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Abstract  
The article considers the approaches for automatically detecting process disruptions known 
as anode effects in aluminum electrolysis. The suggested method of their identification is 
based on using ensemble algorithms which are applied to data from immediate and daily 
average monitoring of reduction cells. The method includes the stage of preprocessing of 
daily-average inputs, aggregation of immediate and daily average parameters, and 
construction of a math model. The study determines the most informative parameters, while 
analyzing how algorithms and approaches featuring ensembles of decision trees stack up 
against each other. The quality metrics reveal the most effective algorithm for the set task.  
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1. Introduction 

One of undesirable events arising from aluminum electrolysis is the anode effect. This 
phenomenon may adversely affect the process of electrolysis leading to excessive power consumption 
and temporary cell superheating. Moreover, whenever anode effects appear in the middle of 
electrolysis, this results in the formation of greenhouse gases, as well as in occasional sparks and arc 
discharges between the anode surface and electrolyte, which is hazardous for an operator addressing 
the effects [1]. 

Currently, a number of aluminum producers are developing technological strategies to find ways 
to make their reduction cells operate without any anode effects. The possibility to detect them is one 
of the top priority tasks concerning the aluminum production management. Traditionally, anode 
effects are reduced by maintaining the concentration of alumina within the set range to ensure its most 
consistent dissolving in the electrolyte, which is made possible by incorporating automatic adjustment 
units into the automatic alumina handling system [2, 3].  The present-day approach to keeping the 
number of anode effects to a minimum involves their timely detection and prediction. The state of the 
process facilities is normally predicted by means of machine learning which allows identifying 
specific correlations in the data and using them to find process disruptions in the cell operation. 

Algorithmic tools to detect the process disruptions are developed in the following stages: 1) 
analysis and preprocessing of input data; 2) identification of informative features; 3) construction of a 
math model and validation of results. Taking this into account, the body of the article is arranged 
accordingly. Chapter 2 sets the task of classification. Chapter 3 presents the description of the input 
data. Chapter 4 considers the applied methods of the input data preprocessing. Chapter 5 describes the 
algorithms of classification. Chapter 6 presents the results of the applied classification models. 
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2. Research objective 

The classification task is set as follows. Let us assume that there is a set of objects 𝑋 =

൛𝑋(ଵ), … , 𝑋(௡)ൟ, each characterized by the m-dimensional vector of attributes 𝑋(௜) =

ቀ𝑥ଵ
(௜)
, … , 𝑥௠

(௜)
ቁ , 𝑖 = 1, 𝑛തതതതത. Each object under study is attributed to a certain class 𝐶௝ ∈ 𝑌 =

{𝐶ଵ, … , 𝐶௞}, 𝑗 = 1, 𝑘തതതതത. In this case, the classification is aimed at the following. It requires a rule 
(algorithm) to be formulated 𝑎: 𝑋 → 𝑌, so that based on the set point value of attributes, new 
unknown objects could be attributed to one of the classes. 

Being related to the problem of early detection of process disruptions based on the monitoring 
data, the task of classification is reduced to dividing the states of the process facility into two classes: 
operative 𝑌 = 0 and faulty 𝑌 = 1 (functioning with errors). The input data samples are used as the 
basis for an algorithm which must be able to use the set operative indicators of the given facility to 
diagnose its state with sufficiently high accuracy.  

Binary classification tasks normally use the following indicators as their metrics: 
 accuracy is the relation of all the correctly classified objects to the total number of all the 
classified objects: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

 
Here, TP stands for the true-positive results (objects classified as “positive” and which are actually 

positive, i.e. belong to the class 𝑌 = 1), TN stands for the true-negative results (objects classified as 
“negative” and which are actually negative, i.e. belong to the class 𝑌 = 0), FP stands for the false-
positive results (objects classified as “positive” but which are actually negative, i.e. belong to the class 
𝑌 = 0), FN stands for the false-negative results (objects classified as “negative” but which are 
actually positive, i.e. belong to the class 𝑌 = 1). 

In the case of imbalance between the classes, the regular accuracy is replaced with the balanced 
accuracy: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
൬

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+
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(2) 

 
 precision is the relation of all the objects classified as “positive” and which are actually 
positive to the total number of objects classified as “positive”: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3) 

Precision characterizes the ability of the given prediction model to correctly classify positive 
objects in relation to the number of all the objects classified as “positive”. 

 
 recall is the relation of all the objects classified as “positive” and which are actually positive 
to the total number of actually positive objects: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

Recall characterizes the ability of the given prediction model to correctly classify positive objects 
from the set of all the positive objects combined. 

 
 F1 score is the harmonic mean between the values of precision and recall: 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(5) 

F1 score demonstrates how many cases are correctly classified by the model, and how many true 
items can be correctly classified by the model. 



3. Description of inputs 

The state of the process facilities typically undergoes diagnostic scanning performed as the 
ongoing monitoring of their current state, and whichever forms, it is manifested over time. The 
fundamental principle of this diagnostic routine is in taking consistent and systematic measurements 
of the parameters characterizing the running process at the facility, identifying changes in relation to 
the standard indications, and their further classification. 

The key parameter to control anode effects is the value of voltage in the reduction cell. Anode 
effects are known to be accompanied by a spike in voltage. However, checking the state of the 
reduction cells and predicting the process deviations using the voltage parameter do not prove to be 
highly effective. To ensure better predictive accuracy and to subsequently reduce the number of anode 
effects, it is necessary to control the range of the parameters.  

The daily average data collected through monitoring the operation of cell series include the 
following parameters: duration of metal tapping (sec), metal level (cm), electrolyte level (cm), 
electrolyte temperature (°С), alumina dose (kg), bath chemistry parameters, parameters of the point 
feeding system for alumina and aluminum fluoride, adjustment parameters of the anode-to-cathode 
distance, amperage (kA), voltage parameters, back EMF (V), state and service life of cells (month). 
Different time of discretization across the process parameters is one of the obstacles in controlling 
aluminum electrolysis. Voltage is measured continuously, whereas other parameters are recorded only 
once a day. Introducing these data into the prediction model entails selecting a suitable scheme for 
their possible rearrangement when modeling the training set. The underlying strategy of this research 
is the data aggregation presented earlier [4]. The simulation is carried out as follows: instantaneous 
values of voltage are averaged out every 10 minutes, the resulting averaged values are then combined 
with the daily average data retrieved by the staff from sensors at the beginning of their night shift 
(20:00). The research is based on the monitoring data from the experimental area of the Sayanogorsk 
Aluminum Smelter, namely a series of reduction cells in potrooms No. 9 and 10. The input data 
comprise the values of the process parameters for the period of 2020-2021. The output variable 
represents information about the occurring disruptions (anode effects) in the process. 

4. Preprocessing of inputs 

The first stage of the daily average data processing involves the search for outliers across the data. 
The outliers are found using the method of quartiles. The values identified as outliers are substituted 
for by Nan. The next step is to reconstruct the missing data points. The first features to be removed 
are those with the gaps exceeding the set threshold (over 50% of entries), and the remaining data are 
then reiterated with the missing data points reconstructed by means of the EM-algorithm 
(Expectation-maximization). This is followed by modeling the training set. The final stage is focused 
on the most informative parameters indicating the occurrence of the anode effects. The datasets 
contaminated with uninformative features lead to the model overfitting. The features are selected 
using the method of recursive feature elimination (RFE) combined with the random forest algorithm. 
The RFE method is based on the consecutive construction of models so that each step results in a 
model and the feature which proves to be the least informative is eliminated from the set. This 
eventually forms a set of the most significant features allowing one to detect the anode effects, 
including the following: electrolyte level, electrolyte temperature, cryolite ratio, alumina dose, Fe 
concentration, Mg concentration, metal level, duration and number of VIRA, duration and number of 
MAINA, number of alumina doses in the automatic and manual mode, period of starvation, period of 
oversaturation, and actual volume of the produced metal. Ошибка! Источник ссылки не найден. 
gives the statistical description of the monitoring data (training and testing) for a reduction cell. 
 
 
 
 
 



Table 1 
The statistical description of the inputs 

 
Parameter Records Mean Min Max Standard 

deviation 
Electrolyte temperature 49,900/  

5,790 
956.908/ 
953.946 

931/  
937 

977/ 
971 

8.9056/ 
6.7454 

Electrolyte level 49,900/  
5,790 

17.788/ 
19.265 

11/  
13 

22/ 
25 

1.7363/ 
1.7479 

Alumina dose 49,900/  
5,790 

7.383/  
6.955 

7.09/  
7.12 

7.43/ 
7.43 

0.1174/ 
0.2984 

Fe concentration 49,900/  
5,790 

0.056/  
0.054 

0.0274/ 
0.0435 

0.0842/ 
0.0775 

0.013/ 
0.0068 

Cryolite ratio 49,900/  
5,790 

2.309/  
2.323 

2.0279/ 
2.1304 

2.5572/ 
2.51 

0.0968/ 
0.0874 

MgF2 concentration 49,900/  
5,790 

0.549/  
0.546 

0.4206/  
0.42 

0.77/ 
0.69 

0.053/ 
0.053  

Metal level 49,900/  
5,790 

16.585/ 
15.963 

12/  
12 

22/ 
22 

1.8536/ 
2.1254 

Anode-cathode distance:  
number of VIRA 

49,900/  
5,790 

12.955/ 
15.659 

4/ 
7 

31/ 
31 

4.6043/ 
4.9156 

Anode-cathode distance:  
number of MAINA 

49,900/  
5,790 

6.786/  
6.983 

0/ 
2 

24/ 
20 

3.7558/ 
3.3994 

Anode-cathode distance:  
duration of VIRA 

49,900/  
5,790 

20.632/ 
25.182 

6/ 
11 

58/ 
53 

8.2172/ 
9.8158 

Anode-cathode distance:  
duration of MAINA 

49900/  
5790 

15.285/ 
16.327 

2/ 
3 

46/ 
44 

9.0693/ 
10.025 

Number of alumina doses 
in the automatic mode 

49,900/  
5,790 

6791.489/ 
6922.808 

5723/ 
6185 

7533/ 
7409 

317.8467/ 
254.9121 

Period in the manual mode 49,900/  
5,790 

0.167/ 
0.238 

0/ 
0 

0.8/ 
0.6 

0.1227/ 
0.1432 

Period in starvation 49,900/  
5,790 

6.402/  
7.107 

2.6/ 
3.1 

10.2/ 
9.2 

1.2498/ 
1.2347 

Period in oversaturation 49,900/  
5,790 

6.709/  
5.702 

1.1/  
1.3 

9.4/ 
8 

1.28/  
1.0982 

Volume of the produced 
metal 

49,900 /  
5,790 

4165.372 / 
4096.7568 

1760 / 
2050 

5040 / 
4880 

303.5068 / 
398.0336 

Cell voltage 49,900/  
5,790 

3.7448/ 
3.75 

0.2853/ 
3.0466 

5.86/ 
4.252 

0.07/ 
0.0554 

5. Description of algorithms 

Diagnostic models are built using a number of machine learning techniques. Most commonly, they 
include decision trees [5], ensembles of algorithms [6], artificial neural networks [7], etc. In this 
study, the prediction model features the ensembles of algorithms based on decision trees. 

Gradient boosted trees is an algorithm which uses an ensemble of decision trees where each 
consecutive tree fits on the data on errors in the preceding decision tree. Gradient boosting involves 
the serial construction of algorithms, where each successive algorithm tries to compensate the errors 
in the composition of the previous ones. The resulting classifier is obtained as a linear combination of 
the classifiers. The optimum linear combination coefficients are found using a greedy algorithm, 



which implies the gradual addition of classifiers similar to the gradient descent. This study uses 
XGBoost Classifier (XGBC) [8] and Catboost Classifier (Catboost) [9]. 

Bagging on decision trees is an algorithm which applies the bootstrap technique to an ensemble of 
decision trees, with each of them built from the dataset generated from inputs. The classification 
result is defined by voting. This study applies Balance Bagging Classifier (BBC) [10] and Balance 
Random Forest Classifier (BRFC) [11]. 

The models are trained and tested using the generated dataset. The hyperparameters are tuned 
through random search with cross validation. The parameters for the model are selected by means of 
maximum precision. Tables 2-5 demonstrate the optimum values of the hyperparameters in each 
model. 
 
Table 2 
 The hyperparameters of the XGBClassifier model 
 

Parameter name Description Value 
n_estimators Number of gradient boosted trees 150 
max_depth Maximum tree depth for base learners 13 
learning_rate Learning rate 0.3 

 
Table 3 
 The hyperparameters of the CatBoostClassifier model 
 

Parameter name Description Value 
iterations Number of iterations 25 
depth Tree depth 13 
learning_rate Learning rate 1 

 
Table 4 
The hyperparameters of the BalanceBaggingClassifier model 
 

Parameter name Description Value 
n_estimators The number of base estimators in the ensemble 290 
max_samples The number of samples to draw from X to train 

each base estimator 
1 

max_features The number of features to draw from X to train 
each base estimator 

1 

 
Table 5 
The hyperparameters of the BalanceRandomForestClassifier model 
 

Parameter name Description Value 
 n_estimators The number of trees in the forest 50 
max_depth The maximum depth of the tree 14 
min_samples_leaf The minimum number of samples required to 

be at a leaf node 
1 

min_samples_split The minimum number of samples required to 
split an internal node 

2 

criterion The function to measure the quality of a split ‘gini’ 
 



6. Analysis and comparison of the results 

The model was fitted on the data divided into two sets, training and testing ones, in the following 
proportion: the 2020 data were used for training, while the 2021 data were used for testing. The 
results of the model training are presented in Table 6. The best results across the chosen metrics were 
shown by the XGBoost Classifier model. 
 
Table 6 
The classification results in the test dataset 
 

 XGBC Catboost  BBC BRFC 
аccuracy (2) 0.99 0.96 0.97 0.96 
precision 0.99 0.22 0.43 0.33 
recall 0.85 0.54 0.93 0.99 
F1 score 0.86 0.32 0.58 0.49 

 
Figure 1 shows the confusion matrix for the XGB Classifier model. The rows show the actual 

classes, while the columns represent the predicted instances. The diagonally positioned elements show 
where the actual and predicted classes coincide. The total sum of all the values in the matrix cells 
represents the number of the test items.  

   

Figure 1: The confusion matrix for the XGB Classifier: 
 1а – threshold value 0.5, 1b – threshold value 0.3 

 
As is seen in the matrix, in most cases the trained classifier detects the process disruptions 

correctly, with 12 type I errors (when the anode effects are not detected by error) and 4 type II errors 
(when the anode effects are falsely reported). When objects are classified according to one or another 
class, the commonly used threshold value amounts to 0.5. However, this value is not always optimum, 
for instance, as concerns the imbalanced data distribution in the inputs. The classifier threshold 
controls the ratio between the False positive and the False negative instances. To reduce type I errors 
(to increase the number of False positive instances and to reduce the False negative ones), the 
threshold value was decreased to 0.3 (Figure 1b). Therefore, the XGBoost Classifier model was 
selected for the purpose of predicting the anode effects, since the evaluation results suggest that the 
model quality proves suitable for practical use. 

7. Conclusion 

The article presents the results of the study aimed at developing a detection toolkit for process 
disruptions classified as anode effects based on ensembles of decision trees. The suggested models 
predict deviations in the process of aluminum production using the combined data of immediate and 
daily-average monitoring data. The method includes preprocessing the daily average inputs, 
aggregating the immediate and daily-average data, and building a math model. The study reveals the 



most informative parameters characterizing the current state of the facility, as well as how the 
deviations develop, which allows predicting the process disruptions. XGBoost Classifier stands out 
among other tested algorithms. The validated results suggest that the quality of this model is rather 
high for practical use. Additional research on the inputs is required to ensure higher accuracy of the 
prediction 
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