝑘 of the 

orthogonal basis: 

 𝑢𝑘 ≡ 𝑢101…0 = 𝑥1 ∧ �̃�2 ∧ 𝑥3 … ∧ �̃�𝑛 (20) 

That is, the code number “1” corresponds to elements 𝑥𝑖 and the code number “0” correspond to 

elements �̃�𝑖 in (20). Note that if 𝑥1�̃�2 … �̃�𝑛 = 0 then 𝑢101…0 = ∅ and the maximal amount of the 

intersection parts 𝑢𝑘 is 2𝑛-1. Hence, the total amount of such parts is 𝑁 ≤ 2𝑛 − 1 if to ignore zero 
spots.  

We can define the relation ⟨𝑎|𝑢𝑘⟩ basing on (6) and (20), that permits to combine connections of 

spots 𝑎, �̃� with 𝑥𝑖 , �̃�𝑖. Then inserting ⟨𝑎|𝑢𝑘⟩ to (18) and (19), we obtain the operation rules for the basis 

𝑋 = {𝑥𝑖} in the general case. Although this method of the definition relation ⟨𝑎|𝑢𝑘⟩ is strictly equivalent 

only for the atomic basis, such an approach does not contradict our philosophy with non-monotonic 

logic: conclusions about ⟨𝑎|𝑢𝑘⟩ can be wrong if we have insufficient data. However, the inaccurate 

inference can be corrected by increasing the number 𝑛 of elements in 𝑋 that provides to decrease “sizes” 

of spots from the orthogonal basis 𝑌 of the intersection parts. 

 

3. Results of Reconstruction of Crisp Figures 

Despite the aim of the proposed theory to represent vague figures - spots, it is convenient to 
demonstrate the validity of its apparatus on the base of crisp figures, which are the limiting case of 

spots, as it was mentioned above. In this case, we can consider the figure under test as a conditionally 



unknown spot, and the figures, which are used for investigation or “sampling” the spot under test as 
conditionally known spots (or basis spots).  

Let us consider the two-dimension (2D) problem of the shape reconstruction of a crisp plane figure 

(unknown spot), utilizing the only qualitative information of its elementary relations with a set of known 

2D figures. That is, the result of each sampling can be only the answer to the question: what is an 
elementary relation between the basis spot and the spot under test? Note that initially, we cannot get to 

know details about structural relations between them. However, the sequential increasing number of the 

basis spots and accumulating qualitative data allows us to refine the shape and boundaries of the figure 
under test continuously. It may seem surprising, but in the limit of an infinitely large amount of such 

qualitative data, we can undoubtedly reconstruct the object with absolute accuracy. 

To verify and illustrate the suggested theory, we wrote MATLAB programs that help to process 
elementary relations between the unknown and sampling figures (or spots) based on algorithms for 
⟨𝑎|𝑢𝑘⟩. We utilize the spots basis with quite tight distribution in the plane that makes the orthogonal 

spots 𝑢𝑘 to be relatively small. Thus, according to the results of the previous section, this property helps 

to reconstruct an image of the unknown figure with a better spatial resolution even when the known 
figures are relatively large. 

The imaging is produced on the base of a grid of small squares (or pixels) that play the role of the 

orthogonal or atomic basis. Images in these figures were mapped on the pixels with a size of 0.25 units. 

After calculations ⟨𝑎|𝑢𝑘⟩, the program’s algorithm separates all the intersection parts 𝑢𝑘 into three 

subsets, which correspond to certain elementary relations with the unknown figure: inclusion, 

intersection, or separation. Uniting the spots in each subset, we obtain the following regions: the inner 

region of the figure under test, its boundary, and environment (see Figures 4–6).  
Figure 4 demonstrates the results of image reconstruction for the circle where the sampling figures 

are a set of squares with sizes 4 × 4 (see Figure 4(b)). These squares were periodically distributed with 

period 0.25 and form the grid of the intersection parts 0.25 × 0.25 (see Figure 4(a)), which corresponds 

to the orthogonal basis of the intersection parts 𝑢𝑘. The different regions are marked with three colors: 

the inner region corresponds to magenta, the boundary corresponds to brown, and the environment 

corresponds to green-like colors.  

We applied the following additional rules for orthogonal spots 𝑢𝑘 belonging to the boundary, which 

allows us to correct the relations ⟨𝑎|𝑢𝑘⟩ decreasing width of the boundary region and the shape 

vagueness of the spot 𝑎: 

 
∀𝑥𝑖 ∈ 𝑋: {𝑥𝑖 <> 𝑎, 𝑢𝑘𝑥𝑖 = 0} ⇒ 𝑎 > 𝑢𝑘

∀𝑥𝑖 ∈ 𝑋: {𝑥𝑖 < 𝑎, 𝑢𝑘𝑥𝑖 = 0} ⇒ 𝑎 <> 𝑢𝑘
 

(21) 

where symbols <> and > denote relations the separation (SP) and inclusion (more) (IM), 

correspondingly (see Table 1). Note that the image in Figure 4(a) contains both an inner region and the 

boundary of the vague image (brown color) where images were created using calculations ⟨𝑎|𝑢𝑘⟩. 
However, Figure 4(b) demonstrates the result of additional processing ( of the qualitative data to reduce 

the image vagueness in Figure 4(a). Although rules (21) are not the results of rigorous mathematical 

inference and depend on a specific basis, they undoubtedly help to reduce the uncertainty of the 

boundary related to a lack of information, as shown in the figure in Figure 4(b). 
Figure 5 demonstrates the results of the image reconstruction for a five-pointed star when the 

sampling figures were circles with a diameter of 4 units (an example is a yellow circle in Figure 5(a)). 

These circles make up the set of periodically arranged spots in the plane and form the basis of their 

intersection parts 𝑢𝑘. The reconstructed image in Figure 5(a) corresponds to a relatively coarse 

distribution period of the circles, which is equal to 1 and demonstrates a blurred image caused by the 

insufficient relations data. In particular, we can see some mistaken boundary regions outside the star. 

The image in Figure 5(b) was obtained for the smaller distribution period 0.5 of the circles providing 
sufficient qualitative data for good image quality. Figure 5(c) demonstrates the result of additional 

processing of the qualitative data using the rules (21) that permits to reduce the image vagueness in 

Figure 5(b). 
 



 

 

 

 
(a)                                                     (b) 

Figure 4: Results of the circle reconstruction after processing data of its elementary relations with 
set of squares, periodically distributed with period 0.25. The magenta color corresponds to the 
inner region, the brown – to the boundary and green-like – to the environment. (a) Result of 
reconstruction by algorithm for ⟨𝑎|𝑢𝑘⟩. A grid of small squares corresponds to the orthogonal basis 
of the intersection parts uk. (b) Result of reconstruction by algorithm for ⟨𝑎|𝑢𝑘⟩ and (21). The 
yellow square is an example of the testing square. 

 
  

(a) (b) (c) 
Figure 5: Results of reconstruction of a five-pointed star processing data on its elementary 
relations with set of circles (example is the yellow circle in Figure 5(a)). The magenta color 
corresponds to the inner region, the brown – to the boundary and green – to the environment.  
(a) The sampling figures are distributed with period 1, algorithm for ⟨𝑎|𝑢𝑘⟩. (b) The distribution 
period is 0.5, algorithm for ⟨𝑎|𝑢𝑘⟩. (c) The distribution period is 0.5, algorithm for ⟨𝑎|𝑢𝑘⟩ and (21).  

   
(a) (b) (c) 

Figure 6: Results of reconstruction of a four-pointed star using only information about its 
elementary relations with set of a irregular figures that are randomly distributed incide of 2 × 2 
squares (example of them is yellow square in Figure 6(a)). The magenta color corresponds to the 
inner region, the brown – to the boundary and green-like – to the environment.  (a) Total number 
of sampling figures is 1000. (b) Total number of sampling figures is 3000, algorithm for ⟨𝑎|𝑢𝑘⟩. 
(c) Total number of sampling figures is 3000, but algorithm for ⟨𝑎|𝑢𝑘⟩ and (21).  



Results of image reconstruction for a four-pointed star are demonstrated in Figure 6 where the 
sampling figures are irregular random figures, randomly distributed in the plane. These random figures 

were created as unions of 0.25 × 0.25 squares randomly distributed inside 2 × 2 square boundaries 

(see Figure 6(a)). Figure 6(a) corresponds to the case of a total of 1000 sampling tests and demonstrates 

a poor image quality that is caused by an insufficient number of tests. Figure 6(b) confirms this 
conclusion, demonstrating a better image quality corresponding to 3000 sampling tests. Figure 6(c) 

shows a result of additional image processing, exploiting rules (21).  

 

We also investigated the dependence of the misfit error for the reconstructed image as a function of 

the number of sampling tests, using the MATLAB program that used both algorithms for ⟨𝑎|𝑢𝑘⟩ and 

(21) rules. Figure 7 demonstrates an example of such a dependence, where the misfit error was 

calculated by the following equation: 

𝑒𝑟𝑟 =
|𝑁𝑖𝑚𝑎𝑔𝑒 − 𝑁𝑠𝑡𝑎𝑟|

𝑁𝑠𝑡𝑎𝑟
 

(22) 

Here 𝑁𝑠𝑡𝑎𝑟 and 𝑁𝑖𝑚𝑎𝑔𝑒 are numbers of 0.25 × 0.25 pixels that correspond to the inner region of the 

star and the inner region of the image, correspondingly. 

4. Conclusions 

This paper is devoted to the description of the concept and basis of the apparatus of new 
mathematical objects – spots, which are adequate to represent and process qualitative data, modeling 

the human mental images and semantic information. 

In general, the spot model allows representing semantic information contained in data of various 

nature. The proposed model utilizes the elementary relations between the spots as qualitative 
information about them and introduces logical L4 numbers that describe these relations. Based on the 

L4 numbers, the theory introduces L4 vectors and L4 matrices, utilizing an analogy with the numerical 

matrix algebra. Although L4 numbers correspond to the elementary level of qualitative data, processing 
a big number of them permits the extraction of higher-level information, including numerical data. 

It is important that the introduced mathematical apparatus of L4 numbers, vectors, and matrices, as 

well as the operations with them, can be a basis for the knowledge representation and modeling of 
human reasoning in Artificial General Intelligence. Undoubtedly, the developed mathematical apparatus 

is very promising for its application in many other areas of AI, including such complex tasks as data 

mining.  

The suggested mathematical apparatus of the spots theory was verified solving the problem of the 
image reconstruction of the crisp figures, processing only qualitative data about their elementary 

relations with a set of sampling crisp figures.  

 

Figure 7: Example of dependence of the misfit error (22) on the number of the sampling tests of 
the four-pointed star in Figure 6 for random distributed irregular sampling figures. 



Further development of the proposed theory can be carried out in the development of qualitative 
geometry and as an applied science for use in many areas of AI. Among the urgent problems of the 

theory, we can select the solving of matrix equations with L4 matrices and L4 vectors, the introduction 

of quasi-measure, and quasi-probabilities. Further development of the theory expects to define concepts 

that are qualitative analogies of those in the crisp geometry, including line, surface, dimensionality and 
curvature of space, etc. The most actual application of the proposed model is the creation of neural 

networks that utilize algorithms based on the spot's apparatus. 
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