
Survey of Model-Driven Engineering Techniques for
Blockchain-Based Applications
Olivier Levasseur, Mubashar Iqbal and Raimundas Matulevičius

Institute of Computer Science, University of Tartu, Narva maantee 18, 51009 Tartu, Estonia

Abstract
Blockchain technology is emerging in various domains (e.g., supply chain, banking, healthcare) to
implement business processes without requiring trusted third parties. However, writing blockchain-
based applications (BBAs) is error-prone, and development mistakes are critical since once the smart
contract is deployed, its source code can be examined but cannot be modified. Model-driven engineering
(MDE) can help overcome these challenges, supporting the secure and fast development of BBAs. In this
paper, we utilised the systematic literature review to explore the existing MDE techniques. This study
proposes a characterisation of some of the current existing MDE techniques for BBAs that might help in
selecting the right modeling technique for building these applications. Our work has revealed several
gaps in the current MDE techniques that we addressed in future work.

Keywords
Blockchain, Blockchain model-driven engineering, modeling techniques, Blockchain oracles

1. Introduction

Blockchain technology operates in a trust-less environment and the tamper-proof nature of
blockchain gives confidence that data stored on the blockchain will not be tampered by ma-
licious actors [1]. The applications running on top of a blockchain platform are known as
blockchain-based applications (BBAs) that have unique characteristics as compared to tradi-
tional applications, and building them is error-prone [1, 2]. BBAs operate in a decentralised
manner where no third party is needed to ensure that each party behaves according to the
defined rules. Also, they enable decentralised inter-organisational cooperation where stor-
ing data has a monetary cost and a specific block structure. Furthermore, the development
mistakes are critical since once the smart contract (SC) is deployed, the source code cannot
be modified [2]. However, the source code can be examined by anyone, and if there exist
vulnerabilities, an attacker will exploit them. For example, the decentralised autonomous organ-
isation (DAO) attack allowed the attacker to steal $60 million worth of cryptocurrency [2]. The
model-driven engineering (MDE) could support the secure development of BBAs [3], overcome
the above-mentioned challenges, and improve the understanding of blockchain systems.
Currently, there exist various modeling techniques to model BBAs and automatically generate

SCs code by using different modeling languages; for instance, domain-specific languages [4],

PoEM’21 Forum: 14th IFIP WG 8.1 Working Conference on the Practice of Enterprise Modelling, November 24-26, 2021
� olivier.levasseur@ut.ee (O. Levasseur); mubashar.iqbal@ut.ee (M. Iqbal); rma@ut.ee (R. Matulevičius)
� 0000-0003-0543-613X (M. Iqbal); 0000-0002-1829-4794 (R. Matulevičius)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

11

state machines [3], or business processes [5]. A few also provide intuitive user interfaces that
support the development life-cycle of the application [5]. However, the extent of modeling
and MDE for BBAs is not defined explicitly, which makes it difficult to determine the current
state of MDE for BBAs, what are the limitations and research opportunities. In this paper, we
follow the systematic literature review (SLR) [6] to identify the available modeling techniques
and summarise their characteristics and modeled elements (including off-chain elements, e.g.,
oracles) required for designing BBAs. In this paper, smart contracts and blockchain-based
applications are used interchangeably.
The paper is structured as follows: Section 2 discusses the background. Section 3 presents

the research method and explains the survey settings. Section 4 elaborates the results. Section 5
describes the future work, threats to validity and concludes the paper.

2. Background

2.1. Blockchain

The advent of bitcoin cryptocurrency (the first blockchain implementation) brings the concept of
blockchain [7]. Blockchain operates over a peer-to-peer (P2P) network, performs transactions in
decentralised manners, and connects each block to the previous block by a unique cryptographic
hash [8]. Every block contains a valid list of transactions that are hashed and ordered as a Merkle
tree [9]. Existing blockchains can be classified as permissionless (e.g., bitcoin, ethereum) or
permissioned blockchains (e.g., hyperledger fabric) [5]. In permissionless blockchains, anyone
can join the network and view the ledger. In contrast, permissioned blockchains have pre-
verified nodes and require certain permissions to view and execute transactions.
The emergence of SCs, which represent source code running on top of blockchain platforms,

allows developers to write decentralised applications in various domains (e.g., supply chain,
banking, healthcare). The characteristics of blockchain platforms enable inter-organisational
cooperation in a trust-less environment where no third party is needed to ensure that each
party behaves according to the defined rules [10]. Additionally, the immutable ledger keeps
traces of each party’s operations that support monitoring the process and auditing.

2.2. Model-driven Engineering

Model-driven engineering is a software development methodology that uses domain models to
discover solutions in a domain. MDE can be useful in translating a platform-independent model
(e.g., ArchiMate model) to a platform-specific language or model (e.g., Hyperledger composer
model) [11], abstracting the unique characteristics of blockchain platforms, to generate source
code automatically or to translate a model to another one, and making application development
secure and faster. For example, ChorChain [10] allows stakeholders to model, compile, and
deploy the SCs on the Ethereum blockchain. As a result, MDE automates the development
life-cycle and supports the faster development of BBAs.
MDE can also provide an additional level of security, especially for permissionless blockchains

since anyone on the network can interact with them, potentially exposing their vulnerabilities
[12]. In MDE, modeling techniques (e.g., Business Process Model and Notation (BPMN), Unified

12

Modeling Language (UML), Flow Charts) can help to design secure BBAs by integrating secure
design patterns in the modeling process and promoting the best development practices. For
instance, Blockchain Studio integrates access control policies into a BPMNmodel [8]. As another
example, FSolidM offers an access control extension, protection against reentrancy, and state
unpredictability which are vulnerabilities of Ethereum SCs [3].

2.3. Related Work

We argue that MDE can help with complex design decisions, including complex computations,
storing data, keeping data private, querying on/off-chain data, and error-free code generation.
Here, we discuss a few papers relevant to the MDE for BBAs.
Wohrer et al., [13] provide the architectural design decisions to overcome the challenges

in designing BBAs. The study follows the grounded theory approach to collect, extract, and
summarise the common practices in design options for blockchain-based solutions.
Falazi et al., [14] discuss modeling techniques that lack to model fine-grained decisions when

handling the uncertainty of blockchain transactions or when off-chain communicates with
on-chain. The authors use the blockchain-aware modeling and execution (BlockME) method
and present a modeling extension to model the above-mentioned interactions.
Xu et al., [15] present originChain that provides structural design of SCs and its analysis based

on adaptability, upgradability, the latency of writing and reading. Markovska [16] investigates
the blockchain-oriented processes that can be modeled with the activity-centric modeling
paradigm of BPMN. Udokwu et al., [17] provide the decentralised agent-oriented modeling
(DAOM) framework and a support tool for designing BBAs.
The related studies debate the specific modeling technique or aspect of BBAs and none of

them looked into the various constructs and modeling approaches to model BBAs.

3. Research Method

We follow the SLR method [6] to explore the existing MDE (and modeling) techniques to
summarise the constructs used to model BBAs. In other words, the techniques that model
the architecture of BBAs, their latency or resource consumption are excluded. To achieve the
research objective of this work, we formulated three research questions.

[RQ1] What are the main characteristics of existing modeling techniques?
The RQ1 focuses on general characteristics of the modeling techniques. For example, i) What
are the blockchain type and modeling language? ii) Does the model allow formal verification?
iii) Whether the model allows automatic code generation or not? iv) Is data privacy supported?
v) Is life-cycle management supported? vi) Whether the technique is open source or not?

[RQ2] What are the elements of blockchain-based applications that are modeled in
existing modeling techniques?
Some existing modeling techniques represent BBAs as a state machine and other model access
control, or SCs. The objective of RQ2 is to identify and enumerate those constructs and to spot

13

where improvements are needed.

[RQ3] What types of oracles are modeled and how are they modeled?
BBAs are needed a way to access data that is not stored on-chain. The oracles connect off-chain
communication to BBAs. The RQ3 helps us to explore the types of oracles and how they are
modeled.

To conduct SLR, a predefined review protocol was established to overcome the biases of
researchers and to develop a seamless process to perform a SLR [6]. The selection of electronic
databases and literature search is carried out after consultation with blockchain domain
specialists. The initial search for relevant literature studies was done through the ACM digital
library, the IEEE digital library, ScienceDirect, and Scopus. The search terms (("blockchain" OR
"blockchain-based application") AND ("modeling" OR "modelling" OR "model-driven engineering"))
AND ("techniques" OR "methods" OR "strategies") were formulated based on the research scope
to collect relevant literature studies. The inclusion and exclusion criteria is listed in Table 1.

Table 1
Inclusion and exclusion criteria
Inclusion criteria Exclusion criteria
Papers related to MDE of blockchain applications Papers published before 2008 or not available freely
Papers use modeling techniques for blockchain applications Papers shorter than 5 pages or not written in English

As a first step, we run predefined search terms on selected digital databases to collect relevant
literature studies. The corpora of search results were downloaded as BibTeX files and a python
script was written to filter the results. The python script verified that the predefined search terms
are available in the title or abstract of the study. After running the script on the BibTeX files, we
collected a total of 236 papers for further screening. The screening was made after reading the
paper title, abstract, introduction, conclusion, and filtering based on the inclusion and exclusion
criteria. Finally, 8 literature studies remained, from which we discovered additional 7 studies.
Thus, we collected 15 relevant literature studies for full-text reading and analysis.

4. Results

In this section, we summarise the results of the SLR. Table 2 shows the selected literature studies,
their contribution, and limitations.

Rocha et al., "Preliminary steps towards modeling blockchain oriented software" [18]
This article proposes no novel MDE technique but shows how existing methods could be used
to model blockchain-based applications. More specifically, UML, BPMN, and ER models are
illustrated to model the blockchain elements. The objective was to show how the existing
approaches lack certain concepts to cover different blockchain elements.

Mavridou et al., "Designing secure Ethereum smart contracts: A Finite State ..." [3]
The authors model SCs as finite state machines through a graphical editor. The idea is to use
rigorous semantics to lay the foundation for formal verification tools. SC (written in solidity

14

Table 2
Summary of selected relevant literature studies

Modeling tech. Contribution Limitation
Rocha et al., [18] UML, BPMN, ERD Explore current modeling languages Not an extension of a language
Mavridou et al., [3] WebGME SC Modeling, security extensions, formal modeling Limited modeled elements, no off-chain modeling
Lopez-Pintado et al., [5] BPMN On-chain BPMS and modeled elements No access control, no full support of oracles
Mercenne et al., [8] BPMN Extension of caterpillar with access control No full support of oracles
Silva et al., [19] DEMO Meta-model of DEMO and HLF concepts No code generation, no off-chain components mod-

eling
Hornkov et al., [20] DEMO Highlights importance of interaction with off-chain No code generation, no off-chain components mod-

eling
Ladleif et al., [21] BPMN Choreography Extension of BPMN 2.0 choreography diagrams No modeling of , escrow, or oracles
Corradini et al., [10] BPMN Choreography Translation of BPMN choreography to SC, dApp life-

cycle
No full support of oracles

Weber et al., [22] BPMN Choreography Triggers as a communication method for on- and
off-chain

Triggers not modeled, no full support of oracles

Marchesi et al., [7] UML Extension of UML, agile dApp development method No code generation, no full support of oracles
Hamdaqa et al., [4] Domain specific lang. Unified reference model for SC of multiple

blockchains
No code generation, no off-chain components mod-
eling

Garamvolgyi et al., [23] UML Statecharts modeling of SC as a state machine No code generation, no off-chain components mod-
eling

Lu et al., [12] BPMN SC interfaces and tokens model, off-chain commu-
nication

No access control policies, no full support of oracles

Babkin et al., [11] ArchiMate Automatic translation between Archimate and HLC Manual work before SC deployment
Boubeta-Puig et al., [24] BPMN and EMF Integration of CEP with Ethereum Platform No full support of oracles

code) can be generated automatically from the model. The model also allows developers to
easily integrate security design patterns (e.g., access control) into the SCs.

Lopez-Pintado et al., "Caterpillar: a business process execution engine ..." [5] and Mer-
cenne et al., "Blockchain Studio: A Role-Based Business Workflows ..." [8]
Both articles support business processes where the study [5] provides a BPMN-compatible
business process management system (BPMS) on Ethereum. The BPMN model is translated
to multiple SCs that allow the execution and management of the business process. The tool
comes with a user interface that facilitates the life-cycle management of the processes. Mer-
cenne et al., [8] create a fork of Caterpillar to support themanagement of roles and access control.

Silva et al., "Decentralized Enforcement of Business Process Control Using Blockchain"
[19] and Hornkov et al., "Exploring a Role of Blockchain Smart Contracts ..." [20]
Both of these techniques use the enterprise ontology DEMO to model blockchain-based appli-
cations. Silva et al., [19] propose a translation between DEMO and Hyperledger. The study
improves the control and traceability of collaborative business processes. The method [20]
presents an enterprise information system to support the transactions that do not need to be
stored on the blockchain. The presented method does not offer automatic code generation.

Ladleif et al., "Modeling and Enforcing Blockchain-Based Choreographies" [21] , Cor-
radini et al., "Engineering trustable choreography-based systems using blockchain"
[10] and Weber et al., "Untrusted Business Process Monitoring and Execution ..." [22]
Ladleif et al., [21] extend BPMN choreographies to support business processes on Ethereum.
Choreography diagrams look at the system from a message exchange perspective. Similarly,
Corradini et al., [10] present a method that uses BPMN choreography diagrams to model
blockchain-based applications. The study [22] also uses choreography diagrams to ensure that
only confirming messages advance the state of the process.

15

Marchesi et al., "An Agile Software Engineering Method to Design Blockchain ..." [7]
The paper suggests an agile method that separates the development of an application (e.g.,
SCs and traditional systems). It considers various design stages, like the user interface to the
external SCs, emphasises the security concerns of traditional and blockchain-based applications.

Hamdaqa et al., "iContractML" [4]
The study enables a feature-oriented domain analysis of three blockchain platforms (Hyper-
ledger, Azure, and Ethereum) to build a reference model for SCs and presents a platform-
independent modeling language called iContractML that allows automatic code generation.

Garamvolgyi et al., "Towards Model-Driven Engineering of Smart Contracts ..." [23]
This article explores the use of UML state charts to model cyber-physical systems (CPS). The
logic is implemented as a SC and is used as a digital twin to the real-life CPS. The approach is
meant to be generic enough to allow generating code for different blockchain platforms.

Lu et al., "Integrated model-driven engineering of blockchain applications for business
processes and asset management" [12]
In this article, the authors present a tool called Lorikeet that allows the modeling of business
processes and digital assets. They allow the creation of both fungible and non-fungible assets,
escrow, and assets swap. The tool comes with a user interface to facilitate the modeling and
interaction with the blockchain-based application.

Babkin et al., "Model-Driven Liaison of Organisation Modeling Approaches ..." [11]
In this paper, the authors present a mapping between concepts of ArchiMate enterprise architec-
turemodeling language and theHyperLedger composermodeling language. The implementation
of the automatic code generation is done in Python, and the code translation is done semi-
automatically, i.e. the business logic must be manually written.

Boubeta-Puig et al., "CEPChain: A graphical model-driven solution for integrating
complex event processing and blockchain" [24]
CEPchain connects a complex event processing system to the Ethereum platform to allow the
modeling of the automatic trigger of SCs transactions when event pattern conditions are met.

4.1. Characteristics of Modeling Techniques

In characteristics of the modeling techniques (Table 3), it can be seen that there are techniques
that allow source code generation from the model. A few techniques also allow life-cycle
management, meaning that they help the developer with the compilation and deployment of
the SCs and interaction with the SCs through user interfaces.
However, most of the examined modeling techniques do not allow data privacy when dealing

with permissionless blockchains, and it is a limitation imposed by the nature of the platform.
None of the techniques allows formal verification that can be useful to verify a model against a
set of validation rules.

16

Table 3
Characteristics of modeling techniques

Blockchain
platform

modeling
language

Formal
verification

Code
generation

Data
privacy

Life-cycle
management

Open
source

Rocha et al., [18] Ethereum BPMN, ER and UML No No No No No
Mavridou et al., [3] Ethereum FSolidM No Full No No Yes
Lopez-Pintado et al., [5] Ethereum BPMN No Full No Yes Yes
Mercenne et al., [8] Ethereum BPMN No Partial No Yes No
Silva et al., [19] Hyperledger DEMO No No Yes No No
Hornkov et al., [20] Ethereum DEMO No No No No Yes
Ladleif et al., [21] Ethereum BPMN choreography No Full No No No
Corradini et al., [10] Ethereum BPMN choreography No Full No Yes Yes
Weber et al., [22] Ethereum BPMN choreography No Full Yes No No
Marchesi et al., [7] Ethereum UML No No No No No
Hamdaqa et al., [4] Azure, Ethereum,

Hyperledger
DSL (eCore) Model valida-

tion rules
Partial No No Yes

Garamvolgyi et al., [23] Ethereum UML state charts No Partial No No No
Lu et al., [12] Ethereum BPMN No Full No Yes No
Babkin et al., [11] Hyperledger Archimate No Partial Yes No No
Boubeta-Puig et al., [24] Ethereum BPMN and EMF No Full No Yes No

4.2. Modeled Elements of Blockchain-based Applications

The blockchain elements (Table 4) are 1) SC rules that generate the function bodies of SCs and
determine the behaviour of the application. 2) SC data, for example, the type and the value
of the information that is stored on the blockchain. 3) 3rd party SC that are not directly part
of the modeled blockchain application. It could be any SC that existed before the application
was modeled. 4) Event is emitted on the blockchain that other actors can subscribe to. 5)
Transaction is an action that modifies the state of the blockchain and/or the state of the
application. 6) Participant is an actor that interacts with the application. 7) Roles and
permissions are restrictions to specific users. For instance, not everyone should be allowed to
empty the balance of a SC. 8) Asset has a value that can be exchanged (e.g., tokens).
The SC logic and business rules are the most examined and well modeled by the different

modeling techniques. The data stored in the SC, the roles, permissions, and transactions also
seem to be relatively well modeled. On the other hand, the interaction with third party SCs is
rarely modeled. This is a limitation since SCs often need to access data from other contracts on
the blockchain. Additionally, the assets on the blockchain are poorly represented by existing
modeling techniques, especially by those which provide code generation features. Finally,
blockchain events are also neglected by the existing modeling techniques.

4.3. Modeled Oracles

BBAs need to access data that is not stored on-chain. The components that provide external
data to blockchain are called oracles. Oracles can be characterised by the direction of the data
flow (inbound or outbound) and they can also be characterised by the initiator of the data flow
(pull-based or push-based) [25].
In pull-based inbound, the initiator is a SC, and the data flow is from off-chain to blockchain.

The off-chain subscribes to events emitted by the on-chain application. Once the oracle detects
an event, it will fetch the data and send a signed transaction containing the data to the requesting
on-chain application. In push-based inbound, the initiator is off-chain, and the data flow is
from off-chain to blockchain. Here, an off-chain component is configured to send data under
certain conditions, which is then translated into a blockchain transaction.

17

Table 4
Modeled elements of blockchain-based applications based on the identified relevant works. (X) indicates
that an element is not modeled.

Rules SC data 3rd party SC Event Transaction Participant Roles Asset
Rocha et al., [18] ER, UML,

BPMN
Database
columns,
Class at-
tributes

X X UML class
function,
association

UML: SC
class, BPMN:
lane

X Database
column,
Class at-
tribute

Mavridou et al., [3] X Variables in
code editor

X X State transi-
tion

X Guards Variables in
code editor

Lopez-Pintado et al.,
[5]

BPMN
scripts and
control flow

X X BPMN events BPMN tasks BPMN lanes X X

Mercenne et al., [8] BPMN
scripts and
control flow

X X BPMN events BPMN tasks BPMN lanes BPMN task
role attribute

X

Silva et al., [19] X DEMO Fact X X Business
transaction

DEMO actor DEMO actor
role

Busines
transaction

Hornkov et al., [20] DEMO ac-
tions

Transaction
object facts

X X DEMO trans-
action

DEMO actor DEMO actor X

Ladleif et al., [21] BPMN script
tasks

BPMN data
objects

Script tasks X Sequence
flow

Initiator and
recipient

Sequence
flow

X

Corradini et al., [10] Gateways,
guards,
sequence
flows

Partly rep-
resented
by message
annotations

X Start event,
end event

Tasks (mes-
sages)

Initiator and
recipient of
messages

Checkbox
to create
choreography
instance

Message
annota-
tions

Weber et al., [22] BPMN
choreogra-
phy

X X BPMN events Choreography
messages

Lanes Lanes, sender/
receiver

X

Marchesi et al., [7] UML classes
and stereo-
types

UML class
attributes
and stereo-
types

UML class
attributes and
stereotypes

UML stereo-
type

UML se-
quence

UML stereo-
type

UML stereo-
type

Message
in UML
sequence

Hamdaqa et al., [4] UML classes UML classes X UML class UML classes UML class UML classes UML class
Garamvolgyi et al.,
[23]

Transition,
guards

States, his-
tory

X X Action, Transi-
tion

X Transacti.
guard

X

Lu et al., [12] BPMN
scripts

Script tasks,
asset templ.

SC Interface
icon

BPMN events,
UI event

BPMN task User tasks X Asset tem-
plate forms

Babkin et al., [11] X Artifact,
Business
object,
Data object

X Application-,
Business-,
Implementation-
, Technology
event

Application-,
Business-
, and
Technology-
Interaction

BusinessActor,
Stakeholder,
Application-
Component

Access Rela-
tionship

Same as
smart con-
tract data

Boubeta-Puig et al.,
[24]

BPMN
scripts and
control flow

X X BPMN events BPMN tasks BPMN lanes X X

In pull-based outbound, the initiator is an off-chain, and the data flow is from blockchain
to off-chain. In push-based outbound, the initiator is on-chain and the data flow is from
blockchain to off-chain.

Table 5
Oracles modeling coverage

Pull-based (inbound) Push-based (inbound) Pull-based (outbound) Push-based (outbound)
Rocha et al., [18] Yes Yes Yes Yes
Lopez-Pintado et al., [5] Partly modeled through events No No Partly modeled through events
Weber et al., [22] Partly modeled through events No No Partly modeled through events
Marchesi et al., [7] Partly modeled through events No No Partly modeled through events
Lu et al., [12] Partly modeled through events No No Partly modeled through events
Boubeta-Puig et al., [24] No Yes No No

In a few techniques, there have been attempts at modeling pull-based inbound and push-based
outbound oracles (Table 5), but no modeling technique supports automatic code generation
for all types of oracles (Table 6). For the push-based inbound and pull-based outbound oracles,
user interfaces are nice but they are not scalable, because the actions must be done manually.
According to the literature review, the automatic code generation of push-based inbound and
pull-based outbound oracles is supported through user interfaces and REST APIs (Table 6).

18

Table 6
Automatic code generation coverage of oracles

Pull-based (inbound) Push-based (inbound) Pull-based (outbound) Push-based (outbound)
Lopez-Pintado et al., [5] No Partly through API Yes through API No
Ladleif et al., [21] No Partly through custom interface Yes through custom interface No
Corradini et al., [10] No Partly through UI Yes through UI No
Babkin et al., [11] No Partly through API Yes through API No
Lu et al., [12] No Partly through API Yes through API No
Boubeta-Puig et al., [24] No Yes No No

5. Discussion and Concluding Remarks

There are a few limitations to our current work that we discussed as threats to validity [26].
The restricted time span refers to the researchers’ incapacity to foresee relevant studies
outside of the time frame planned during the SLR planning phase. In addition, some of the
modeling techniques may have been modified or improved between the time of this work. This
limitation is a reality of SLRs and cannot really be mitigated. The bias in study selection
occurs when researchers have their own subjective conjecture and do not apply inclusion and
exclusion criteria consistently or use incompatible search terms. An attempt to counter this
limitation is made by gathering feedback from other researchers in the field to include any
missing relevant work in the SLR. The bias in data extraction and subjective interpretation
arise when researchers have different interpretations and opinions about the extracted data. To
mitigate these biases, researchers involved in the SLR to share their point of view and discuss
until they reach a consensus.
In this work, we present an analysis of model-driven engineering techniques for blockchain-

based applications. As a result, we summarise the current state of MDE and propose a character-
isation that enables the iteration on various modeling techniques based on their characteristics
and modeled elements. In future work, the existing modeling techniques can be extended to
cover blockchain oracles modeling and automatic code generation. Another possible research
direction is to provide security extensions in modeling techniques to take advantage of the
security practices when designing BBAs.
Overall, completing the above-mentioned future work and tackling the threats to validity

could provide better insights and in-depth contributions to the MDE of BBAs.

References

[1] M. Iqbal, R. Matulevičius, Comparison of Blockchain-Based Solutions to Mitigate Data
Tampering Security Risk (2019) 13–28.

[2] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on Ethereum smart contracts (2017).
[3] A. Mavridou, A. Laszka, Designing secure ethereum smart contracts: A finite state machine

based approach, in: Financial Cryptography and Data Security, 2018, pp. 523–540.
[4] M. Hamdaqa, L. A. P. Metz, I. Qasse, iContractML, in: 12th System Analysis and Modelling

Conference, 2020.
[5] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, A. Ponomarev, Caterpillar: A

business process execution engine on the ethereum blockchain (2019).

19

[6] B. Kitchenham, S. Charters, Guidelines for performing Systematic Literature reviews in
Software Engineering Version 2.3, Engineering 45 (2007) 1051.

[7] M. Marchesi, L. Marchesi, R. Tonelli, An agile software engineering method to design
blockchain applications, in: 14th CEE-SECR, 2018.

[8] L. Mercenne, K.-L. Brousmiche, E. B. Hamida, Blockchain studio: A role-based business
workflows management system, in: IEEE 9th Annual IEMCON, 2018.

[9] M. Iqbal, R. Matulevičius, Blockchain-Based Application Security Risks: A Systematic
Literature Review, Springer Nature Switzerland AG (2019) 1–26.

[10] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, Engineering trustable
choreography-based systems using blockchain, in: Symposium on Applied Comp., 2020.

[11] E. Babkin, N. Komleva, Model-driven liaison of organization modeling approaches and
blockchain platforms, in: Advances in Enterprise Engineering XIII, 2020, pp. 167–186.

[12] Q. Lu, A. B. Tran, I. Weber, H. O'Connor, P. Rimba, X. Xu, M. Staples, L. Zhu, R. Jeffery,
Integrated model-driven engineering of blockchain applications for business processes
and asset management, Software: Practice and Experience 51 (2020) 1059–1079.

[13] M. Wohrer, U. Zdun, Architectural design decisions for blockchain-based applications,
IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2021 (2021).

[14] G. Falazi, M. Hahn, U. Breitenbücher, F. Leymann, Modeling and execution of blockchain-
aware business processes, Software-Intensive Cyber-Physical Systems 34 (2019) 105–116.

[15] X. Xu, Q. Lu, Y. Liu, L. Zhu, H. Yao, A. V. Vasilakos, Designing blockchain-based applications
a case study for imported product traceability, FGCS 92 (2019) 399–406.

[16] M. Markovska, Modelling Business Processes on a Blockchain Ecosystem (2019).
[17] C. Udokwu, P. Brandtner, A. Norta, A. Kormiltsyn, R. Matulevičius, Implementation and

evaluation of the DAOM framework and support tool for designing blockchain decentral-
ized applications (2020) 0–19.

[18] H. Rocha, S. Ducasse, Preliminary steps towards modeling blockchain oriented software,
in: 1st Workshop on Emerging Trends in Software Engineering for Blockchain, 2018.

[19] D. Silva, S. Guerreiro, P. Sousa, Decentralized enforcement of business process control
using blockchain, in: Advances in Enterprise Engineering XII, 2018, pp. 69–87.

[20] B. Hornáčková, M. Skotnica, R. Pergl, Exploring a role of blockchain smart contracts in
enterprise engineering, in: Advances in Enterprise Engineering XII, 2018, pp. 113–127.

[21] J. Ladleif, M. Weske, I. Weber, Modeling and enforcing blockchain-based choreographies,
2019, pp. 69–85.

[22] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, J. Mendling, Untrusted business
process monitoring and execution using blockchain, 2016, pp. 329–347.

[23] P. Garamvolgyi, I. Kocsis, B. Gehl, A. Klenik, Towards model-driven engineering of smart
contracts for cyber-physical systems, in: 48th annual IEEE/IFIP DSN-Workshops, 2018.

[24] J. Boubeta-Puig, J. Rosa-Bilbao, J. Mendling, CEPchain: A graphical model-driven solution
for integrating complex event processing and blockchain, Expert SystemswithApplications
184 (2021) 427–435.

[25] R. Mühlberger, S. Bachhofner, E. C. Ferrer, C. D. Ciccio, I. Weber, M. Wöhrer, U. Zdun,
Foundational oracle patterns: Connecting blockchain to the off-chain world, 2020.

[26] X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats to validity of systematic
literature reviews in software engineering, in: APSEC (2016) 153–160.

20

