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Abstract
Cryptocurrencies refer to a type of digital asset that uses distributed ledger, or blockchain technology to
enable a secure transaction. Like other financial assets, they show signs of complex systems built from a
large number of nonlinearly interacting constituents, which exhibits collective behavior and, due to an
exchange of energy or information with the environment, can easily modify its internal structure and
patterns of activity. We review the econophysics analysis methods and models adopted in or invented for
financial time series and their subtle properties, which are applicable to time series in other disciplines.
Quantitative measures of complexity have been proposed, classified, and adapted to the cryptocurrency
market. Their behavior in the face of critical events and known cryptocurrency market crashes has
been analyzed. It has been shown that most of these measures behave characteristically in the periods
preceding the critical event. Therefore, it is possible to build indicators-precursors of crisis phenomena
in the cryptocurrency market.
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1. Introduction

The instability of global financial systems concerning normal and natural disturbances of the
modern market and the presence of poorly foreseeable financial crashes indicate, first of all, the
crisis of the methodology of modeling, forecasting, and interpretation of modern socio-economic
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realities. The doctrine of the unity of the scientific method states that for the study of events in
socio-economic systems, the same methods and criteria as those used in the study of natural
phenomena are applicable. Rapidly evolving coronavirus pandemic brings a devastating effect
on the entire world and its economy as a whole [1, 2, 3, 4, 5, 6, 7]. Further instability related
to COVID-19 will negatively affect not only on companies and financial markets, but also on
traders and investors that have been interested in saving their investment, minimizing risks,
and making decisions such as how to manage their resources, how much to consume and save,
when to buy or sell stocks, etc., and these decisions depend on the expectation of when to expect
next critical change [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Despite the complexity of
the problem, the results of recent studies indicate that significant success has been achieved
within the framework of interdisciplinary approaches, and the theory of self-organization –
synergetics [22, 23]. The modern paradigm of synergetics is a complex paradigm associated with
the possibility of direct numerical simulation of the processes of complex systems evolution,
most of which have a network structure, or one way or another can be reduced to the network.
The theory of complex networks studies the characteristics of networks, taking into account not
only their topology but also statistical properties, the distribution of weights of individual nodes
and edges, the effects of dissemination of information, robustness, etc. [1, 2, 3, 4, 24, 25, 26].

Complex systems consist of a plurality of interacting agents possessing the ability to generate
new qualities at the level of macroscopic collective behavior, the manifestation of which is the
spontaneous formation of noticeable temporal, spatial, or functional structures [27, 28, 29, 30,
31, 32]. As simulation processes, the application of quantitative methods involves measurement
procedures, where importance is given to complexity measures. Prigogine notes that the
concepts of simplicity and complexity are relativized in the pluralism of the descriptions of
languages, which also determines the plurality of approaches to the quantitative description of
the complexity phenomenon [5].

Financial markets have been attracting the attention of many scientists like engineers, math-
ematicians, physicists, and others for the last two decades. Such vast interest transformed into
a branch of statistical mechanics – econophysics [33, 34, 30, 31, 32, 35]. Physics, economics,
finance, sociology, mathematics, engineering, and computer science are fields which, as a result
of cross-fertilization, have created the multi-, cross-, and interdisciplinary areas of science and
research such as econophysics and sociophysics, thriving in the last two and a half decades.
These mixed research fields use knowledge, methodologies, methods, and tools of physics for
modeling, explaining and forecasting economic, social phenomena, and processes. Accordingly,
econophysics is an interdisciplinary research field, applying theories and methods originally
developed by physicists to solve problems in economics, usually those including uncertainty or
stochastic processes, nonlinear dynamics, and evolutionary games.

There are deep relationships (as well as crucial differences) between physics and finance
[36] that have inspired generations of physicists as well as economists. In general, physicists
apprehend financial markets as complex systems and, as such, they conducted numerous
scientific investigations [37].

Though statistical physics cannot get along without quantum-mechanical ideas and notions
in its fundamentals, the main sphere of its interest is the macroscopic description of systems
with a large number of particles, the dynamic behavior of which can’t be brought to microscopic
dynamical equations of quantum mechanics figured out for separate particles without the use of
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respective statistical postulates [38]. During last years an increasing flow of works was observed,
in which detailed models of market process participants interactions and quantum-mechanical
analogies, notions, and terminology based on methods of describing socio-economic systems
are drawn to explain both particular peculiarities of modern market dynamics and economic
functioning in whole [39, 40, 41]. Saptsin and Soloviev [42], Soloviev and Saptsin [43] have
suggested a new paradigm of complex systems modeling based on the ideas of quantum as well
as relativistic mechanics. It has been revealed that the use of quantum-mechanical analogies
(such as the uncertainty principle, the notion of the operator, and quantum measurement
interpretation) can be applied for describing socio-economic processes.

In this review, we will continue to study Prigogine’s manifestations of the system complexity,
using the current methods of quantitative analysis to determine the appropriate measures
of complexity. The proposed measures of complexity, depending on the methodology and
construction methods, can be divided into the following classes:

(1) informational,
(2) (multi-)fractal,
(3) chaos-dynamic,
(4) recurrent,
(5) irreversible,
(6) based on complex networks,
(7) quantum.

Econophysics, based on a rich arsenal of research on critical phenomena [44], very successfully
copes with the description of similar events in economics and finance. These are crises and
crashes that are constantly shaking the world economy. The introduced measures of complexity
should, to one degree or another, respond to such phenomena.

The key idea here is the hypothesis that the complexity of the system before the crashes
and the actual periods of crashes must change. This should signal the corresponding degree
of complexity if they are able to quantify certain patterns of a complex system. A significant
advantage of the introduced measures is their dynamism, that is, the ability to monitor the
change in time of the chosen measure and compare it with the corresponding dynamics of
the output time series. This allowed us to compare the critical changes in the dynamics of
the system, which is described by the time series, with the characteristic changes of concrete
measures of complexity. It turned out that quantitative measures of complexity respond to
critical changes in the dynamics of a complex system, which allows them to be used in the
diagnostic process and prediction of future changes.

The cryptocurrency market is a complex, self-organized system, which in most cases can be
considered either as a complex network of market agents or as an integrated output signal of
this network – a time series, for example, prices of individual cryptocurrency. The research on
cryptocurrency price �uctuations being carried out internationally is complicated due to the
interplay of many factors – including market supply and demand, the US dollar exchange rate,
stock market state, the influence of crime, shadowmarket, and fiat money regulator pressure that
introduces a high level of noise into the cryptocurrency data. Moreover, in the cryptocurrency
market, to some extent, blockchain technology is tested in general. Hence, the cryptocurrency
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prices exhibit such complex volatility characteristics as nonlinearity and uncertainty, which are
difficult to forecast, and any obtained results are uncertain. Therefore, cryptocurrency price
prediction remains a huge challenge [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59].

As can be seen, markets have seen significant numbers of investors selling off and rebalancing
their portfolios with less risky assets. That has been leading to large losses and high volatility,
typical of crisis periods. The economy key for preventing such activity may lie in cryptocurrency
and constructing effective indicators of possible critical states that will help investors and traders
fill in safety. Bitcoin, which is associated with the whole crypto market, has such properties as
detachment and independence from the standard financial market and the proclaimed properties
that should make it serve as the digital gold [60]. As was shown by Kristoufek [61], Bitcoin
promises to be a safe-haven asset with its low correlation with gold, S&P 500, Dow Jones
Industrial Average, and other authoritative stock indices even in the extreme events. But
authors please not overestimate the cryptocurrency since according to their calculations and,
obviously, the current structure of the system, gold remains more significant. But for ten years,
this token has been discussed by many people, it has experienced a lot in such a short period,
many people believe in it, and it has managed to form a fairly complex and self-organized system.
The integrated actions from real-world merge in such dynamics and relevant information that is
encoded in Bitcoin’s time series can be extracted [62, 63, 64]. In the context of volatile financial
markets, it is important to select such measures of complexity that will be able to notify us of
upcoming abnormal events in the form of crises at an early stage.

In this review we:

• present such measures;
• study critical and crash phenomena that have taken place in the cryptocurrency market;
• try to understand whether crashes and critical events could be identified and predicted
by such informative indicators or not.

This review is dedicated to the construction of such indicators based on the theory of com-
plexity. According to our goals and actions, the paper is structured as follows. In Section 2, we
present our classification of Bitcoin’s crises for the period from July 16, 2010 to January 21, 2021.
In Section 3, we describe the information measures of complexity. In Section 4, we describe
the multifractal analysis methodology and its results for the crypto market. Section 5 defines
what is chaos-based measures of complexity. In section 6, we deal with the recurrence quan-
tification analysis of critical and crisis phenomena in the cryptocurrency market. Irreversible
measure based on permutation patterns is defined in Section 7. Section 8 presents the theory
and empirical results on network and multiplex measures of complexity and their robustness
for digital currencies. Section 9 defines quantum complexity measures, the features of their
manifestation on the crypto market are discussed. Section 10 contains conclusions and some
recommendations for further research.

2. Data and classification

Bitcoin, being the most capitalized cryptocurrency, as a rule, sets and determines the main
trends of the crypto market as a whole. Therefore, except for the part of the work where the

34



study of collective processes in the market is carried out, we will use the time series of Bitcoin
[65]. From figure 1 it can be seen that at the beginning of its existence, Bitcoin’s dynamic was
determined mainly by the processes of the formation of the market as a whole and characterized
by high volatility, which, however, was not associated with critical phenomena. Bariviera
et al. [66] find that the Hurt exponent changes significantly during the first years of existence
of Bitcoin, and now it is less unstable than before. Moreover, they detect more evidence of
information since 2014 [67].

Figure 1: Bitcoin price development from July 16, 2010 to January 21, 2021.

Being historically proven, popular, and widely used cryptocurrency for the whole existence
of cryptocurrencies in general, Bitcoin began to produce a lot of news and speculation, which
began to determine its future life. Similar discussions began to lead to different kinds of crashes,
critical events, and bubbles, which professional investors and inexperienced users began to fear.
Thus, we advanced into action and set the tasks:

• classification of such critical events and crashes;
• construction of such indicators that will predict crashes, critical events in order to allow
investors and ordinary users to work in this market.

Accordingly, during this period in the Bitcoin market, many crashes and critical events shook
it. At the moment, there are various research works on what crashes are and how to classify such
risk events in the market. The definition of these events still has been debatable. Nevertheless,
the proposals of most authors have common elements that allow us to arrive at a consensus.
Generally, the market crash is a sudden drastic decline in the prices of financial assets in a specific
market [68]. Additionally, the applied model for a specific market takes an important place in
the definition of “drastic decline”. For instance, Wang et al. [68] take into account events with a
minimum one-day decrease of 5% in the stock returns. These authors [26] identify financial
crashes as a decrease of 25% or less of multi-year financial returns. Lleo and Ziemba [69] define
a crash as a specific event of a day, which decreasing closing price exceeds a fall of 10% between
the highest and the lowest value of the stock index in a year. Hong and Stein [70] postulate
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that the market crash is an unexpected event in which appearance was not accompanied by
any financial news. Moreover, the price change during this event is rather negative. Also, it is
worth mentioning the study of Shu and Zhu [71] where their classification of crashes included
almost 50 crashes. It remains a little unclear which factors influence their choice of such an
enormous amount of crashes in such a short period. Researchers emphasize these drops as such,
with a fall of more than 15% and a duration of fewer than three weeks. Nevertheless, regarding
this classification, we are going to emphasize the most relevant, where the complexity of the
index started to decrease and whose initial deviation from regular behavior was noticeable in
advance. Nowadays some people proclaim Bitcoin as a “digital gold”. Gold as a material has
served for jewelry and art as well as electronic or medical components. Limited supply and
current acceptance of Bitcoin as a “digital gold” may erect it to the same level as gold. While
some people back up Bitcoin‘s advantage, demonstrating its similarities with those of gold and
silver [72], others argue that it is the new digital coin [73] due to its high volatility and unclear
future development. However, researchers find its potential benefits during extreme market
periods and provide a set of stylized factors that claim to be successful long-short strategies
that generate sizable and statistically significant excess returns [74]. Despite volatile swings
and many critics, Bitcoin has emerged and attracted much more confidence. Kristoufek [75], Li
and Wang [76] consider that measures of financial and macroeconomic activity can be drivers
of Bitcoin returns. Reviewing papers of the researches above, the experience of others and our
own [77, 78, 79, 80, 81, 82, 83, 84, 85, 86], we have revised our classification of such leaps and
falls, relying on Bitcoin time series during the entire period (01.01.2011–21.01.2021) of verifiable
fixed daily values of the Bitcoin price (BTC) (https://finance.yahoo.com/cryptocurrencies). We
emphasize that

• crashes are short and time-localized drops that last approximately two weeks, with the
weighty losing of price each day. Their volatility is high. In percentage term, their decline
exceeds 30 percent, and normalized returns proceed ±3𝜎 or near to it;

• critical events are those falls that, during their existence, have not had such massive
changes in price as crashes.

Relying on these considerations, we emphasize 29 periods on Bitcoin time series, relying on
normalized returns and volatility, where returns are calculated as

𝐺(𝑡) = ln 𝑥(𝑡 + Δ𝑡) − ln 𝑥(𝑡) ≅ [𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)]/𝑥(𝑡) (1)

and normalized (standardized) returns as

g(𝑡) ≅ [𝐺(𝑡) − ⟨𝐺⟩] /𝜎, (2)

where 𝜎 ≡ √⟨𝐺2⟩ − ⟨𝐺⟩2 is the standard deviation of 𝐺, Δ𝑡 is time lag (in our case Δ𝑡 = 1), and
⟨… ⟩ denotes the average over the time period under study and volatility as

𝑉𝑇(𝑡) =
1
𝑛

𝑡+𝑛−1
∑
𝑡′= 𝑡

|g(𝑡′)|

From the mentioned stylized facts on BTC dynamics, it was noticed how considerably it
started to change near 2014. To gain a deeper understanding of its existence in the starting
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period, we divided the BTC time series into two periods: (01.01.2011-31.08.2016) and (01.09.2016-
21.01.2021). More detailed information about crises, crashes, and their classification under these
definitions is given in table 1 and table 2.

Table 1
List of Bitcoin major crashes and critical events since June 2011 till July 2016

№ Name
Days in Bitcoin High Bitcoin Low Decline, Decline,

correction Price, $ Price, $ % $
1 07.06.2011-10.06.2011 3 29.60 14.65 50 14.95
2 11.10.2011-18.10.2011 7 4.15 2.27 45 1.88
3 15.01.2012-16.02.2012 32 7.00 4.27 39 2.73
4 15.08.2012-18.08.2012 3 13.50 8.00 40 5.50
5 08.04.2013-15.04.2013 7 230.00 68.36 70 161.64
6 28.04.2013-02.05.2013 4 144.00 98.09 32 45.91
7 19.06.2013-04.07.2013 15 111.29 68.50 38 42.79
8 04.12.2013-07.12.2013 3 1237.66 697.02 44 540.64
9 05.02.2014-21.02.2014 16 904.52 111.55 88 792.97
10 24.03.2014-09.04.2014 17 567.56 384.63 32 182.93
11 09.08.2014-17.08.2014 8 592.06 462.18 22 129.88
12 22.09.2014-04.10.2014 12 436.86 322.86 26 114.00
13 12.01.2015-14.01.2015 2 269.33 164.92 39 104.41
14 27.07.2015-23.08.2015 27 293.70 211.43 28 82.27
15 09.11.2015-11.11.2015 2 380.22 304.71 28 75.51
16 18.06.2016-21.06.2016 3 761.04 590.56 22 170.48
17 29.07.2016-01.08.2016 3 654.74 513.43 24 141.31

Table 2
List of Bitcoin major crashes and critical events since January 2017 till March 2020

№ Name
Days in Bitcoin High Bitcoin Low Decline, Decline,

correction Price, $ Price, $ % $
18 04.01.2017-11.01.2017 7 1135.41 785.42 30 349.99
19 15.03.2017-18.03.2017 3 1253.43 971.38 23 282.05
20 10.06.2017-15.07.2017 35 2973.44 1914.09 36 1059.35
21 31.08.2017-13.09.2017 13 4921.85 3243.08 34 1678.77
22 08.11.2017-12.11.2017 4 7444.36 5878.13 21 1566.23
23 16.12.2017-30.12.2017 14 19345.49 12531.52 35 6813.97
24 06.01.2018-05.02.2018 30 17172.30 6937.08 60 10235.22
25 04.03.2018-05.04.2018 33 11504.42 6634.86 42 4869.56
26 04.05.2018-27.05.2018 23 9845.90 7118.88 28 2727.02
27 18.11.2018-15.12.2018 27 5615.26 3232.51 42 2382.75
28 12.07.2019-16.07.2019 4 11797.37 9423.44 20 2373.93
29 06.03.2020-16.03.2020 10 9122.55 5014.48 45 4108.07

Therefore, according to our classification crisis periods with numbers (1, 2, 4-6, 8, 9, 13, 18,
23-25, 27, 29) are crashes, all the rest – critical events.

Figure 2 confirms the importance of dividing the BTC time series in order to observe its
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dynamics in more detail. However, as it can be seen, we could separate time series in much
deeper time scales.

Figure 2: The dynamics of the daily values of the BTC price. The inset shows 1-4 crisis periods presented
in table 1.

In figure 3 output Bitcoin time series for the first and the second periods, their normalized
returns g(𝑡), and volatility 𝑉𝑇(𝑡) calculated for the window of size 100 are presented.

From figure 3 we can see that during periods of crashes and critical events normalized returns
g increases considerably in some cases beyond the limits ±3𝜎. This indicates deviation from the
normal law of distribution, the presence of the “heavy tails” in the distribution g, which are
characteristics of abnormal phenomena in the market. At the same time volatility also grows.
Such qualities are the foundation of our classification for crashes, as it has been mentioned
already. All the rest events are critical. These characteristics serve as indicators of crashes and
critical events as they react only at the moment of the above-mentioned phenomena and do not
allow identifying the corresponding abnormal phenomena in advance. In contrast, most of the
indicators described below will respond to critical changes and crashes in advance. It enables
them to be used as indicators – precursors of such phenomena.

Calculations were carried out within the framework of the algorithm of a rolling (sliding,
moving) window. For this purpose, the part of the time series (window), for which there were
calculated measures of complexity, was selected, then the window was displaced along with the
time series in a predefined value, and the procedure repeated until all the studied series had
exhausted. Further, comparing the dynamics of the actual time series and the corresponding
measures of complexity, we can judge the characteristic changes in the dynamics of the behavior
of complexity with changes in the cryptocurrency. If this or that measure of complexity behaves
in a definite way for all periods of crashes, for example, decreases or increases during the
pre-crashes or pre-critical period, then it can serve as their indicator or precursor.

Calculations of measures of complexity were carried out both for the entire time series, and
for a fragment of the time series localizing some of the emphasized crashes and critical events.
In the latter case, fragments of time series of the same length with fixed points of the onset of
crashes or critical events were selected and the results of calculations of complexity measures
were compared to verify the universality of the indicators. Following some described below
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(a)

(b)

Figure 3: The standardized dynamics, returns g(𝑡), and volatility 𝑉𝑇(𝑡) of BTC/USD daily values for first
(a) and second (b) periods. Horizontal dotted lines indicate the ±3𝜎 borders. The arrows indicate the
beginning of one of the crashes or the critical events.

procedures such time localization as, example, of length 100 or 200, either won‘t make any sense,
or won‘t be possible as some of them are sensitive to time localization, or require a longer length
of the time series as it is required by the procedure for better accuracy of further calculations

3. Informational measures of complexity

Complexity is a multifaceted concept, related to the degree of organization of systems. Patterns
of complex organization and behavior are identified in all kinds of systems in nature and
technology. Essential for the characterization of complexity is its quantification, the introduction
of complexity measures, or descriptors [87].

We may speak of the complexity of a structure, meaning the amount of information (number
of bits) of the structure; this is the minimum space we need to store enough information about
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the structure that allows us its reconstruction. We may also speak of the algorithmic complexity
of a certain task: this is the minimum time (or other computational resources) needed to carry
out this task on a computer. And we may also speak of the communication complexity of tasks
involving more than one processor: this is the number of bits that have to be transmitted in
solving this task [88, 89, 90].

Historically, the first attempt to quantify complexity was based on Shannon’s information
theory [91] and Kolmogorov complexity [92].

3.1. Lempel-Ziv complexity

Lempel-Ziv complexity (LZC) is a classical measure that, for ergodic sources, relates the concepts
of complexity (in the Kolmogorov-Chaitin sense), and entropy rate [93, 94]. For an ergodic
dynamical process, the amount of new information gained per unit of time (entropy rate) can
be estimated by measuring the capacity of this source to generate new patterns (LZC). Because
of the simplicity of the LZC method, the entropy rate can be estimated from a single discrete
sequence of measurements with a low computational cost [95].

In this paper, we show that the LZC measure can be just such a measure of complexity, which
is an early precursor of crisis phenomena in the cryptocurrency market [96, 97, 2, 80].

Historically, the first LZC measure system studies for financial time series were conducted by
Da Silva [98], Da Silva et al. [99], Giglio and Da Silva [100], Giglio et al. [97]. They considered
the deviation of LZC from that value for a random time series as a measure of actual market
efficiency in absolute [96, 99, 100, 97] or relative [98] terms. Using this approach Da Silva et al.
[99] were able to detect decreases in efficiency rates of the major stocks listed on the Sao Paulo
Stock Exchange in the aftermath of the 2008 financial crisis. Lempel and Ziv [101] have surveyed
the principal applications of algorithmic (Kolmogorov) complexity to the problem of financial
price motions and showed the relevance of the algorithmic framework to structure tracking
in finance. Some empirical results are also provided to illustrate the power of the proposed
estimators to take into account patterns in stock returns. Brandouy et al. [102] proposed a
generic methodology to estimate the Kolmogorov complexity of financial returns. Examples
are given with simulated data that illustrate the advantages of our algorithmic method: among
others, some regularities that cannot be detected with statistical methods can be revealed by
compression tools. Applying compression algorithms to daily returns of the Dow Jones Industrial
Average (DJIA), the authors concluded on an extremely high Kolmogorov complexity and by
doing so, proposed another empirical observation supporting the impossibility to outperform
the market. The structural complexity of time series describing returns on New York’s and
Warsaw’s stock exchanges was studied using two estimates of the Shannon entropy rate based
on the Lepel-Ziv and Context Tree Weighting algorithms [103]. Such structural complexity of
the time series can be used as a measure of the internal (modelless) predictability of the main
pricing processes and testing the hypothesis of an efficient market. Somewhat surprisingly,
the results of Gao et al. [104], in which the authors computed the LZC from two composite
stock indices, the Shanghai stock exchange composite index (SSE) and the DJIA, for both low-
frequency (daily) and high-frequency (minute-to-minute) stock index data. The calculation
results indicate that that the US market is basically fully random and consistent with the efficient
market hypothesis (EMH), irrespective of whether low- or high-frequency stock index data are
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used. The Chinese market is also largely consistent with the EMH when low-frequency data are
used. However, a completely different picture emerges when the high-frequency stock index
data are used. Cao and Li [105] presents a novel method for measuring the complexity of a
time series by unraveling a chaotic attractor modeled on complex networks. The complexity
index, which can potentially be exploited for prediction, has a similar meaning to the LZC and
is an appropriate measure of a series’ complexity. The proposed method is used to research the
complexity of the world’s major capital markets. The almost absent sensitivity of the LZC to
fluctuations in the time series indicates most likely errors in the calculation algorithm during
the transformation of the time series. The complexity–entropy causality plane is employed
in order to explore disorder and complexity in the space of cryptocurrencies [105]. They are
found to exist in distinct planar locations in the representation space, ranging from structured
to stochastic-like behavior.

A brief analysis of the problem indicates that so far, the Lempel-Ziv informational measure
of the complexity has not been used to study the stability and behavior of the cryptocurrency
market in a crisis. In this section, we use the Lempel-Ziv complexity measure to study the
cryptocurrency market. Using the example of the most capitalized cryptocurrency – Bitcoin
– we demonstrate the ability to identify the dynamics of varying complexity. Particularly
relevant is the identification of the characteristic behavior of Bitcoin during the crisis phases of
market behavior. By observing the dynamics of the Lempel-Ziv measure, precursors of crisis
phenomena can be constructed [106].

3.1.1. The concept of Kolmogorov complexity

Let us begin with the well-known degree of complexity proposed by Kolmogorov [107]. The
concept of Kolmogorov complexity (or, as they say, algorithmic entropy) emerged in the 1960s
at the intersection of algorithm theory, information theory, and probability theory. A. Kol-
mogorov’s idea was to measure the amount of information contained in individual finite objects
(rather than random variables, as in the Shannon theory of information). It turned out to be
possible (though only to a limited extent). A. Kolmogorov proposed to measure the amount of
information in finite objects using algorithm theory, defining the complexity of an object as
the minimum length of the program that generates that object. This definition is the basis of
algorithmic information theory as well as algorithmic probability theory: an object is considered
random if its complexity is close to maximum.

What is the Kolmogorov complexity and how to measure it? In practice, we often encounter
programs that compress files (to save space in the archive). The most common are called zip, gzip,
compress, rar, arj, and others. Applying such a program to some file (with text, data, program),
we get its compressed version (which is usually shorter than the original file). After that, you can
restore the original file using the paired program “decompressor”. Therefore, approximately, the
Kolmogorov complexity of a file can be described as the length of its compressed version. Thus,
a file that has a regular structure and is well compressed has a small Kolmogorov complexity
(compared to its length). On the contrary, a badly compressed file has a complexity close to its
length.

Suppose we have a fixed method of description (decompressor)𝐷. For this word 𝑥, we consider
all its descriptions, i.e., all words 𝑦 for which 𝐷(𝑦) it is defined and equal to 𝑥. The length of the
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shortest of them is called the Kolmogorov complexity of the word 𝑥 in this way of description 𝐷:

𝐾𝑆𝐷(𝑥) = min{𝑙(𝑦) | 𝐷(𝑦) = 𝑥}

where 𝑙(𝑦) denotes the length of the word. The index 𝐷 emphasizes that the definition depends
on the chosen method 𝐷. It can be shown that there are optimal methods of description. The
better the description method, the shorter it is. Therefore, it is natural to make the following
definition: the method 𝐷1 is no worse than the method 𝐷2 if

𝐾𝑆𝐷1 ≤ 𝐾𝑆𝐷2(𝑥) + 𝑐

for some 𝑐 and all 𝑥.
Thus, according to Kolmogorov, the complexity of an object (for example, the text is a

sequence of characters) is the length of the minimum program that outputs the text, and entropy
is the complexity that is divided by the length of the text. Unfortunately, this definition is
purely speculative. There is no reliable way of identifying this program uniquely, but there
are algorithms that are actually just trying to calculate the Kolmogorov complexity of text and
entropy.

A universal (in the sense of applicability to different language systems) measure of the
complexity of the finite character sequence was suggested by Lempel and Ziv [101]. As part of
their approach, the complexity of a sequence is estimated by the number of steps in the process
that gives rise to it.

Acceptable (editorial) operations are: a) character generation (required at least for the syn-
thesis of alphabet elements) and b) copying the “finished” fragment from the prehistory (i.e.
from the already synthesized part of the text).

Let be Σ a complete alphabet, 𝑆 – text (a sequence of characters) composed of elements Σ; 𝑆[𝑖]
– 𝑖𝑡ℎ text symbol; 𝑆[𝑖 ∶ 𝑗] – a snippet of text from the 𝑖𝑡ℎ to 𝑗 𝑡ℎ character inclusive (𝑖 < 𝑗); 𝑁 = |𝑆|
– length of text 𝑆. Then the sequence synthesis scheme can be represented as a concatenation

𝐻(𝑆) = 𝑆[1 ∶ 𝑖1]𝑆[𝑖1 + 1 ∶ 𝑖2] … 𝑆[𝑖𝑘−1 + 1 ∶ 𝑖𝑘] … 𝑆[𝑖𝑚−1 + 1 ∶ 𝑁],

where 𝑆[𝑖𝑘−1 + 1 ∶ 𝑖𝑘] is the fragment 𝑆 generated at the 𝑘𝑡ℎ step, and 𝑚 = 𝑚𝐻(𝑆) is the number
of process steps. Of all the schemes of generation is chosen the minimum number of steps.
Thus, the Lempel-Ziv complexity of the sequence 𝑆 is

𝑐𝐿𝑍(𝑆) = min
𝐻

{𝑚𝐻(𝑆)}.

The minimum number of steps is provided by the choice to copy at each step the longest
prototype from the prehistory. If you mark by the position number 𝑗(𝑘) from which the copying
begins in step 𝑘 the length of the copy fragment

𝑙𝑗(𝑘) = 𝑖𝑘 − 𝑖𝑘−1 − 1 = max
𝑗≤𝑖𝑘−1

{𝑙𝑗 ∶ 𝑆[𝑖𝑘−1 + 1 ∶ 𝑖𝑘−1 + 𝑙𝑗] = 𝑆[𝑗 ∶ 𝑗 + 𝑙𝑗 − 1]}

and the 𝑘𝑡ℎ component of these complex decomposition can be written in the form

𝑆[𝑖𝑘−1 + 1 ∶ 𝑖𝑘] = {
𝑆[𝑗(𝑘) ∶ 𝑗(𝑘) + 𝑙𝑗(𝑘) − 1] if 𝑗(𝑘) ≠ 0,
𝑆[𝑖𝑘−1 + 1] if 𝑗(𝑘) = 0.
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The case 𝑗(𝑘) = 0 corresponds to a situation where a symbol is in the position 𝑖𝑘−1 + 1 that
has not been encountered previously. In doing so, we use a character generation operation.

Complex text analysis can be performed in two regimes – segmentation and fragmentation.
The first regime is discussed above. It gives an integrated view of the structure of the sequence
as a whole and reduces it to disjoint but interconnected segments (without spaces). The other
regime is to search for individual fragments characterized by an abnormally low complexity
which means that they characterized by a sufficiently high degree of structure. Such fragments
are detected by calculating local complexity within variable-length windows that slide along a
sequence. Curves of change of local complexity along a sequence are called complex profiles. A
set of profiles for different window sizes reveals the boundaries of anomalous fragments and
their relationship.

We will find the LZC complexity for the time series, which is, for example, the daily values
of the cryptocurrency price 𝑥(𝑡). To investigate the dynamics of LZC and compare it with
cryptocurrency prices, we will find this measure of complexity for a fixed length (window)
contract. To do this, we calculate the logarithmic returns accordingly to equation (1) and turn
them into a sequence of bits.

You can specify the number of states that are differentiated (calculus system). Yes, for two
different states we have 0, 1, for three – 0, 1, 2, etc. In the case of three states, unlike the binary
coding system, a certain threshold 𝜎 is set and the states g are coded as follows [99, 100, 97]:

g =
⎧

⎨
⎩

0 if g < −𝜎,
1 if −𝑏 ≤ g ≤ 𝑏,
2 if g > 𝑏.

The algorithm performs two operations: (1) adds a new bit to an already existing sequence;
(2) copies the already formed sequence. Algorithmic complexity is the number of such operations
required to form a given sequence.

For a random sequence of lengths 𝑛, the algorithmic complexity is calculated by expression
𝐿𝑍𝐶𝑟 = 𝑛/ log 𝑛. Then, the relative algorithmic complexity is the ratio of the obtained complexity
to the complexity of the random sequence 𝐿𝑍𝐶 = 𝐿𝑍𝐶/𝐿𝑍𝐶𝑟.

Obviously, the classical indicators of algorithmic complexity are unacceptable and lead to
erroneous conclusions. To overcome such difficulties, multiscale methods are used.

The idea of this group of methods includes two consecutive procedures: 1) coarse-graining
(“granulation”) of the initial time series – the averaging of data on non-intersecting segments,
the size of which (the window of averaging) increased by one when switching to the next
largest scale; 2) computing at each of the scales a definite (still mono scale) complexity indicator.
The process of “rough splitting” consists in the averaging of series sequences in a series of
non-intersecting windows, and the size of which – increases in the transition from scale to scale
[108]. Each element of the “granular” time series follows the expression:

𝑦 𝜏𝑗 =
1
𝜏

𝑗𝜏
∑

𝑖=(𝑗−1)𝜏+1
g(𝑖), for 1 ≤ 𝑗 ≤ 𝑁/𝜏 , (3)

with corresponding scale factor 𝜏. The length of each “granular” row depends on the length of
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the window and is even 𝑁/𝜏. For a scale of 1, the “granular” series is exactly identical to the
original one.

The coarse graining procedure for scales 2 and 3 is shown in figure 4.

Figure 4: Coarse-graining procedure diagram: (a) scale factor 𝜏 = 2; (b) scale factor 𝜏 = 3.

To find the LZC measure of the time series, the rolling time windows were considered; the
index for every window was calculated, and then the average was obtained.

Obviously, the crisis in the cryptocurrency market responds to noticeable fluctuations in
standardized returns. Therefore, it is logical to choose 𝜎 as the value for the threshold value 𝑏.

Figure 5 shows the dependence of the LZC on the scale. The absence of LZC fluctuations
at scales exceeding 40 allows us to confine ourselves to this magnitude of the scale when
calculating the multiscale measure.

Calculations of measures of complexity were carried for the two periods of BTC. Figure 6
presents the results of calculations of mono-(𝐿𝑍𝐶𝑚1) and multi-(𝐿𝑍𝐶𝑚40) scaling LZC measures.
The calculations were performed for a rolling window of 100 days and an increment of 1 day.

The data in figure 6 indicate that the LZC measure is noticeably reduced both in the case of
mono-scale (𝑚1) and averaged over the scales from 1 to 40 (𝑚40) for all 29 crashes and critical
events in the immediate vicinity of the crisis point.

As the results of calculations showed, the choice of the size of a rolling window is important: in
the case of large windows, points of crises of different times can fall into the window, distorting
the influence of each of the crises. When choosing small windows, the results fluctuate greatly,
which makes it difficult to determine the actual point of the crisis. The used window length of
100 days turned out to be optimal for the separation of crises and fixing the LZC measure as an
indicator.

Since the LZC measure begins to decrease even before the actual crisis point, it can be called
an indicator-precursor of crisis phenomena in the cryptocurrency market.
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(a)

(b)

Figure 5: Scale-dependent LZC (a) and its version with the rolling window approach (b).

3.2. Entropy as a measure of complexity

Nowadays, the most important quantity that allows us to parameterize complexity in deter-
ministic or random processes is entropy. Originally, it was introduced by R. Clausius [109], in
the context of classical thermodynamics, where according to his definition, entropy tends to
increase within an isolated system, forming the generalized second law of thermodynamics.
Then, the definition of entropy was extended by Boltzmann [110], Gibbs [111], linking it to
molecular disorder and chaos to make it suitable for statistical mechanics, where they combined
the notion of entropy and probability [112].

After the fundamental paper of Shannon [91] in the context of information theory, where
entropy denoted the average amount of information contained in the message, its notion was
significantly redefined. After this, it has been evolved along with different ways and successful
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(a)

(b)

Figure 6: Comparative dynamics of BTC price fluctuations and mono- and multi-scaling LZC measures
for first (a) and second (b) periods of the entire time series of Bitcoin.

enough used for the research of economic systems [113, 114, 115, 116].
A huge amount of different methods, as an example, from the theory of complexity, the

purpose of which is to quantify the degree of complexity of systems obtained from various
sources of nature, can be applied in our study. Such applications have been studied intensively
for an economic behavior system.

The existence of patterns within the series is the core in the definition of randomness, so it
is appropriate to establish such methods that will be based on the different patterns and their
repetition [117]. In this regard, Pincus [118] described the methodology Approximate entropy
(ApEn) to gain more detail analysis of relatively short and noisy time series, particularly, of
clinical and psychological. Its development was motivated by the length constraints of biological
data. Since then it has been used in different fields such as psychology [119], psychiatry [120],
and finance [121, 122, 123, 124, 125]. Pincus and Kalman [125] considering both empirical data
and models, including composite indices, individual stock prices, the random-walk hypothesis,
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Black-Sholes, and fractional Brownian motion models to demonstrate the benefits of ApEn
applied to the classical econometric modeling apparatus. This research the usefulness of ApEn
on the example of three major events of the stock market crash in the US, Japan, and India.
During the major crashes, there is significant evidence of a decline of ApEn during and pre-crash
periods. Based on the presented results, their research concludes that ApEn can serve as a
base for a good trading system. Duan and Stanley [126] showed that it is possible to effectively
distinguish the real-world financial time series from random-walk processes by examining
changing patterns of volatility, approximate entropy, and the Hurst exponent. The empirical
results prove that financial time series are predictable to some extent and ApEn is a good
indicator to characterize the predictable degree of financial time series. Delgado-Bonal [127]
gives evidence of the usefulness of ApEn. The researcher quantifies the existence of patterns in
evolving data series. In general, his results present that degree of predictability increases in
times of crisis.

Permutation entropy (PEn), according to the previous approach, is a complexity measure that is
related to the original Shannon entropy (ShEn) that applied to the distribution of ordinal patterns
in time series. Such a tool was proposed by Bandt and Pompe [128], which is characterized by its
simplicity, computational speed that does not require some prior knowledge about the system,
strongly describes nonlinear chaotic regimes. Also, it is characterized by its robustness to noise
[129, 130] and invariance to nonlinear monotonous transformations [131]. The combination of
entropy and symbolic dynamics turned out to be fruitful for analyzing the disorder for the time
series of any nature without losing their temporal information.

As an example, Henry and Judge [132] applied PEn to the Dow Jones Industrial Average (DJIA)
to extract information from this complex economic system. The result demonstrates the ability
of the PEn method to detect the degree of disorder and uncertainty for the specific time that is
explored. Sigaki et al. [133] applied PEn and statistical complexity over sliding time-window of
daily closing price log-returns to quantify the dynamic efficiency of more than four hundred
cryptocurrencies. Authors address to the efficient market hypothesis when the values of two
statistical measures within a time-window cannot be distinguished from those obtained by
chance. They found that 37% of the cryptocurrencies in their study stayed efficient over 80% of
the time, whereas 20%were informationally inefficient in less than 20% of the time. Moreover, the
market capitalization was not correlated with their efficiency. Performed analysis of information
efficiency over time reveals that different currencies with similar temporal patterns formed
four clusters, and it was seen that more young currencies tend to follow the trend of the most
leading currencies. Sensoy [134] compared the time-varying weak-form efficiency of Bitcoin
prices in terms of US dollars (BTC/USD) and euro (BTC/EUR) at a high-frequency level by PEn.
He noticed that BTC/USD and BTCEUR have become more informationally useful since the
beginning of 2016, namely Bitcoin in the same period. Researcher also found that with higher
frequency in the Bitcoin market, we had lower price efficiency. Moreover, cryptocurrency
liquidity (volatility) had a significant positive (negative) effect on the informational efficiency of
its price.

Also, researh by Metin Karakaş [135] is dedicated both to Bitcoin and Ethereum. Here, the
concept of entropy was applied for characterizing the nonlinear properties of the cryptocurren-
cies. For her goal, Shannon, Tsallis, Rényi, and Approximate entropies were estimated. From
her empirical results, it was obtained that all entropies were positive. Of great interest was the
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results of ApEn which demonstrated larger value for Ethereum than for Bitcoin. In this case, it
concluded that Ethereum had higher volatility.

Pele and Mazurencu-Marinescu-Pele [136] investigated the ability of several econometrical
models to forecast value at risk for a sample of daily time series of cryptocurrency returns.
Using high-frequency data for Bitcoin, they estimated the entropy of the intraday distribution of
log-returns through the symbolic time series analysis STSA, producing low-resolution data from
high-resolution data. Their results showed that entropy had strong explanatory power for the
quantiles of the distribution of the daily returns. They confirmed the hypothesis that there was
a strong correlation between the daily logarithmic price of Bitcoin and the entropy of intraday
returns based on Christoffersen’s tests for Value at Risk (VaR) backtesting, they concluded
that the VaR forecast built upon the entropy of intraday returns was the best, compared to the
forecasts provided by the classical GARCH models.

3.2.1. Time delay method

The state of the system can be described by the set of variables. Its observational state can be
expressed through a 𝑑-dimensional vector or matrix, where each of its components refers to a
single variable that represents a property of the system. After a while, the variables change,
resulting in different system states.

Usually, not all relevant variables can be captured from our observations. Often, only a single
variable may be observed. Thakens’ theorem [137] that was mentioned in previous sections
ensures that it‘s possible to reconstruct the topological structure of the trajectory formed by
the state vectors as the data collected for this single variable contains information about the
dynamics of the whole system.

For an approximate reconstruction of the original dynamics of the observed system, we
project the time series onto a Reconstructed Phase Space [138, 131, 139] with the commonly
used time delay method [131] which relied on the embedding dimension and time delay.

The embedding dimension is being the dimensionality of the reconstructed system (corre-
sponds to the number of relevant variables that may differ from one system to another. The
time delay parameter specifies the temporal components of the vector components. As an
example, in recurrence analysis that will be described in section 6, Webber, Jr. and Zbilut [140]
recommend setting the embedding dimension between 10 and 20. Regarding the analysis of
financial systems, values between 1 and 20 for the embedding dimension are considered to be
reasonable as well as the time delay.

3.2.2. Shannon entropy

The general approach can be described as follows. Formally, we represent the underlying
dynamic state of the system in probability distribution form 𝑃 and then the Shannon entropy 𝑆
with an arbitrary base (i.e. 2, e, 10) is defined as:

𝑆[𝑃] = −
𝑁
∑
𝑖=1

𝑝𝑖 log 𝑝𝑖. (4)
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Here, in equation 4, 𝑝𝑖 represents the probability that price 𝑖 occurs in the sample’s distribution
of the Bitcoin time series, and 𝑁 is the total amount of data in our system. Dealing with
continuous probability distributions with a density function 𝑓 (𝑥), we can define the entropy as:

𝐻(𝑓 ) = −
+∞

∫
−∞

𝑓 (𝑥) log 𝑓 (𝑥)𝑑𝑥. (5)

According to the approach, the negative log increases with rarer events due to the information
that is encoded in them (i.e., they surprise when they occur). Thus, when all 𝑝𝑖 have the same
value, i.e. where all values are equally probable, and 𝑆[𝑃] reaches its minimum for more
structured time series (events that are more certain). Equation 5 is obeyed to the same rules as
4. In figure 7 are the empirical results for Shannon entropy and Bitcoin time series.

(a)

(b)

Figure 7: ShEn dynamics along with the first (a) and the second (b) periods of the entire time series of
Bitcoin.

It can be seen from the figure that Shannon’s entropy is rapidly increasing at the very moment
of the crisis itself and is an excellent indicator of crisis phenomena.
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3.2.3. Approximate entropy

To gain more detail analysis of the complex financial systems, it is known other entropy methods
have become known, particularly, ApEn developed by Pincus [118] for measuring regularity in
a time series.

When calculating it, given 𝑁 data points {𝑥 (𝑖 ) | 𝑖 = 1, … , 𝑁} are transformed into subvectors
X⃗ (𝑖) ∈ ℜ𝑑𝐸 , where each of those subvectors has [𝑥(𝑖 ), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑑𝐸 − 1)] for each 𝑖, 1 ≤
𝑖 ≤ 𝑁 −𝑚+1. Correspondingly, for further estnimations, we would like to calculate a probability
of finding such patterns whose Chebyshev distance 𝑑[X⃗(𝑖), X⃗(𝑗)] does not exceed a positive real
number 𝑟:

𝐶𝑑𝐸𝑖 (𝑟) = (𝑁 − 𝑑𝐸 + 1)−1
𝑁−𝑑𝐸+1
∑
𝑗=1

ℋ(𝑟 − 𝑑[X⃗(𝑖), X⃗(𝑗)])

where ℋ(⋅) is the Heviside function which count the number of instances 𝑑[X⃗(𝑖), X⃗(𝑗)] ≤ 𝑟.
Next, we estimate

𝐹 𝑑𝐸(𝑟) = (𝑁 − 𝑑𝐸 + 1)−1
𝑁−𝑑𝐸+1
∑
𝑖=1

ln(𝐶𝑑𝐸𝑖 (𝑟)),

and ApEn of a corresponding time series (for fixed 𝑑𝐸 and 𝑟) measures the logarithmic likelihood
that patterns that are close for 𝑑𝐸 adjacent observations remain close on the next comparison:

𝐴𝑝𝐸𝑛(𝑑𝐸, 𝑟 , 𝑁 ) = 𝐹 𝑑𝐸(𝑟) − 𝐹 𝑑𝐸+1(𝑟), (6)

i.e., equation (6) measures the logarithmic likelihood that sequences of patterns that are close
for 𝑑𝐸 observations will remain close after further comparisons. Therefore, if the patterns in the
sequence remain close to each other (high regularity), the ApEn becomes small, and hence, the
time series data has a lower degree of randomness. High values of ApEn indicate randomness
and unpredictability. But it should be considered that ApEn results are not always consistent,
thus it depends on the value of 𝑟 and the length of the data series. However, it remains insensitive
to noise of magnitude if the values of 𝑟 and 𝑑𝐸 are sufficiently good, and it is robust to artifacts
and outliers. Although ApEn remains usable without any models, it also fits naturally into
a classical probability and statistics frameworks, and, generally, despite its shortcomings, it
is still the applicable indicator of system stability, which significantly increased values may
prognosticate the upcoming changes in the dynamics of the data.

The empirical results for the corresponding measure of entropy along with two periods of
BTC are presented in figure 8.

Long before the crisis, the value of this type of entropy begins to decrease, the complexity
of the system decreases. This measure, in our opinion, is one of the earliest precursors of the
crisis.

3.2.4. Permutation entropy

PEn, according to the previous approach, is a complexity measure that is related to the fun-
damental Information theory and entropy proposed by Shannon. Such a tool was proposed
by Bandt and Pompe [128], which is characterized by its simplicity, computational speed that
does not require some prior knowledge about the system, strongly describes nonlinear chaotic
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(a)

(b)

Figure 8: ApEn dynamics along with the first (a) and the second (b) periods of the entire time series of
Bitcoin calculated with rolling window of 100 days and the step size of 1 day.

regimes. Also, it is characterized by its robustness to noise [129, 130] and invariance to nonlinear
monotonous transformations [131]. The combination of entropy and symbolic dynamics turned
out to be fruitful for analyzing the disorder for the time series of any nature without losing
their temporal information. According to this method, we need to consider “ordinal patterns”
that consider the order among time series and relative amplitude of values instead of individual
values. For evaluating PEn, at first, we need to consider a time series {𝑥(𝑖) | 𝑖 = 1, … , 𝑁} which
relevant details can be “revealed” in 𝑑𝐸-dimensional vector

X⃗ (𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 𝜏), … , 𝑥(𝑖 + (𝑑𝐸 − 1)𝜏)] ,

where 𝑖 = 1, 2, … , 𝑁 − (𝑑𝐸 − 1)𝜏, and 𝜏 is an embedding delay of our time delayed vector. After
it, we consider 𝑑𝐸! permutation patterns 𝜋 = (𝑘0, 𝑘1, … , 𝑘𝑑𝐸−1) of symbols (0, 1, … , 𝑑𝐸 − 1) if the
following condition for each X⃗(𝑖) is satisfied:

𝑥(𝑖 + 𝑘0) ≤ 𝑥(𝑖 + 𝑘1) ≤ … ≤ 𝑥(𝑖 + 𝑘𝑑𝐸−1).
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We will use ordinal pattern probability distribution as a basis for entropy estimation. Further,
let us denote 𝑓 (𝜋𝑙) as the frequency of occurrence of the pattern 𝜋𝑙. Then, the relative frequencies
of permutations in the time series are defined as

𝑝(𝜋𝑙) =
𝑓 (𝜋𝑙)

𝑁 − (𝑑𝐸 − 1)𝜏
,

where the ordinal pattern probability distribution is given by 𝑃 = {𝑝(𝜋𝑙) | 𝑙 = 1, … , 𝑑𝐸!}. Finally,
permutation entropy (denoted by 𝑆[𝑃]) of the corresponding time series presented in the
following form:

𝑆[𝑃] = −
𝑑𝐸!
∑
𝑙=1

𝑝(𝜋𝑙) log 𝑝(𝜋𝑙).

Then, to get more convenient values, we calculate Normalized permutation entropy as:

𝐸𝑠[𝑃] =
𝑆[𝑃]
𝑆𝑚𝑎𝑥

,

whose 𝑆𝑚𝑎𝑥 = ln 𝑑𝐸! represents the maximum value of 𝐸𝑆[𝑃] (a normalization constant), and
normalized entropy has a range 0 ≤ 𝑃𝐸𝑛 ≤ 1. Here, the maximal entropy possible value is
realized when all 𝑑𝐸! possible permutations have an equal probability of occurrence (more noise
and random data). With the much lower entropy value, we get a more predictable and regular
sequence of the data. Therefore, the 𝑃𝐸𝑛 gives a measure of the departure of the time series
from a complete noise and stochastic time series.

There must be predefined appropriate parameters on which 𝑃𝐸𝑛 relying, namely, the embed-
ding dimension 𝑑𝐸 is paramount of importance because it determines 𝑑𝐸! possible states for the
appropriate probability distribution. With small values such as 1 or 2, parameter 𝑑𝐸 will not
work because there are only few distinct states. Furthermore, for obtaining reliable statistics
and better detecting the dynamic structure of data, 𝑑𝐸 should be relevant to the length of the
time series or less [141]. For our experiments, 𝑑𝐸 ∈ {3, 4} and 𝜏 ∈ {2, 3} indicate the best results.
Hence, in figure 9 we can observe the empirical results for permutation entropy, where it serves
as indicator-precursor of the possible crashes and critical events.

Information measures of complexity due to their initial validity and transparency, ease of
implementation and interpretation of the results occupy a prominent place among the tools for
the quantitative analysis of complex systems.

4. Fractal and multifractal measures of complexity

The economic phenomena that cannot be explained by the traditional efficient market hypothesis
can be explained by the fractal theory proposed by Mandelbrot and Wheeler [142]. Before,
fractal studies focus on the Rescaled Range (R/S) analysis were proposed by Hurst [143, 144]
in the field of hydrology. However, Lo [145] discovered that the R/S method is sensitive to
short-term autocorrelation, which may lead to a bias error of nonstationary time series. To solve
this problem, Peng et al. [146] proposed a widely used detrended fluctuation analysis (DFA) that
uses a long-range power law to avoid significant long-term autocorrelation false detection [147].
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(a)

(b)

Figure 9: PEn dynamics along with the first (a) and the second (b) periods of the entire time series of
Bitcoin.

As a multifractal extension (MF) of the DFA approach, Kantelhardt et al. [148] introduced the MF-
DFA method that for a long time has been successfully applied for a variety of financial markets,
such as stock [149, 150, 151, 152, 153, 154, 155, 156, 157], commodity [158, 159, 160, 161, 155],
tanker [162], derivative [163], foreign exchange rates [164, 165, 166, 167, 168], and electricity
markets [169]. An especially interesting application of multifractal analysis is measuring the
degree of multifractality of time series, which can be related to the degree of efficiency of
financial markets [170, 171, 172, 173].

Podobnik and Stanley [174] extended DFA by introducing a detrended cross-correlation
analysis (DCCA) approach that can be used to study long-range cross-correlation between
two non-stationary time series. Guided by ready-made approaches, Zhou [175] proposed a
multifractal detrended cross-correlation analysis (MF-DCCA) [176], which is a combination of
MF-DFA and DCCA. Then the number of interesting methods has been proposed, such as the
method of MF-PX-DFA and MF-PX-DMA [177], MF-X-DMA [178], MF-HXA [179], MF-X-PF
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[180], etc. These increase the efficiency of some applications of the MF-DCCA method. The
MF-DCCA method has been widely applied to describe the multifractal characteristics of two
cross-correlated nonstationary time series in the financial field such as the foreign exchange
market [181, 182], the stock market [183, 184, 185], the crude oil market [186, 187, 188], carbon
market [189, 190], and the commodity market [191, 155]. Zhang et al. [192] also employ
MF-DCCA to examine the relationship between mass media and new media [192] and to
quantify cross-correlation between investor sentiment proxies [193], i.e., fears [194] and Twitter
happiness sentiment [195].

Along with common multifractal methods, Gronwald and Sattarhof [196] applied an in-
termittency coefficient for the evaluation of financial market efficiency. While the random
walk corresponds to the most genuine form of market efficiency, the larger the value of the
intermittency coefficient is, the more inefficient a market would be. In an empirical application
using data from the largest current market for tradable pollution permits, the European Union
Emissions Trading Scheme, they show that this market becomes more efficient over time. Be-
sides, the degree of market efficiency is overall similar to that for the US stock market; for one
sub-period, the market efficiency is found to be higher. While the first finding is anticipated,
the second finding is noteworthy, as various observers expressed regarding the information
efficiency of this newly established artificial market.

Since Bitcoin was born, it has attracted the considerable attention of researchers from different
fields of science that apply modern methods and models of analysis of the peculiarities of the
dynamics of the popular digital currency, namely, the methods of multifractal analysis to gain a
deeper understanding of its inherent nonlinear statistical properties.

Using 1-min returns of Bitcoin price, Takaishi investigated statistical properties and MF
of Bitcoin time series [197]. His results present that 1-min returns distribution is fat-tailed,
and kurtosis largely deviates from the Gaussian expectation. Although with large time scales,
kurtosis is anticipated to approach the Gaussian expectation, he found that convergence to that
is very slow. Skewness is found to be negative at short time scales and becomes consistent with
zero at large time scales. Also, he analyzed daily volatility-asymmetry by using GARCH, GJR,
and RGARCH models and found no evidence of volatility asymmetry. On exploring MF using
MF-DFA, it was confirmed that the Bitcoin time series exhibits MF. The sources of MF are also
investigated, and it is confirmed that both temporal correlation and the fat-tailed distribution
contribute to the MF, and the degree of MF for the temporal correlation is stronger than that
for the fat-tailed distribution.

Generally, Bariviera [67], Bariviera et al. [66] investigated the long memory of the Bitcoin
market using the Hurst exponent. Their research proves the advantages of the DFA methods,
basically, because it is more robust and less sensitive to departures from conditions of stationarity.
They find that daily returns suffered a regime switch. From 2011 until 2014 the Hurst exponent
was showing persistence behavior, whereas after 2014, it equals to white noise, while daily
volatility exhibits persistent behavior during the period under study. Also, daily volatility
presents stronger fluctuations than in daily returns. In particular, that volatility characteristic is
the main peculiarity of the Bitcoin market.

Kirichenko et al. [198] conducted a comparative correlation and fractal analysis to time series
of the Bitcoin cryptocurrency rate and community activities in social networks associated with
famous cryptocurrency. The results of their study show a significant correlation and similar
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multifractal structure between the Bitcoin rate and the community activities. Time series fractal
analysis indicated the presence of self-similar and multifractal properties.

As an example, Jiang et al. [199] attempt to investigate the time-varying long-term memory
in the Bitcoin market through a sliding window approach and by employing a new efficiency
index [200]. The daily dataset for the period from 2010 to 2017 is utilized, and some interesting
findings emerge that:

• generalized Hurst exponents in the Bitcoin market are above 0.5;
• long-term memory exists in the Bitcoin market;
• high degree of inefficiency ratio;
• Bitcoin market does not become more efficient over time;
• rolling window approach can help to obtain more reliable results. Some conclusions for
those who deal with the cryptocurrency market were made.

Al-Yahyaee et al. [201] provides the results on the efficiency of the Bitcoin market compared
to gold, stock, and foreign exchange markets. By applying the MF-DFA approach, researchers
found that the long-memory feature and MF of the Bitcoin market were more robust and,
therefore, more inefficient than the gold, stock, and currency markets.

Gajardo et al. [202] applied MF-ADCCA to analyze the presence and asymmetry of the
cross-correlations between the major currency rates, Bitcoin, the DJIA, gold price, and the
oil crude market. They found that multifractality existed in every cross-correlation studied,
and there was an asymmetry in the cross-correlation exponents under the different trends
of the WTI, Gold, and the DJIA. Bitcoin showed greater multifractal spectra than the other
currencies on its cross-correlation with the WTI, the Gold, and the DJIA. Bitcoin presented a
different relationship between commodities and stock market indices, which had to be taken
into consideration when investing. The reason is that over the years the currency was traded
and over time, it has earned the trust of the community.

The nonlinear patterns of the volatility of the seven Bitcoin markets were investigated by
Lahmiri et al. [203]. Using four diverse distribution inferences: Normal, Student-t, Generalized
Error, and t-Skewed distribution, they explored the fractional long-range dependence in con-
junction with the potential inherent stochasticity of volatility time series. Their results testify to
the existence of long-range memory in Bitcoin market volatility, irrespectively of distributional
inference. The entropy measurement, which indicates a high degree of randomness in the
estimated series, shows the same. As Bitcoin markets are highly disordered and risky, they
cannot be considered suitable for hedging purposes. Their exploration provides strong evidence
against the efficient market hypothesis.

Zhang et al. [204] investigated the cross-correlations of the return-volume relationship of the
Bitcoin market. In particular, they selected eight exchange rates whose trading volume accounts
for more than 98% market shared to synthesize Bitcoin indexes. The empirical results based on
MF-DCCA revealed that: (1) return-volume relationship exhibited the nonlinear dependencies
and power-law cross-correlations; (2) all cross-correlations were multifractal, and there were
anti-persistent behaviors of cross-correlation for 𝑞 = 2; (3) the price of small fluctuations was
more persistent than that of the volume, while the volume of larger fluctuations was more anti-
persistent; (4) the sliding window approach showed that the cross-correlations of return-volume
were anti-persistent in the entire sample period.
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Similarly to our article [205] where we applied the MF-DFA method to Ukrainian and Russian
stock markets, we use it here to explore the multifractal property of Bitcoin and construct
reliable indicator for it.

4.1. Multifractal detrended fluctuation analysis (MF-DFA)

As an extension to the original DFA [146, 206, 207], the multifractal approach [148, 208] es-
timates the Hurst exponent of a time series at different scales. Based on a given time series
{𝑥(𝑖) | 𝑖 = 1, … , 𝑁}, the MF-DFA is described as follows:

(i) The profile 𝑌 (𝑖) (accumulation) is defined as:

𝑌 (𝑖) =
𝑖

∑
𝑗=1

(g(𝑗) − ⟨g⟩), (7)

where ⟨g⟩ stands for the average of returns.
(ii) The profile 𝑌 (𝑖) is then divided into 𝑁𝑠 ≡ int(𝑁/𝑠) non-overlapping time segments of equal

length 𝑠 and the local trend 𝑌 𝑓 𝑖𝑡v for each segment is calculated by the least-square fit. Since
the length of the time series is not always a multiple of 𝑠, a short period at the end of the
profile, which is less than the window size, may be removed. For taking into account the
rejected part and, therefore, to use all the elements of the sequence, the above procedure
is repeated starting from the end of the profile. Therefore, the total 2𝑁𝑠 segments are
obtained together, and the variance is computed as

𝐹 2(v, 𝑠) = 1
𝑠

𝑠
∑
𝑖=1

[𝑌 ((v − 1)𝑠 + 𝑖) − 𝑌 𝑓 𝑖𝑡v (𝑖)]
2
, for v = 1,… , 𝑁𝑠 (8)

and

𝐹 2(v, 𝑠) = 1
𝑠

𝑠
∑
𝑖=1

[𝑌 (𝑁 − (v − 𝑁𝑠)𝑠 + 𝑖) − 𝑌 𝑓 𝑖𝑡v (𝑖)]
2
, for v = 𝑁𝑠 + 1,… , 2𝑁𝑠 (9)

Various types of MF-DFA such as linear, quadratic, or higher order polynomials can be
used for eliminating local trend in segment v; we use a cubic order polynomial.

(iii) Considering the variability of time series and the possible multiple scaling properties, we
obtain the 𝑞𝑡ℎ order fluctuation function by averaging over all segments:

𝐹𝑞(𝑠) = [ 1
2𝑁𝑠

2𝑁𝑠

∑
v=1

[𝐹 2(v, 𝑠)]𝑞/2]
1/𝑞

. (10)

The index 𝑞 can take any non-zero value. For 𝑞 = 0, 𝐹𝑞(𝑠) is divergent and can be replaced
by an exponential of a logarithmic sum

𝐹0(𝑠) = exp [ 1
4𝑁𝑠

2𝑁𝑠

∑
v=1

ln 𝐹 2(v, 𝑠)] .
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(iv) At least, we determine the scaling behavior of the fluctuation function by analyzing
log 𝐹𝑞(𝑠) vs log 𝑠 graphs for each value of 𝑞. Here, 𝐹(𝑠) is expected to reveal power-law
scaling

𝐹𝑞(𝑠) ∼ 𝑠ℎ(𝑞) (11)

for large 𝑛. The scaling exponent ℎ(𝑞) can be considered as generalized Hurst exponent.
With 𝑞 = 2 MF-DFA transforms into standard DFA, and ℎ(2) = 𝐻, where 𝐻 is the well-
known Hurst exponent.

• ℎ(2) ∈ [0.0, 0.5) → anti-persistency. The process under study tends to decrease
(increase) after a previous increasing (decreasing);

• ℎ(2) = 0.5 → uncorrelated process. The fluctuations that depend on 𝑞 tend to a
random walk behavior [131];

• ℎ(2) ∈ (0.5, 1.0] → persistency. If a process tends to increase (decrease) for a some
period 𝑇, then it expected to continue to increase (decrease) for a similar period of
time;

• ℎ(2) > 1.0 → nonstationary process, stronger long-range correlations are present.

Those intervals with time intervals v will dominate which variance 𝐹 2(v, 𝑠) is large and 𝑞
values are positive. Therefore, for positive values of 𝑞 , ℎ(𝑞) describes the scaling behavior
of time intervals with large fluctuations. Large fluctuations are usually characterized by
smaller scaling coefficients of ℎ(𝑞) for multifractal series. On the contrary, for negative
values of 𝑞 , time intervals with a small variance 𝐹 2(v, 𝑠) will dominate. Thus, ℎ(𝑞) will
describe the scaling behavior of time intervals with small fluctuations.

(v) Another way of characterizing multifractality of a time series is in terms of the multifractal
scaling exponent 𝜏 (𝑞) which is related to the generalized Hurst exponent ℎ(𝑞) from the
standard multifractal formalism and given by [146]:

𝜏 (𝑞) = 𝑞ℎ(𝑞) − 1. (12)

Equation (12) reflects temporal structure of the time series as a function of moments 𝑞, i.e.,
it represents the scaling dependence of small fluctuations for negative values of and large
fluctuations for positives values. If (12) represents linear dependence of 𝑞, the time series
is said to be monofractal. Otherwise, if (12) has a nonlinear dependence on 𝑞, then the
series is multifractal.

(vi) The different scalings are better described by the singularity spectrum 𝑓 (𝛼) which can be
defined as:

𝛼 =
𝑑𝜏(𝑞)
𝑑𝑞

= ℎ(𝑞) + 𝑞
𝑑ℎ(𝑞)
𝑑𝑞

,

𝑓 (𝛼) = 𝑞𝛼(𝑞) − 𝜏(𝑞) = 𝑞2
𝑑ℎ(𝑞)
𝑑𝑞

+ 1,

with 𝛼 – the Hölder exponent or singularity strength. Following the methods described
above, we present results that reflect multifractal behavior of the Bitcoin time series.
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(a) (b)

(c) (d)

Figure 10: The fluctuation function 𝐹𝑞(𝑠) (a), multifractal scaling exponent 𝜏 (𝑞) (b), ℎ(𝑞) versus 𝑞 of the
BTC return series (c), and singularity spectrum 𝑓 (𝛼) (d) obtained from MF-DFA for BTC time series.

Figure 10a presents 𝐹𝑞(𝑠) in the log-log plot. The slope changes dependently on 𝑞 , which
indicates the multifractal property of a time series. As it was pointed out, multifractality emerges
not only because of temporal correlation, but also because the Bitcoin returns distribution turns
out to be broad (fat-tailed) [148], and this distribution could contribute to the multifractality
of the time series. The same dependence can be observed in the remaining plots. The scaling
exponent 𝜏 (𝑞) remains nonlinear, as well as generalized Hurst exponents that can serve as
evidence that Bitcoin exhibit multifractal property.

In the case of multifractals, the shape of the singularity spectrum typically resembles an
inverted parabola (see figure 10d); furthermore, the degree of complexity is straightforwardly
quantified by the width of 𝑓 (𝛼) , simply defined as Δ𝛼 = 𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛 , where 𝛼𝑚𝑎𝑥 and 𝛼𝑚𝑖𝑛
correspond to the opposite ends of the 𝛼 values as projected out by different 𝑞-moments (equation
(10)).

In the figure below we present the width of the spectrum of multifractality that changes
over time accordingly to the sliding window approach. The whole figure consists of both a
three-dimensional plot (singularity spectrum) and two-dimensional representation of its surface.

58



Figure 11: Changes in the spectrum of multifractality in time.

If the series exhibited a simple monofractal scaling behavior, the value of singularity spectrum
𝑓 (𝛼) would be a constant. As can be observed, here our series exhibits a simple multifractal
scaling behavior, as the value of singularity spectrum 𝑓 (𝛼) changes dependently on 𝛼 , i.e.,
it exhibits different scalings at different scales. Moreover, with the sliding window of the
corresponding length, we understand that at different time periods Bitcoin becomes more or
less complex. The value of Δ𝛼 gives a shred of additional evidence on it.

As we can see from the presented results, the width of the singularity spectrum after the
crisis starts to increase, which tells us that more violent price fluctuations are usually expected.
With the decreasing width of the singularity spectrum, the series is expected to hold the trend.
As the rule, it reaches its minimum before the collapse of the BTC price.

5. Chaos-dynamical measures

Apparently random fluctuations in financial systems often tend to exhibit varying levels of
complexity and chaos. Regarding limited data, it becomes hard to define the boundaries of
predictability of them. The analysis of such systems, the processes driving their dynamics
chaos theory has been considered in various fields such as economics, finance, physics, and
others [209, 210, 211, 212, 213, 214]. Regarding the analysis of Bitcoin dynamics, the knowledge
about its completely random and, at the same time, deterministic processes can potentially
explain fluctuations in time series of different nature. Considering the financial sector, evidence
on deterministic chaos, the knowledge of such moments when two initially close trajectories
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(b)

Figure 12: The comparison of the corresponding first (a) and second (b) Bitcoin time intervals with the
width of the multifractality spectrum measure.

start to diverge, and of the periods for which they will stay close to each other would have
important implications for regulators and traders, who will develop effective short-term trading
strategies. During the years, chaos theory has been providing approaches to study some
interesting properties of time series. The most widespread are: correlation dimension, the BDS
test, Kolmogorov entropy, Lyapunov exponent, close returns test, etc. [215, 216, 217, 218].

Endowing Bitcoin time series with the sliding window approach and efficient methods of
Lyapunov exponents, and Levy alpha-stable distribution, we are going to reflect its transition
between chaotic and non-chaotic behavior. Also, as it has been observed, such unstable events
as market crashes correspond to fat tails. Thus, the analysis of such extreme events can be
understood throughout Levy alpha-stable distribution.
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5.1. Lyapunov exponents

The evolution of the system exhibits sensitive dependence on initial conditions. It means that
initially close trajectories that evolve may rapidly diverge from each other and have totally
different outcomes. Accordingly, with small uncertainties that amplify enormously quickly,
long-term predictions turn out to be impossible. On the other hand, in a system with attraction
points or stable points, the distance between them decreases asymptotically in time or with the
number of points, which tend to converge [219].

To present the idea more precisely, let’s consider two consecutive points presented as 𝑥(𝑡)
and its initially close neighbor as 𝑥(𝑡) + 𝛿(𝑡), where 𝛿(𝑡) represents a tiny deviation in time 𝑡, as
presented in figure 13.

Figure 13: Divergence of two initially close trajectories in a dynamical system [220].

As two initially close points disturbed by some event, they start to diverge, and the distance
between them grows following exponential law:

‖𝛿(𝑡)‖ ≈ ‖𝛿(0)‖ exp(𝜆𝑡) (13)

with 𝜆 that denotes the Lyapunov exponent (LE); 𝛿(𝑡) is the distance between the reference point
and its nearest neighbor after 𝑡 iterations; 𝛿(0) is the initial distance between the reference point
and its nearest neighbor perturbed with a small error at 𝑡 = 0.

LE is a measure of the exponential rate of nearby trajectories in the phase-space of a dynamical
system. In other words, it quantifies how fast converge or diverge trajectories that start close to
each other, quantifying the strength of chaos in the system.

In such cases when our system 𝑛-dimensional, we have as many LEs as the dimensions in
it. To define them, we consider the evolution of an infinitesimal sphere of perturbed initial
conditions. During its evolution, the sphere will become distorted into an infinitesimal ellipsoid.
Defining the length of the 𝑖𝑡ℎ principal axis as 𝛿𝑖(𝑡), there are 𝑛-Lyapunov exponents given by:

‖𝛿𝑖(𝑡)‖ ≈ ‖𝛿𝑖(0)‖ exp(𝜆𝑖𝑡), for 𝑖 = 1, … , 𝑛. (14)

To identify whether the motion is periodic or chaotic, especially, for large 𝑡 it is recommended
to contribute to the largest Lyapunov exponent (LLE) among the others of the 𝑛-dimensional
dynamical system [220], as the diameter of ellipsoid starts to be controlled by it. Exactly the
LLE is used to quantify the predictability of the systems, since exponential divergence means
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that in the system where the initial difference was infinitesimally small, start to rapidly lose
its predictability behaving differently. However, it should be noted that other exponents also
contain important information about the stability of the system, including the directions of
convergence and divergence of the trajectories [221].

The existence of at least one positive LE is generally seen as a strong indicator of chaos.
Positive LE means that initially similar, phase space trajectories that are sensitive to initial
conditions and diverge exponentially fast, characterize chaotic behavior of the system. Negative
LE responds to the cases when trajectories remain close to each other, but it is not necessarily
implied stability, and we have to examine our system in more detail. Zero or very close to zero
exponents indicate that perturbations made along the trajectory neither diverge nor converge.

With the great interest in LE, more and more methods and proposals for their calculating
have appeared. Unfortunately, there has not been obtained accepted and universal method for
estimating the whole spectrum of Lyapunov exponents from a time series data. One of the most
common and popular algorithms have been applied by Wolf et al. [222], Sano and Sawada [223],
and later improved by Eckmann et al. [224], Rosenstein et al. [225], Parlitz [226], Balcerzak
et al. [227]. Here, we followed the methods proposed by Gao et al. [228, 229], Soloviev et al.
[230, 82], Soloviev and Stratiychuk [231] to compute the spectrum of Lyapunov exponents.
With Rosenstein’s algorithm, we compute only the LLE from an experimental time series. As
again suggested by Eckmann et al. [232] one of the measures from recurrence quantification
analysis can be considered for estimation of the LLE since it detects in a similar way highly
non-monotonic behavior.

With the high growth in computer science, computer simulations of complex and chaotic
systems become increasingly appreciated. For at least two decades, with development in
numerical computations and quantitative analysis, no doubt left that chaos theory suggests the
same unstable fluctuation that may be as common as the extreme events and critical transitions
in financial markets. For instance, Scheinkman and Lebaron [233] explored several indications
of nonlinear dynamic structure in stock market returns. In their opinion, the weaknesses of such
studies are based on time series that are not long enough to reveal the strange (fractal) attractors.
On the other hand, the reason may be chaos that comprises a class of signals intermediate
between regular periodic or quasiperiodic motions and unpredictable, truly stochastic behavior
[234]. Kulkarni [235] denotes that, probably, random financial fluctuations often exhibit varying
levels of fluctuations, chaos. Kulkarni’s paper represents the efficiency of LE for the complexity
analysis of shortly limited data. The analysis constitutes weakly chaotic behavior which
alternates with non-chaotic over the entire period of analysis.

Lyapunov exponents are a natural first choice in exploring and indicating such chaotic
behaviors that occur in it. They do not only classify the system but also tell us the limits of
predictability of the chaotic system [234]. During the last few decades, there was plenty of
scientific research that was related to chaos systems, chaos behavior and, namely, to the LE.
The earliest papers, in which Bajo-Rubio et al. [236], Dechert and Gencay [237] try to use LE
to detect chaos dynamics in financial time series, it is determined that linear, deterministic
processes are characterized with negative LE from nonlinear, chaotic processes with the largest
exponent (where it is positive). Besides, there is an article in which Gençay [238] presents
a methodology to compute the empirical distributions of LE’s using a blockwise bootstrap
technique. This method provides a formal test of the hypothesis that the LLE equals some
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hypothesizes value, and can be used to test the system for the presence of chaotic dynamics.
Such methodology is particularly useful in those cases where the largest exponent is positive
but very close to zero.

Shreemoyee and Vikhyat [239] in their paper investigated the local fractal and chaotic
properties of financial time series by calculating two exponents, the Local Hurst Exponent and
LE. As was seen in their research, all calculations were made with the algorithm of the sliding
window where they had considered two major financial indices of the US: the DJIA and the
S&P 500. Regarding the considered measures, they attempted to predict the major crashes that
took place in these markets.

Srinivasan et al. [240] have provided an explanation and motivation for reconstructed phase
spaces using the methods of time delay and SVD embedding. They explained the meaning of LE
and an algorithm for its estimation for the corresponding chaotic, deterministic, and periodic
time series. From their presented results it is seen that estimated positive and zero exponents
converge to the expected, documented values. Mastroeni and Vellucci [241] obtained empirical
results with the help of the LLE and a determinism test that shows that commodity and futures
prices are representatives of a nonlinear deterministic, rather than stochastic systems. Similarly
to Shreemoyee and Vikhyat [239], Plakandaras et al. [242] measured the Hurst exponent and LE
in the sliding window to focus on persistence and chaotic behavior — two prime characteristics
of uncertainty indices. For such purpose, they analyzed 72 popular indices constructed by
forecasting models, text mining from news articles, and data mining from monetary variables.
More specifically, researchers found that almost all uncertainty indices are persistent, while the
chaotic dynamics are detected only sporadically and for certain indices during recessions of
economic turbulence. Chakrabarti and Sen [243] in one of their chapters explored whether the
global markets are intrinsically unstable where unpredictability, disorder, and discontinuities
are inherent and not aberrations. They investigated a huge amount of literature and examine
the possible non-linear, particularly chaotic nature of the global stock markets. Their study
explores the possible presence of chaos in two phases: over the period for 1998-2005 and from
2006 to 2011. Over 30 indices had been investigated. Empirical results showed that for the first
phase, 29 indices are deterministic. But 10 of them are found to be non-chaotic. Estimated
determinism factors for all the indices are quite high, but Lyapunov exponent is presented to be
non-positive for at least 6 of them, where others are chaotic.

As it is seen, chaos theory and its tools remain a huge challenge for researchers of different
fields of science and, namely, in the financial industry, and, as it was suggested by Plakandaras
et al. [242], the examination of persistent and chaos should be a prerequisite step before using
financial indices in economic policy model. The world of Lyapunov exponents remains a
growing interest in their definition, numerical methods, and application to various complex
systems. In summary, LLE allows us to establish [220]:

• transition region between stable and unstable;
• stability region;
• unstable region;
• chaotic region, including a possible transition between unstable and chaotic.
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5.1.1. Eckmann et al. method

Firstly, according to the approach of Eckmann et al. [224], we need to reconstruct attractor
dynamics from a single time series {𝑥(𝑖) | 𝑖 = 1, … , 𝑁 } with the embedding dimension 𝑑𝐸 , and
after this, we construct 𝑑𝐸-dimensional orbit representing the time evolution

X⃗ (𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + (𝑑𝐸 − 1))] ,
for 𝑖 = 1, … , 𝑁 − 𝑑𝐸 + 1.

Then, we have to determine the most neighboring trajectories with X⃗(𝑖):

‖X⃗(𝑖) − X⃗(𝑗)‖ = max
0≤𝛼≤𝑑𝐸−1

{|𝑥(𝑖 + 𝛼) − 𝑥(𝑗 + 𝛼)|} . (15)

We sort the 𝑥(𝑖) so that 𝑥(Π(1)) ≤ 𝑥(Π(2)) ≤ ⋯ ≤ 𝑥(Π(𝑁 )) and store the permutation Π, and its
inverse Π−1. Then, we try to find the neighbors of 𝑥(𝑖) in dimension 1 by looking at 𝑘 = Π−1(𝑖)
and scan the 𝑥(Π(𝑠)) for 𝑠 = 𝑘 + 1, 𝑘 + 2, … and 𝑘 − 1, 𝑘 − 2, … until 𝑥(Π(𝑠)) − 𝑥(𝑖) > 𝑟. For chosen
embedding dimension 𝑑𝐸 > 1, we select the value of 𝑠 for which further condition is true

|𝑥(Π(𝑠) + 𝛼) − 𝑥(𝑗 + 𝛼)| ≤ 𝑟 , for 𝛼 = 0, 1, … , 𝑑𝐸 − 1.

After we embedded our system in 𝑑𝐸 dimensions, we need to determine the 𝑑𝐸 × 𝑑𝐸 matrix
𝑀𝑖 that will describe time evolution of the vectors that surround trajectory X⃗(𝑖), and how they
map onto X⃗(𝑖 + 1) state. The matrix 𝑀𝑖 is obtained by looking for neighbors

𝑀𝑖(X⃗(𝑖) − X⃗(𝑗)) ≈ X⃗(𝑖 + 1) − X⃗(𝑗 + 1). (16)

Nevertheless, the vectors X⃗(𝑖) − X⃗(𝑗) may not span ℜ𝑑𝐸 . In this case, such indeterminacy
may lead to spurious exponents which confuse the analysis. To overcome such obstacles, the
projection of the trajectories is determined on a subspace of dimension 𝑑𝑀 ≤ 𝑑𝐸. Thus, the
manifold on which the dynamics takes place corresponds to the local dimension 𝑑𝑀, where 𝑑𝐸
should be somewhere larger than 𝑑𝑀 to avoid the presence of false neighbors [234, 131]. Hence,
the trajectory X⃗(𝑖) is associated with a 𝑑𝑀-dimensional vector

X⃗(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 𝜏), … , 𝑥(𝑖 + (𝑑𝑀 − 1)𝜏)] = [𝑥(𝑖), 𝑥(𝑖 + 𝜏), … , 𝑥(𝑖 + 𝑑𝐸 − 1)] , (17)

where 𝜏 = (𝑑𝐸 − 1)/(𝑑𝑀 − 1). When 𝜏 > 1, the condition (16) is replaced by

𝑀𝑖(X⃗(𝑖) − X⃗(𝑗)) ≈ X⃗(𝑖 + 𝜏) − X⃗(𝑗 + 𝜏). (18)

The 𝑀𝑖 is then defined by the linear least-square method [244]. The last step of the algorithm
is the classical QR matrix decomposition to find orthogonal matrices 𝑄𝑖 and upper-triangular
matrices 𝑅𝑖 with non-negative diagonal elements such that

𝑀1+𝑖𝜏𝑄𝑖 = 𝑄𝑖+1𝑅𝑖+1, for 𝑖 = 0, 1, 2, … .

As it was proposed by Touzé and Chaigne [245], Eckmann et al. [224], Eckmann and Ruelle
[138], in order to calculate 𝑑𝑀 Lyapunov exponents, the equation for the 𝑘𝑡ℎ Lyapunov exponent
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with𝐾 number of points on the attractor, for which the Jacobian has been estimated, the diagonal
eigenvalues of the matrix 𝑅𝑖 and the sampling step Δ𝑡 is given by:

𝜆𝑘 =
1
Δ𝑡

1
𝜏
1
𝐾

𝐾−1
∑
𝑖=0

ln (𝑅𝑖)𝑘𝑘.

Thus, with linearizations by using the diagonal elements from the QR decomposition, we can
calculate Lyapunov exponents.

The calculation results for the LLE on the example of BTC are presented in figure 14.

(a)

(b)

Figure 14: The dynamics of the LLE (𝜆𝑚𝑎𝑥) with Eckmann et al. method within the time window of
the length 250 days and the time step of 1 day for the first (a) and second (b) periods. Exponents are
calculated with 𝑑𝐸 = 3 and 𝑑𝑀 = 2.
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Let us pay attention to the behavior of 𝜆𝑚𝑎𝑥 at moments of the known failures noted in the
list of crashes and critical events. Definitely, we can see that in the pre-crisis period, the value
of LLE decreases markedly, then increases in the post-crisis period.

5.1.2. Rosenstein’s et al. method

Rosenstein’s algorithm [225] uses the delay embedding method that reconstructs the most
important features of a multi-dimensional attractor into a single one-dimensional time series of
some finite size 𝑁. For the time series {𝑥(𝑖) | 𝑖 = 1, … , 𝑁 }, each delay embedded vector X⃗(𝑖) will
be presented similarly to the vector (17) with embedding dimension 𝑑𝐸 and time delay 𝜏. Then,
in the reconstructed trajectory, we initialize searching for in the state space for the nearest
neighbor X⃗(𝑗) of the trajectory X⃗(𝑖):

𝛿𝑖(0) = min
X⃗(𝑖)

‖X⃗(𝑖) − X⃗(𝑗)‖ , for |𝑖 − 𝑗| > mean period,

where ‖ ‖ is the Euclidian norm, X⃗(𝑗) is the nearest neighbor, and X⃗(𝑖) is the reference point.
From equation (13) we have already known that the distance between states X⃗(𝑖) and X⃗(𝑗)will

grow in time accordingly to a power law, where 𝜆 is a good approximation of the LLE. For further
estimations, we look at the logarithm of the distance trajectory ln 𝛿𝑖(𝑘) ≈ 𝜆(𝑘 ⋅ Δ𝑡) + ln 𝑐𝑖, where
𝛿𝑖(𝑘) is the distance between 𝑖𝑡ℎ pair of the nearest neighbors defined in equation (18) after 𝑘
time steps, 𝑐𝑖 is the initial separation of them, and Δ𝑡 is the time interval between measurements
(sampling period of the time series).

Further result of this algorithm is not a numerical value, but a function of time

𝑦(𝑘, Δ𝑡) = 1
Δ𝑡

1
𝑀

𝑀
∑
𝑖=1

ln 𝛿𝑖(𝑘)

with the size of the reconstructed time series 𝑀 = 𝑁 − (𝑑𝐸 − 1)𝜏, and a set of approximately
parallel lines 𝛿𝑖(𝑘) whose slope roughly proportional to the LLE. Then, it is proposed to be
calculated as the angle of inclination of its most linear section. Finding such a section turns out
to be a non-trivial task, and sometimes it is impossible to specify such a section at all. Despite
this problem, Rosenstein’s method is easy for implementing and computing.

The LLE behavior for a window procedure with the length of 250 days and the step size of 1
day is shown in figure 15.

It can be seen that, as before, the LLE is also sensitive to the crisis conditions of BTC.

5.1.3. Scale-dependent Lyapunov exponent (SDLE)

We briefly describe the idea and the formal foundations of the method SDLE, introduce new
measures of complexity, and illustrate their effectiveness with the example of the BTC index.
Let us have a single observation conducted at a discrete time interval Δ𝑡 in the form of a time
series {𝑥𝑖 | 𝑖 = 1, … , 𝑁 } where 𝑡 = 𝑖 ⋅ Δ𝑡. After reconstructing the phase space, let us consider the
ensemble of trajectories.
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(a)

(b)

Figure 15: The dynamics of the LLE calculated with Rosenstein et. al. method within the time window
length of 250 days and the time step of 1 day for first (a) and second (b) periods. Exponents are calculated
with 𝑑𝐸 = 3 and 𝜏 = 2.

Let us denote the initial distance between two close trajectories 𝛿(0), and their average
distance at time 𝑡 and 𝑡 + Δ𝑡 as 𝛿(𝑡) and 𝛿(𝑡 + Δ𝑡) respectively. Note that the classical algo-
rithm for calculating the LLE (𝜆𝑚𝑎𝑥) is based on the assumption (13) and its estimation as
(ln (𝛿(𝑡) − 𝛿(0)))/𝑡. Depending on 𝛿(0), this property may not be true even for truly chaotic
systems. To calculate the SDLE, we check whether the following inequality holds for a pair of
vectors (X⃗(𝑖), X⃗(𝑗)):

𝛿(𝑘) ≤ ‖X⃗(𝑖) − X⃗(𝑗)‖ ≤ 𝛿(𝑘) + Δ𝛿(𝑘), for 𝑘 = 1, 2, 3, … ,
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where 𝛿(𝑘) and Δ𝛿(𝑘) are arbitrarily chosen small values of distances, and

‖X⃗(𝑖) − X⃗(𝑗)‖ =
√

𝑑𝐸
∑
𝑤=1

(𝑥(𝑖 + (𝑤 − 1)𝜏) − 𝑥(𝑗 + (𝑤 − 1)𝜏))2.

Geometrically, the last inequality defines a shell in high-dimensional space. Next, we in-
vestigate the dynamics of the same pairs of vectors (X⃗(𝑖), X⃗(𝑗)) in the middle of the shell and
perform averaging over the ensemble by indices 𝑖, 𝑗. Since the exponential or power functions
are of the greatest interest, we assume that logging and averaging can be reversed. Finally, the
following equation looks like:

𝜆(𝛿(𝑡)) = ⟨ ln ‖X⃗(𝑖 + 𝑡 + Δ𝑡) − X⃗(𝑗 + 𝑡 + Δ𝑡)‖ − ln ‖X⃗(𝑖 + 𝑡) − X⃗(𝑗 + 𝑡)‖⟩/Δ𝑡,

with the sampling intervals 𝑡 and Δ𝑡; the angle brackets correspond to the averaging over the
indices 𝑖, 𝑗 inside the shell and

𝛿(𝑡) = ‖X⃗(𝑖 + 𝑡) − X⃗(𝑗 + 𝑡)‖ =
√

𝑑𝐸
∑
𝑤=1

(𝑥(𝑖 + (𝑤 − 1)𝜏 + 𝑡) − 𝑥(𝑗 + (𝑤 − 1)𝜏 + 𝑡))2.

Finally, note that

𝐼 = ln 𝛿(𝑡) = ln 𝛿(0) +
𝑡

∫
0

𝜆(𝛿(𝑡))𝑑𝑡.

Time series, characterizing economic systems of varying degrees of complexity, differ in
magnitudes Δ𝜆 = 𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛, Δ𝛿 = 𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛, and 𝐼. As an example, the integral measure 𝐼 is
calculated for a sliding window of 400 days and step size of 1 day for the daily values of the
BTC index (see figure 16).

Like the previous LLE indicators, SLDE is also a leading indicator. However, its disadvantage
is the impossibility of accurate calculations for small window sizes which limits the possibilities
of its usage.

5.2. Lévy alpha-stable distribution

Financial crises that regularly shake the world economy are characterized by noticeable fluc-
tuations in stock indices, thereby causing noticeable changes in the statistical distributions of
empirical data [112, 246].

In 1900, Bachelier proposed the �rst model for the stochastic process of returns – an uncorre-
lated random walk with independent, identically Gaussian distributed (i.i.d) random variables
[247]. This model is natural if one considers the return over a time scale Δ𝑡 to be the result
of many independent “shocks”, which then lead by the central limit theorem to a Gaussian
distribution of returns [247]. Some stylized facts of daily returns [248, 249, 250] reveal that
distributions are leptokurtic and, therefore, Gaussian distribution does not fit well to the data.
Lux and Sornette [251] pronounce that the distribution of such data may be not only leptokurtic,
but it can also be characterized by fat tails [252, 253, 254, 255]. Thus, it should belong to the class
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(a)

(b)

Figure 16: The dynamics of the SDLE exponents within the time window of length 400 days and the
time step of 1 day for first (a) and second (b) periods.

of fat-tailed distributions. Formally, it is said that they follow a power law. The emergence of
power-law behavior in price �uctuations is argued to be a consequence of underlying complex
mechanisms, such as feedback effects and correlations in financial markets [256, 257, 258, 259].
Some theories associate this phenomenon with market impact and the distribution of large
investors [260, 248], while other studies model the power-law behavior as a consequence of
limited information and the true value of companies [261]. Such property is a symptom of
self-organization and complexity which are prominent for economic systems. In Chakraborty
et al. [262] paper it was established that currencies of several frontiers that are outside of inverse
cubic law (with an exponent of 𝛼 ≃ 3) belong to the Levy-stable regime and are expected to be
yet emerging and having sudden large changes such as crashes and critical events, while those
of most developed exhibited inverse cubic law.

Recently, it has been reported that Bitcoin is becoming more mature, following inverse cubic
law [263, 264, 265]. Besides, Begušić et al. [266], motivated by the rise of novel assets based
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on blockchain technology, presented a detailed analysis of trade-level data of the BTC/USD
pairs from five large Bitcoin exchanges: Mt. Gox, BTC-e, Bitstamp, Bit�nex, and Kraken. They
applied two estimation methods and a resampling-based technique to statistically validate if
the main cryptocurrency follows power-law behavior or not. Their study presented that the
exponent 𝛼 lie within the range 2 < 𝛼 < 2.5 that gives the evidence that the cryptocurrencies
market is much more volatile than the stock market, and that Bitcoin returns exhibit much
heavier tails. Moreover, they find that such a phenomenon is universal as such behavior holds
across multiple exchanges and tiny intervals. Their results imply that Bitcoin lies outside of the
Levy-stable region which provides the existence of a finite second moment, and a basis for the
usage of standard financial theories for portfolio optimization and risk management.

In figure 17 the daily returns of Bitcoin and contrast it with a sequence of i.i.d. Gaussian
random variables are presented.

It is obvious that the distribution of returns has heavy tails and in general case can be
described as

𝑃(g > 𝑥) ∼ 𝑥−(1+𝛼), 𝛼 ∈ (0, 2]. (19)

Figure 17 b it can be seen that Bitcoin exhibits the inverse cubic law.
In the analysis of cotton prices, Mandelbrot observed that in addition to being non-Gaussian,

the process of returns shows another interesting property: “time scaling” – that is, the distri-
butions of returns for various choices of Δ𝑡, ranging from 1 day up to 1 month have similar
functional forms [267]. Motivated by (i) pronounced tails, and (ii) a stable functional form for
different time scales, Mandelbrot proposed that the distribution of returns is consistent with a
Levy stable distribution [268, 269, 267] – that is, the returns can be modeled as a Levy stable
process. Levy stable distributions arise from the generalization of the Central Limit Theorem
(CLT) to random variables that do not have a finite second moment.

The CLT [270], which offers the fundamental justification for approximate normality, points
to the importance of alpha-stable distribution: they are the only limiting laws of normalized
sums of independent, identically distributed random variables. Gaussian distributions, the
best-known member of the stable family, have long been well understood and widely used in
all sorts of problems. However, they do not allow for large fluctuations and are thus inadequate
for modeling high variability. Non-Gaussian stable models, on the other hand, do not share
such limitations. In general, the upper and lower tails of their distributions decrease like a
power function. In literature, this is often characterized as heavy or long tails. In the last two
or three decades, data that seem to fit the stable model has been collected in fields as diverse as
economics, telecommunications, hydrology, and physics [249].

Consequently, a probability model with a power tail can be suitable for identifying processes
with extreme events. It was discovered that alpha-stable distributions fit better than the Gaussian
distribution to financial and spot markets. It is still debatable whether Lévy stable distribution is
applicable since there is not enough theoretical material, and there is not a universal analyzing
method for estimating parameters of Lévy stable distribution.

5.2.1. Lévy’s stable distribution properties

Lévy stable distribution being the generalization of the CLT, became an addition to a wide
class of distributions. The term stable is such characteristic of distribution where the shape
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(a)

(b)

Figure 17: Probability density function of BTC daily normalized returns for the whole period (a).
Cumulative distribution of the normalized BTC daily returns (b). Fits yield values 𝛼 = 1.94 ± 0.02.

(up to scale and shift) retains under addition: if 𝑋, 𝑋1, 𝑋2, … , 𝑋𝑛 are independent, identically
distributed random variables, then for every 𝑛

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛
𝑑= 𝑐𝑛𝑋 + 𝑑𝑛 (20)

for some constants 𝑐𝑛 > 0 and 𝑑𝑛 ∈ ℝ, where 𝑋1, … , 𝑋𝑛 are independent, identical copies of 𝑋.
The class of all laws that satisfy condition (20) is presented by 4 parameters: 𝛼 ∈ (0, 2] is

the index of stability or characteristic exponent where a smaller value of 𝛼 corresponds to more
severe tails of the distribution. The parameter 𝛽 ∈ [−1, 1] is called the skewness parameter of the
law. If 𝛽 = 0, the distribution is symmetric. In the case when 𝛽 > 0, it is skewed toward the right,
otherwise to the left. The last two parameters stand for the scale 𝛾 ∈ [0, ∞) and 𝛿 ∈ (−∞,∞)
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the location parameters of the distribution. Since random variables 𝑋 is characterized by four
parameters, we will denote 𝛼-stable distribution by 𝑆(𝛼, 𝛽, 𝛾 , 𝛿) and write

𝑋 ∼ 𝑆(𝛼, 𝛽, 𝛾 , 𝛿). (21)

Lévy stable distributions cannot be defined in closed form expression except few cases: the
case of (𝛼, 𝛽) = (2, 0) corresponds to the Gaussian distribution, (𝛼, 𝛽) = (1, 0) to the Cauchy
distribution. Instead, it is expressed in terms of their Fourier transforms or characteristic
functions (CF). If the density 𝑓 (𝑥) exists, CF of that density can be expressed as

𝜆(𝑘) = 𝐸 exp(𝑖𝑘𝑋) =
∞

∫
−∞

exp(𝑖𝑘𝑥)𝑓 (𝑥)𝑑𝑥,

where 𝑘 denotes the Fourier transformed variable. Thus, the inverse Fourier transform

𝑓 (𝑘) = 1
2𝜋

∞

∫
−∞

exp(−𝑖𝑘𝑥)𝜆(𝑘)𝑑𝑘

allows us to reconstruct probability density function with a known characteristic function.
As we do not have any analytical expression for the probability density of a random variable

𝑋𝑖, for Lévy stable distribution, if the variable 𝑥𝑖 follows 𝑆(𝛼, 𝛽, 𝛾 , 𝛿), the CF can be expressed as
[271]:

𝜆(𝑘) = {
exp 𝑖𝛿𝑘 − 𝛾 𝛼|𝑘|𝛼 [1 − 𝑖𝛽sgn(𝑘) tan(𝜋𝛼2 )], (𝛼 ≠ 1),
exp 𝑖𝛿𝑘 − 𝛾 |𝑘| [1 + 𝑖𝛽sgn(𝑘) 2𝜋 ln |𝑘|], (𝛼 = 1).

(22)

5.2.2. Methods for estimation of stable law parameters

There are numerous approaches that can estimate stable distribution parameters. Since the
probability density functions are not always expressed in a closed form, there are some challenges
to overcome the analytic difficulties. Thus, there have been constructed a variety of methods:
the approximate maximum likelihood (ML) estimation [272, 273], quantiles method [274, 275],
fractional lower order moment method [276, 277], method of log-cumulant [278], the logarithmic
moment method [279] and more. Unfortunately, some of those methods cannot be applied due
to computational problems associated with a limited range of estimation, restricted range of
parameters, high computational costs, or requiring a large number of data. However, several of
them should be mentioned.

5.2.3. Maximum likelihood method

DuMouchel [280] was the first to obtain approximate ML estimates of 𝛼 and 𝛾 (assuming 𝛿 = 0).
A multinomial approximation to the likelihood function is used in his approach. Under some
additional assumptions on �̂� and the likelihood function, DuMouchel has shown the obtained
estimates to be consistent and asymptotically normal. However, the computational effort
involved seems considerable.
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A direct method can be formulated, after Brorsen and Yang [272], as follows. The standard
symmetric probability density functions defined by Zolotarev [281] is presented as:

𝑓𝛼(𝑥) =
𝛼

𝜋|1 − 𝛼|
𝑥1/(𝛼−1) ×

𝜋/2

∫
0

𝑈𝛼(𝜂, 0)𝑒−𝑥
𝛼/(𝛼−1)𝑈 (𝜂,0)𝑑𝜂, (23)

for 𝛼 ≠ 1, 𝑥 > 0, where 𝑈𝛼 is defined by:

𝑈𝛼(𝜂, 𝜂0) = (
sin 𝛼(𝜂 − 𝜂0)

cos 𝜂
)
𝛼/(1−𝛼)

(
cos 𝜂 − 𝛼(𝜂 − 𝜂0)

cos 𝜂
) (24)

and 𝜂0 is explained here [282]. Therefore, the parameters 𝛼, 𝛾, and 𝛿 can be estimated from the
observations {𝑥𝑖 | 𝑖 = 1, 2, … , 𝑁 } by maximizing the log likelihood function:

𝑁
∑
𝑖=1

log 𝑓𝛼(𝑧𝑖) = 𝑛 log 𝛼
𝛼 − 1

+
𝑁
∑
𝑖=1

log 𝑧𝑖
𝛼 − 1

+
𝑁
∑
𝑖=1

log

𝜋/2

∫
0

𝑈𝛼(𝜂, 0)𝑒−𝑧
𝛼/(𝛼−1)
𝑖 𝑈𝛼(𝜂,0)𝑑𝜂, (25)

where 𝑧𝑖 = |𝑥𝑖 − 𝛿|/𝛾.
To avoid the discontinuity and non-differentiability of the symmetric 𝛼-stable density function

at 𝛼 = 1, 𝑎𝑙𝑝ℎ𝑎 is restricted to be greater than one. Caution must be used when evaluating the
integrals in equations (23) and (25), since the integrals are singular at 𝜂 = 0.

An obvious disadvantage of this method is that it is a highly nonlinear optimization problem
and no initialization and convergence analysis is available.

5.2.4. Quantiles methods

This method is focused on empirical quantiles, which has been introduced by Fama and Roll,
with the assumptions that 𝛼 > 1, 𝛽 = 0, and 𝛿 = 0 [274]. However, it was muchmore appreciated
through McCulloch [275] after its extension to include asymmetric distribution for 𝛼 ∈ [0.6, 2].

In order to quantify the four parameters of the stable distribution, we consider 𝑁 independent
variables 𝑥𝑖 that follow alpha-stable distribution (21) [283, 275]. Then, we need to define five
empirical quantiles of probability levels 5%, 25%, 50%, 75%, and 95%. Then we have to obtain
two intermediate quantities:

{
̂𝑣𝛼 =

�̂�0.95−�̂�0.05
�̂�0.75−�̂�0.25

, ̂𝑣𝛽 =
�̂�0.95+�̂�0.05−2�̂�0.05

�̂�0.95−�̂�0.05
,

�̂� = Ψ1( ̂𝑣𝛼, ̂𝑣𝛽), ̂𝛽 = Ψ2( ̂𝑣𝛼, ̂𝑣𝛽),

where �̂�𝑝(𝑝 = 0.05, 0.25, 0.5, 0.75, 0.95) is the corresponding sample data with which quantile is
calculated, and Ψ1 with Ψ are the interpolating functions the values of which can be found in
Table I-IV by McCulloch [275]. Further, the scale parameter is given by:

̂𝛾 =
�̂�0.75 − �̂�0.25
Ψ3(�̂� , ̂𝛽)

,
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where 𝑃𝑠𝑖3(�̂� , ̂𝛽) is given in Table V [275]. For simplicity of the location parameter, we can
define the variable which is predefined in the following form:

𝜉 = {
𝛿 + 𝛽𝛾 tan 𝜋𝛼

2 , if 𝛼 ≠ 1,
𝛿, if 𝛼 = 1.

(26)

In consistence with the corresponding parameter 𝜉 which can be estimated by ̂𝜉 = �̂�0.5 +
̂𝛾Ψ5( ̂𝛼 , 𝛽) (Ψ5 can be obtained through linear interpolation according to Table VII [275]), the
location parameter 𝛿 is given by:

̂𝛿 = ̂𝜉 + ̂𝛽 ̂𝛾 𝑡𝑎𝑛𝜋�̂�
2
.

5.2.5. Empirical characteristic function method

Analyzing data, we often assume that they are ergodic [284]. In general, if random variables
are ergodic with the integrable function 𝑓 (𝑥), and the measure 𝜌(𝑥)𝑑𝑥 in the space 𝑀, then the
following equation holds [285]:

lim
𝑁→∞

1
𝑁

𝑁
∑
𝑖=1

exp(𝑖𝑘𝑥𝑖) =
∞

∫
−∞

exp(𝑖𝑘𝑥)𝜌(𝑥)𝑑𝑥. (27)

Then, to consider characteristic functions, equation (27) comes out to be the following ergodic
equality [285]:

lim
𝑁→∞

1
𝑁

𝑁
∑
𝑖=1

exp(𝑖𝑘𝑥𝑖) =
∞

∫
−∞

exp(𝑖𝑘𝑥)𝑓 (𝑥)𝑑𝑥 (28)

for which we have

�̂�(𝑘) = lim
𝑁→∞

1
𝑁

𝑁
∑
𝑖=1

exp(𝑖𝑘𝑥𝑖). (29)

This assumption allows us to empirically obtain the probability distribution. Hence, the
empirical characteristic function 𝜆𝑁(𝑘) can be calculated as

�̂�𝑁(𝑘) =
1
𝑁

𝑁
∑
𝑖=1

exp(𝑖𝑘𝑥𝑖). (30)

Then, according to Koutrouvelis [271, 286] regression type from (22) it can be derived that

log(− log(|𝜆(𝑘)|2)) = log(2𝛾 𝛼) + 𝛼 log(𝑘). (31)

The imaginary and real parts of 𝜆(𝑘) are given by

{
𝜆I(𝑘) = exp(−|𝛾𝑘|𝛼) ⋅ 𝑖 sin[𝛿𝑘 − |𝛾𝑘|𝛼𝛽sgn(𝑘)𝜔(𝑘, 𝛼)],
𝜆R(𝑘) = exp(−|𝛾𝑘|𝛼) ⋅ cos[𝛿𝑘 − |𝛾𝑘|𝛼𝛽sgn(𝑘)𝜔(𝑘, 𝛼)],

(32)
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where

𝜔(𝑘, 𝛼) = {
tan 𝜋𝛼

2 , 𝛼 ≠ 1,
2
𝜋 ln |𝑘|, 𝛼 = 1.

Suppose Υ ∶= arctan(𝜆I(𝑘)/𝜆R(𝑘)). Then, in the condition 𝛼 ≠ 1, the last two equations lead,
apart from considerations of principal values, to

Υ(𝑘) = 𝛿𝑘 − 𝛽𝛾 𝛼 tan(𝜋𝛼
2
)sgn(𝑘)|𝑘|𝛼. (33)

Equation (31) depends only on 𝛼 and 𝛾, and it suggests that we estimate these parameters by
regressing

𝑦 = log(− log |𝜆𝑁(𝑘)|
2)

on 𝜔 = log(𝑘) in the model

𝑦𝑙 = 𝑚 + 𝛼𝜃𝑙 + 𝜖𝑙, for 𝑙 = 1, … , 𝐿, (34)

where 𝑦𝑙 = log(− log(�̂�(𝑘𝑙))2), 𝑚 = log(2𝛾 𝛼), 𝜃𝑙 = log(𝑘𝑙), and 𝜖𝑙 responds for an error term. The
proposed real data set for 𝐿 (see Koutrouvelis [271], Table I) is given by 𝑘𝑙 = 𝜋𝑙/25 (𝑙 = 1, … , 𝐿).

With estimated and fixed parameters 𝛼 and 𝛾, the symmetric parameter 𝛽 and location
parameter 𝛿 can be obtained by linear regression estimation

𝑧𝑞 = 𝛿𝑘𝑞 − 𝛽𝛾 𝛼 tan(𝜋𝛼
2
)sgn(𝑘𝑞)|𝑘𝑞|

𝛼 + 𝑣𝑞, for 𝑞 = 1, … , 𝑄, (35)

where 𝑧𝑞 = Υ𝑁(𝑘𝑞) + 𝜋𝑙𝑁(𝑘𝑞), 𝑣𝑙 denotes an error term, and the proposed real data set for 𝑄 (see
Koutrouvelis [271], Table II) is 𝑘𝑞 = 𝜋𝑞/50 (𝑞 = 1,… , 𝑄).

5.2.6. Related studies and corresponding results

Recently, the use of dynamic indicators, precursors of crashes in stock markets using the
parameters of a 𝛼-stable distribution was proposed by us in the papers [77, 78, 287] and later
repeated in a recent paper [30]. From the data above, we estimate the parameters 𝛼 and 𝛽 of the
stable distribution that the best describes the empirical returns. Figure 18 shows the dynamics
of the parameter 𝛼 as a more informative indicator.

From the figure 18 we can see that our parameters start to decrease in crisis states. Such
abnormal behavior can serve as an indicator or precursor of crashes and critical states.

6. Recurrence analysis

In 1890 themathematical foundations of recurrence were introduced byHenri Poincaré, resulting
in the Poincaré recurrence theorem [288]. This theorem states that certain systems will return to
their arbitrarily close, or exactly the same initial states after a sufficiently long but finite time.
Such property in the case of deterministic behavior of the system allows us to make conclusions
regarding its future development.
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(a)

(b)

Figure 18: The Bitcoin time series and estimated for them parameter 𝛼. Vertical arrows indicate crashes
and critical events.

6.1. Recurrence plot

Recurrence plot (RP) have been introduced to study dynamics and recurrence states of complex
systems. When we create RP, at first, from recorded time series we reconstruct phase-space
trajectory. Then, according to Eckmann et al. [232], we consider a trajectory X⃗(𝑖) on the
reconstructed trajectory. The recurrence plot is an array of dots in a 𝑁 × 𝑁 matrix, where dot
is placed at (𝑖, 𝑗) whenever X⃗(𝑗) is sufficiently close to X⃗(𝑖), and both axes are time axes which
mathematically can be expressed as

𝑅𝑖𝑗 = ℋ(𝜖 − ‖X⃗(𝑖) − X⃗(𝑗)‖), for 𝑖, 𝑗 = 1, … , 𝑁, (36)

where ‖ ‖ is a norm (representing the spatial distance between the states at times 𝑖 and 𝑗); 𝜖 is
a predefined recurrence threshold, and ℋ is the Heaviside function. As a result, the matrix
captures a total of 𝑁 2 binary similarity values. A synthetic example is presented in figure 19.
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(a)

(b)

Figure 19: Phase portrait (a) and corresponding RP (b) for BTC.

Typically an 𝐿𝑝-norm is applied to determine the pairwise similarity between two vectors.
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Accordingly to Webber, Jr. and Zbilut [140], there are such candidates that can serve as a
distance measure:

• the 𝐿1-norm (Manhattan distance);
• the 𝐿2-norm (Manhattan distance);
• the 𝐿∞-norm (Manhattan distance);

In accordance with our results, Maximum distance seems to be a suitable choice. It is often
used as it is independent of the phase space dimension, easy to calculate, and allows some
analytical expression [289, 290, 291].

Also, as it can be seen from equation (36), the similarity between vectors is determined by a
threshold 𝜖. The choice of 𝜖 > 0 ensures that all vectors that lie within this radius are similar to
each other, and that dissimilarity up to a certain error is permitted [288].

The fixed radius for recurrent states is the commonly used condition, which leads to equally
sized 𝜖-neighborhoods. The shape in which neighborhoods lie is determined by the distance
metric. Applying the fixed threshold with the distance metric, we define recurrence matrices
that are symmetric along the middle diagonal. The self-similarity of the multi-dimensional
vectors reflects in the middle diagonal which is commonly referred to as line of identity (LOI).
In contrast, it is not guaranteed that a recurrence matrix is symmetric, if the condition of
�xed number of nearest neighbors is applied. For specific purposes (e.g., quantification of
recurrences), it can be useful to exclude the LOI from the RP, as the trivial recurrence of a state
with itself might not be of interest [292].

6.1.1. Recurrence plots and their structures

The visualization of trajectories and hidden patterns of the systems is the “destiny” of RP
[293, 292].

The dots within RP, representing the time evolution of the trajectories, exhibit characteristic
large-scale and small-scale patterns. Large-scale patterns of RP can be classified as homogeneous,
periodic, drift, and disrupted [294, 295, 290]:

• Homogeneous typify behavior of autonomous and stationary systems, which consist of a
large number of recurrence points that are homogeneously distributed (relaxation times
are short).

• Periodic represents long, uninterrupted, and diagonally oriented structures that represent
which indicate periodic behavior. These lines are usually distributed regularly.

• Paling or darkening from the LOI to the outer corners in RP is characteristic of drift.
• Disrupted distribution of recurrence points may serve as an indicator of drastic changes
as well as extreme events in the system dynamics. In these cases, RP can be used to find
and assess extreme and rare events by scoring the frequency of their repeats.

6.1.2. Recurrence quantification analysis

For a qualitative description of the system, the graphic representation of the system suits
perfectly. However, the main disadvantage of graphical representation is that it forces users to
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subjectively intuit and interpret patterns and structures presented within the recurrence plot.
Also, with plots’ increasing size, they can be hardly depicted on graphical display as a whole.
As a result, we need to work with separated parts of the original plot. Analysis in such a way
may create new defects that which should distort objectivity of the observed patterns and lead
to incorrect interpretations. To overcome such limitation and spread an objective assessment
among observers, in the early 1990s byWebber and Zbilut [296, 297] were introduced definitions
and procedures to quantify RP’s complexity, and later, it has been extended by Marwan et al.
[295].

The small-scale clusters can represent a combination of isolated dots (chance recurrences).
Similar evolution at different periods in time or in reverse temporal order will present diagonal
lines (deterministic structures) as well as vertical/horizontal lines to inscribe laminar states
(intermittency) or systems that paused at singularities. For the quantitative description of the
system, such small-scale clusters serve the base of the recurrence quantification analysis (RQA).

Usually, first acquaintance with classical RQA starts with recurrence point density, or, as it is
known, recurrence rate (𝑅𝑅):

𝑅𝑅 = 1
𝑁 2

𝑁
∑
𝑖,𝑗=1

𝑅𝑖,𝑗.

It enumerates the probability that any state of the system will recur. It is the simplest measure
that is computed by taking the number of nearest points forming short, spanning row and
columns of the recurrent plot. It summarizes them and divides by the number of possible points
in the recurrence matrix of size 𝑁 2.

The remaining measure relies on the frequency distribution of line structures in the RP. First,
we consider the histogram of the length of the diagonal structures in the RP

𝑃(𝑙) =
𝑁
∑
𝑖,𝑗=1

{(1 − 𝑅𝑖−1,𝑗−1) ⋅ (1 − 𝑅𝑖+𝑙,𝑗+𝑙) ⋅
𝑙−1
∏
𝑘=0

𝑅𝑖+𝑘,𝑗+𝑘} .

The fraction recurrence points on the recurrence plots that form line segments of minimal
length 𝜇 parallel to the matrix diagonal is the measure of determinism (DET):

𝐷𝐸𝑇 (𝜇) =
∑𝑁

𝑙=𝜇 𝑙 ⋅ 𝑃(𝑙)

∑𝑁
𝑖,𝑗=1 𝑅𝑖,𝑗

=
∑𝑁

𝑙=𝜇 𝑙 ⋅ 𝑃(𝑙)

∑𝑁
𝑙=1 𝑙 ⋅ 𝑃(𝑙)

.

Systems that exhibit deterministic dynamics are mainly characterized by diagonal lines. Long
diagonal lines indicate periodic signals, but short diagonal lines stand for chaotic behavior.
Regarding the quantitative analysis, typically, only the lines with minimal length 𝜇 = 2 are
considered. If 𝜇 = 1, then DET and RR are identical. For some systems, DET becomes more
reliable if 𝜇 > 2. Here, 𝜇 serves as a filter, excluding the shorter lines. However, it should be
noted that too large 𝜇 may spoil the histogram 𝑃(𝑙) and thus the reliability of DET.

The results of calculations of window dynamics of the considered recurrence measures are
presented in Figure 20. RR and DET are calculated for local time series of 50 days and a step of
1 day. In this case, the beginning of a crash or critical event is at point 100.

It is evident that the two recurrent measures during abnormal periods decrease long before
the actual anomaly. The complex system becomes less recurrent and less deterministic which is
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 20: Dynamics of RR and DET for crashes (a, b, e, f) and critical events (c, d, g, h).

logical in the periods approaching critical phenomena. And, consequently, RR and DET can be
used as precursors of critical and crash phenomena.
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6.1.3. Chaos recurrent measures

The corresponding measure of entropy is related to the recurrence properties that may be
peculiar for the nonlinear complex system and important class of recurrence quantifiers are
those that try to capture the level of complexity of a signal [298, 79, 85]. In accordance with
this study, the entropy diagonal line histogram (DLEn) is of the greatest interest which uses the
Shannon entropy of the distribution of diagonal lines 𝑃(𝑙) to determine the complexity of the
diagonal structures within the recurrence plot. One of the most know quantitative indicators of
the recurrence analysis can be defined as:

𝐷𝐿𝐸𝑛 = −
𝑙=𝑙𝑚𝑎𝑥
∑
𝑙=𝑙𝑚𝑖𝑛

𝑝(𝑙) ln 𝑝(𝑙)

and

𝑝(𝑙) =
𝑃(𝑙)

∑𝑁
𝑙=𝑙𝑚𝑖𝑛 𝑃(𝑙)

,

where 𝑝(𝑙) captures the probability that a diagonal line has exactly length 𝑙, and DLEn reflects
the complexity of deterministic structure in the system. Further calculations were provided and
presented in figure 21 for both Bitcoin time series.

However, as follows from the analysis of the entropy indicators, the results may differ for
different data preparation. Further, we take into account two types of Shannon entropy-based
approaches: recurrence period density entropy (RPDEn) and recurrence entropy (RecEn).

The RPDEn is the quantitative measure of the recurrence analysis that is useful for char-
acterizing the periodicity or absolutely random processes in the time series. It is useful for
quantifying the degree of repetitiveness [299, 300]. Considering embedded data point X⃗(𝑖) from
the phase space and suitable threshold 𝜖 in 𝑑𝐸-dimensional space. Then the trajectory is followed
forward in time until it has left the corresponding threshold 𝜖. Subsequently, the time 𝑗 at which
the trajectory first returns to this ball and the period 𝑇 of previous and current states is recorded.
The procedure is repeated for all states of the RPs, forming a histogram of recurrence times
𝑅(𝑇 ). The histogram is then normalized to give the recurrence time probability density:

𝑃(𝑇𝑖) =
𝑅(𝑇𝑖)

∑𝑇𝑚𝑎𝑥
𝑖=1 𝑅(𝑇𝑖)

,

where 𝑇𝑚𝑎𝑥 = max {𝑇𝑖}. The normalized entropy of the obtained density can be defined as:

𝑅𝑃𝐷𝐸𝑛 =
−∑𝑇𝑚𝑎𝑥

𝑖=1 𝑃(𝑇𝑖) ln 𝑃(𝑇𝑖)
ln 𝑇𝑚𝑎𝑥

. (37)

In fact, based on the length of the sequences of neighboring points in the phase space: the
more points are neighborhoods, the lower the value of the entropy according to equation (37).
The comparing of RPDEn and Bitcoin’s critical states can be seen in figure 22.

However, recent articles [298, 301] present a slightly different technique for calculating
recurrent entropy using a novel way to extract information from the recurrence matrix. To
properly define it, we need to define the microstates 𝐹(𝜖) for the RP that are associated with
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(a)

(b)

Figure 21: 𝐷𝐿𝐸𝑛 dynamics along with first (a) and second (b) periods of the entire time series of Bitcoin.

features of the dynamics of the time series. Selecting the appropriate metric and using the
Heaviside function, we evaluate the matrices of dimensions 𝑁 × 𝑁 that are sampled from the
RP. The total number of microstates for a given 𝑁 is 𝑁𝑚𝑠 = 2𝑁

2
. The microstates are populated

by 𝑁 random samples obtained from the recurrence matrix such that:

𝑁 = ∑
𝑁𝑚𝑠

𝑖=1 𝑛𝑖
with 𝑛𝑖 representing the number of times that a microstate 𝑖 is observed. The probability of
occurrence of the related microstate 𝑖 can be obtained as:

𝑝𝑖 = 𝑛𝑖 ⋅ (𝑁)
−1 .

The RecEn of the RP associated with the probability distribution of the corresponding mi-
crostates is given by the following equation:

𝑅𝑒𝑐𝐸𝑛 =
𝑁𝑚𝑠

∑
𝑖=1

𝑝𝑖 ln 𝑝𝑖. (38)
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(a)

(b)

Figure 22: 𝑅𝑃𝐷𝐸𝑛 dynamics along with first (a) and second (b) periods of the entire time series of
Bitcoin.

In figure 23 we can see the performance of 𝑅𝑒𝑐𝐸𝑛 accordingly to the described above method.
A vertical line of length 𝑙 starting from a dot (𝑖, 𝑗) means that the trajectory starting from X⃗(𝑗)

remains close to X⃗(𝑖) during 𝑙 − 1 time steps. A diagonal black line of length 𝑙 starting from a
dot 𝑖, 𝑗 means that trajectories starting from X⃗(𝑖) and X⃗(𝑗) remain close during 𝑙 − 1 time steps,
thus these lines are related to the divergence of the trajectory segments. The average diagonal
line length

𝐿𝑚𝑒𝑎𝑛 =
∑𝑁

𝑙=𝑙𝑚𝑖𝑛 𝑙 ⋅ 𝑃(𝑙)

∑𝑁
𝑙=𝑙𝑚𝑖𝑛 𝑃(𝑙)

is the average time that two segments of the trajectory are close to each other and can be
interpreted as the mean prediction time. Here, 𝑃(𝑙) is a histogram of diagonal lines of length 𝑙.

Another measure (𝐿𝑚𝑎𝑥) considers the length of the longest diagonal line found in the RP. In
other words, it means the maximum time that two segments of the trajectory are close to each
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(a)

(b)

Figure 23: 𝑅𝑒𝑐𝐸𝑛 dynamics along with first (a) and second (b) periods of the entire time series of Bitcoin.

other, and the following equation can be defined as

𝐿𝑚𝑎𝑥 = max ({𝑙𝑖 | 𝑖 = 1, … , 𝑁𝑙}) ,

where 𝑁𝑙 = ∑𝑙⩾𝑙𝑚𝑖𝑛 𝑃(𝑙) is the total number of diagonal lines.
Respectively, the inverse of 𝐿𝑚𝑎𝑥 characterizes the exponential divergence of the phase space

trajectory [302, 303]. Faster the trajectory segments diverge, shorter are the diagonal lines and
higher is the measure of divergence (𝐷𝐼𝑉 ). It is given by the following equation:

𝐷𝐼𝑉 = 1/𝐿𝑚𝑎𝑥.

Therefore, the measure of 𝐷𝐼𝑉, according to Eckmann et al. [232], can be used to estimate the
largest positive Lyapunov exponent. The comparative dynamics of the measure of divergence
and BTC time series are presented in figure 24.

A comparative analysis of the measures under consideration revealed an obvious advantage
of the recursive measure. In addition to the smoothness of the measure itself, it can be calculated
for windows of small sizes, which leads to inaccurate or incorrect results for other methods.

84



(a)

(b)

Figure 24: The measure of divergence along with first (a) and second (b) periods for BTC time series.

7. Irreversibility

Complex systems are open systems that exchange energy, matter, and information with the envi-
ronment. Investigating complex systems in the natural sciences, Prigogine made a fundamental
generalization, indicating the need for consideration of the phenomena of irreversibility and
non-equilibrium as principles of selection of space-time structures that are implemented in prac-
tice [304]. Later it became clear that this generalization extends to complex systems of another
nature: social, economic, biomedical, etc. [305]. Prigogine believed that the most important
changes in the modern scientific revolution are related to the removal of previous restrictions
in the scientific understanding of time. The nonlinear world is characterized by features of
temporality, i.e., irreversibility and transience of processes and phenomena. Self-organization is
considered as a spontaneous process of formation of integrating complex systems. It is due to
the ambiguity of choice at bifurcation points that time in theories of self-organization becomes
truly irreversible. In contrast to linear dynamic theories – classical, relativistic, quantum (where
time is reversed), in the thermodynamics of dissipative structures created by Prigogine, time
ceases to be a simple parameter and becomes a concept that expresses the pace and direction of
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events.
Thus, the irreversibility of time is a fundamental property of non-equilibrium dissipative

systems, and its loss may indicate the development of destructive processes [108, 305].
A stationary process X is called statistically inverse in time, if for any 𝑁, the series

{𝑥(𝑖) | 𝑖 = 1, … , 𝑁} and {𝑥(𝑖) | 𝑖 = 𝑁 ,… , 1} will have the same compatible probability distributions
[306]. The irreversibility of time series indicates the presence of nonlinearities in the dynamics
of a system far from equilibrium, including non-Gaussian random processes and dissipative
chaos. Since the definition of the irreversibility of the time series is formal, there is no a priori
optimal algorithm for its quantification. Several methods for measuring the irreversibility of
time have been proposed [108, 305, 307, 308, 309, 310, 311, 312, 313].

In the first group of methods, the symbolization of time series is performed, and then the
analysis is performed by statistical comparison of the appearance of a string of symbols in the
forward and reverse directions [308].

Sometimes additional compression algorithms are used [307]. An important step for this
group is the symbolization – the conversion of the time series into a character series requires
additional special information (e.g., division of the range or size of the alphabet) and, therefore,
contains the problem of the algorithm’s dependence on these additional parameters. The second
problem arises when considering the large-scale invariance of complex signals. Since the
procedures of typical symbolizations are local, taking into account different scales can cause
some difficulties [108].

Another group of methods in formalizing the index of irreversibility does not use the symbol-
ization procedure but is based on the use of real values of the time series or returns.

One of such approaches is based on the asymmetry of the distribution of points in the Poincare
map, built on the basis of the values of the analyzed time series [310, 313].

Recently, a fundamentally new approach to measuring the irreversibility of time series has
been proposed, which uses the methods of complex network theory [309, 312] and which
combines two tools: the algorithm for visibility of time series recovery into a complex network
and the Kullbak-Leibler divergence algorithm [312]. The first forms a directional network
according to the geometric criterion. The degree of irreversibility of the series is then estimated
by the Kullbak-Leibler divergence (i.e., the resolution) between the distribution of the input
and output stages of the associated count. This method is computationally efficient, does not
require any special symbolization of the process, and, according to the authors, naturally takes
into account multiscale.

In this study, we consider the irreversibility of time as a measure of the complexity of the
system.

Let us consider non-reversible measures of complexity based on the construction and analysis
of ordinal permutation patterns.

7.1. Time series irreversibility measure based on permutation patterns

The concept of permutation patterns (PP) was introduced by Bandt and Pompe [128]. PP is
based on the idea of finding the order patterns that result in sorted (ascending) sub-sequences,
and of then studying the probability distribution of these patterns. Zanin et al. [314] introduce
a new method, based on permutation entropy [128, 315, 316], to evaluate irreversibility of time
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series at various temporal scales. The proposed one presents various advantages: (1) it has no
free parameters other than the embedding dimension of the permutation entropy; (2) similar
to visibility graph methods [312, 317], it is temporally local, and therefore allows assessing
fluctuations; (3) assessing significance is straightforward, and does not rely on scaling arguments
as in visibility graph methods; and (4) it has a convergence speed advantage over visibility
graph methods graph methods. They also demonstrated how the proposed approach can help
elucidate the complex irreversibility dynamics of financial time series, representing 30 major
European stocks and 12 world indices [314] and gait analysis on late stages of neurodegenerative
dementias [318]. This technique was also used to analyze the irreversibility of time series in
ecology (the time series of lynx abundance), epidemiology (dengue prevalence), economy (the
S&P price-index series), neuroscience (electroencephalographic data from an epileptic patient)
[319, 320], and heart rate [321].

The idea of irreversibility analysis implies that regarding each permutation pattern that
can be obtained following procedure from section 3.2.4, there will be reversed one under the
operation of time reversal. Example, if for an embedded vector X⃗, a pattern 𝜋𝑖 is found, reversing
time series will necessary imply 𝜋 𝑟𝑖 . As an example, let us consider a fragment of BTC time
series for the period 21.01.2021-31.01.2021:

X𝑑 = [30825.70, 33005.76, 32067.64, 32289.38, 32366.39]

and
X𝑟 = [32366.39, 32289.38, 32067.64, 33005.76, 30825.70] .

According to mentioned steps, we will construct embedded matrix of overlapping column
vectors with 𝑑𝐸 = 3 and 𝜏 = 1. Our sampled data is partitioned as follows:

X𝑑
𝑡 (𝑑𝐸, 𝜏) = [

30825.70 33005.76 32067.64
33005.76 32067.64 32289.38
32067.64 32289.38 32366.39

] (39)

and for X𝑟
𝑡 (𝑑𝐸, 𝜏):

[
32366.39 32289.38 32067.64
32289.38 32067.64 33005.76
32067.64 33005.76 30825.70

] . (40)

After it, our time-delayed vectors are mapped to permutations or ordinal patterns of the same
size. Our example consists 3! = 6 different ordinal patterns in total. They can be paired together,
such that each pattern composing a pair is the time reversal of the other. For instance:

{0, 1, 2} ↔ {2, 1, 0}
{1, 0, 2} ↔ {2, 0, 1}
{1, 2, 0} ↔ {0, 2, 1}

with ↔ representing a time reversal transformation.
As an example, the corresponding permutation of the first column from (39) would be

𝜙(30825.70, 33005.76, 32067.64]) = 021 since we arrange values in ascending order and replace
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them by their ordinal ranking from original placement. Therefore, after mapping from the
time-series data into a series of permutations (𝜙 ∶ ℝ𝑑𝐸 → 𝑆𝑑𝐸), we obtain the ordinal matrices
first of all for initial time series:

[
0 1 0
2 2 1
1 0 2

] . (41)

and its reversed version:

[
2 1 1
1 0 2
0 2 0

] . (42)

Finally, the probability of each pattern in initial and reversed time series is calculated as

𝑝(𝜋) =
#{𝑡 ≤ 𝑁 − (𝑑𝐸 − 1)𝜏 , 𝜙(X𝑑𝐸,𝜏

𝑡 ) = 𝜋}
𝑁 − (𝑑𝐸 − 1)𝜏

, (43)

forming the probability distributions 𝑃𝑑 = [𝑝0,1,2, 𝑝2,1,0, 𝑝1,0,2, 𝑝2,0,1, 𝑝1,2,0, 𝑝0,2,1] and
𝑃 𝑟 = [𝑝2,1,0, 𝑝0,1,2, 𝑝2,0,1, 𝑝1,0,2, 𝑝0,2,1, 𝑝1,2,0]. Using the Kullback-Leibler divergence, we can
define the degree of irreversibility in a time series:

𝐷𝐾𝐿 =
𝑑𝐸!
∑
𝑖=1

𝑃𝑑(𝑖) log
𝑃𝑑(𝑖)
𝑃 𝑟(𝑖)

. (44)

If 𝑃𝑑 ≊ 𝑃 𝑟, the time series is presented to be reversible, thus yielding a 𝐷𝐾𝐿 ≊ 0 and vise
versa. Estimating varying bitcoin’s irreversibility according to (44) with time window of 100
days and time step of 1 day, we obtain following results.

The figures show that time series are significantly irreversible. When moving the original
rows of their irreversible disappears. Draws attention and noticeable unevenness introduced
measures, which correlate with the fluctuations of the input time series. Identifying significant
changes in the time series and comparing themwith the corresponding changes of non-reversible
measures of complexity, it is possible to construct the corresponding indicators.

8. Single and multiplex networks

The new interdisciplinary study of complex systems, known as the complex networks theory,
laid the foundation for a new network paradigm of synergetics [322]. In the framework of the
complexity paradigm, it became apparent that we should move from well-studied systems and
processes, taking into account the minimal number of new entities that are characteristic of the
social sciences or the humanities. Apparently, one of these entities is the bonds, that is, what
characterizes the interaction of the elements that are part of the system, that makes parts of
the whole. The set of these links is called the network. Investigating networks, we take into
account their topology, statistical properties, the distribution of weights of individual nodes
and edges, the effects of information dissemination, robustness, etc. [1, 323, 324, 4]. Complex
networks include electrical, transport, information, social, economic, biological, neural, and
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(a)

(b)

Figure 25: Dynamics of permutation-based time irreversibility measure for the �rst (a) and second (b)
periods.

other networks [325, 326, 3]. The network paradigm has become dominant in the study of
complex systems since it allows you to enter new quantitative measures of complexity not
existing for the time series [327]. Moreover, the network paradigm provides adequate support
for the core concepts of Industry 4.0 [322].

Previously, we introduced various quantitative measures of complexity for individual time
series [58, 328, 329, 330]. However, except a graph for an individual time series, it is necessary to
take into account the interconnection interaction, which can be realized within the framework
of different models [331]. We will consider it by simulating so-called multiplex networks, the
features of which are reduced to a fixed number of nodes in each layer, but they are linked by
different bonds [331].

Recently, the first papers using the spectral and topological characteristics of dynamic systems
presented as networks have appeared. Thus, in [332], it has been investigated universal and
non-universal allometric scaling behaviors in the visibility graphs of 30 world stock market
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indices. It has been established that the nature of such behavior is due to the returns distribution
that is characterized by fat-tails, the nonlinear long-term correlation, and a coupling effect
between the set of influential factors.

Birch [333] compared the mean degree value and clustering coefficient for a group of com-
panies included in the DAX 30 index basket. He observed the companies from the DAX 30
index for two time periods: the first from the beginning of 2008 through the end of 2009 and the
second from the beginning of 2010 up to the end of 2011 as these include the dates – a period
of crisis (7th October 2008 – 31st December 2008) and a period of recovery (7th May 2010 –
3rd August 2010). Contrary to expectations, the results differed little from the relatively low
accuracy of the horizontal visibility graph procedure compared to visibility graph.

Liu et al. [334] collected from the Chinese stock market the data of 2571 stock companies in
2012 and the data of 2578 stock companies in 2013. Every year, data of these stock companies
are randomly arranged. These data are then converted into some complex networks based on
the visibility graph method. For these complex networks, degree distribution and clustering co-
efficient are considered. These results show that complex networks have power-law distribution
and small-world properties.

Yan and van Tuyll van Serooskerken [335] construct an indicator to measure the magnitude
of the super-exponential growth of stock prices, by measuring the degree of the price network,
generated from the price time series. Twelve major international stock indices have been
investigated. The work results show that this new indicator has strong predictive power for
financial extremes, both peaks, and troughs. By varying the model parameters, the authors
show the predictive power is very robust. The new indicator has a better performance than the
indicator based on a well-known model of log-periodic oscillations of Sornette [336].

Vamvakaris et al. [337] analyzed high-frequency data from the S&P 500 via the horizontal
visibility graph method and find that all major crises that have taken place worldwide for the
last twenty years, affected significantly the behavior of the price-index. Nevertheless, they
observe that each of those crises impacted the index in a different way and magnitude. These
results suggest that the predictability of the price-index series increases during periods of crisis.

Serafino et al. [338] studied the visibility graphs built from the time series of several stock
market indices. They proposed a validation procedure for each link of these graphs against a
null hypothesis derived from ARCH-type modeling of such series. Building on this framework
made it possible to devise a market indicator that turned out to be highly correlated and even
predictive of financial instability periods.

Grau et al. [25] examined the characteristics of the daily price series of 16 different cryp-
tocurrencies between July 2017 and February 2018. Using Minimum Spanning Tree (MST) and
hierarchical analysis by dendrograms that were obtained from Pearson correlation between
daily returns, they visualized and identified a high correlation between price movements of
all the currencies. From the obtained results, it is seen that the most interconnected with all
cryptocurrencies is Ethereum, while Bitcoin standed for one of its branches. They concluded
that Ethereum might be a benchmark currency in the cryptocurrency market, rather than
Bitcoin.

Coquidé et al. [339] constructed the Google matrices of bitcoin transaction for all year quarters
from the very start of it till April 10, 2013. From PageRank and CheiRank probabilities that
serve as analogues to trade import and export, they determined the dimensionless trade balance
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of each user and analyzed the direct and hidden (indirect) links between top PageRank users
of BCN using the recently developed reduced Google matrix algorithm. They modeled the
contagion propagation of the transactions assuming that a user goes bankrupt if its dimensional
balance exceeds a certain bankruptcy threshold 𝑘. Their results present that the phase transition
neighboring with the critical threshold 𝑘 = 𝑘𝑐 ≈ 0.1 below which almost all users remain safe.
For 𝑘 > 0.55 almost all users remain safe, and for 0.1 < 𝑘 > 0.55 more than a half of users go
bankrupt. Moreover, their result present that even being not very close to the critical threshold
𝑘𝑐 ≈ 0.1, almost all top PageRank and CheiRank users rapidly become bankrupts that give the
evidence about their strong interconnectivity. With the reduced Google matrix algorithm, they
presented the most preferable interlinks of the most valuable users.

Multiplex networks are actively used to simulate complex networks of different nature: from
financial (stock market [340, 341, 338, 337], banks [342], guarantee market [343]) to social [344].
Particular attention should be paid to the work [340], in which the above multiplex measures
are analyzed for the subject of correlations with known stock market crises.

8.1. Methods of converting time series into graphs

In recent years, interesting algorithms for the transformation of time series into a network have
been developed, which allows extending the range of known characteristics of time series even
to network ones. Recently, several approaches have been proposed to transform time sequences
into complex network-like mappings. These methods can be conventionally divided into three
classes [345].

The first is based on the study of the convexity of successive values of the time series and
is called visibility graph (VG) [345, 346]. The second analyzes the mutual approximation of
different segments of the time sequence and uses the technique of recurrent analysis [345]. The
recurrent diagram reflects the existing repetition of phase trajectories in the form of a binary
matrix whose elements are units or zeros, depending on whether they are close (recurrent)
with given accuracy or not, the selected points of the phase space of the dynamic system. The
recurrence diagram is easily transformed into an adjacency matrix, on which the spectral and
topological characteristics of the graph are calculated. Finally, if the basis of forming the links of
the elements of the graph is to put correlation relations between them, we obtain a correlation
graph [345, 328]. To construct and analyze the properties of a correlation graph, we must
form an adjacency matrix from the correlation matrix. To do this, you need to enter a value
that for the correlation field will serve as the distance between the correlated agents. Such a
distance may be dependent on the ratio of the correlation 𝐶𝑖𝑗 value 𝑑𝑖𝑗 = √2(1 − 𝐶𝑖𝑗). So, if the
correlation coefficient between the two assets is significant, the distance between them is small,
and, starting from a certain critical value 𝑥𝑐𝑟 𝑖𝑡, assets can be considered bound on the graph. For
an adjacency matrix, this means that they are adjacent to the graph. Otherwise, the assets are
not contiguous. In this case, the binding condition of the graph is a prerequisite.

The main purpose of such methods is to accurately reproduce the information stored in the
time series in an alternative mathematical structure, so that powerful graph theory tools could
eventually be used to characterize the time series from a different point of view in order to
overcome the gap between nonlinear analysis of time series, dynamic systems and the graphs
theory.
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The usage of the complexity of recurrent networks to prevent critical and crisis phenomena
in stock markets has been considered by us in a recent paper [347]. Therefore, we will focus on
algorithms of the VG and multiplex VG (MVG).

The recurrence diagrams for the visualization of phase space recurrences are based on Henri
Poincare’s idea of the phase space recurrence of dynamical systems. According to Takens’
theorem [137], an equivalent phase trajectory that preserves the structure of the original phase
trajectory can be recovered from a single observation or time series by the time delay method:
the recurrence diagram is easily transformed into an adjacency matrix, by which the spectral
and topological characteristics of the graph are calculated [328].

The algorithm of the VG is realized as follows [346].
Take a time series {𝑥(𝑡𝑖) | 𝑖 = 1, … , 𝑁} of length 𝑁. Each point in the time series data can be

considered as a vertex in an associative network, and the edge connects two vertices if two
corresponding data points can “see” each other from the corresponding point of the time series
(see Figure 26). Formally, two values 𝑥(𝑡𝑎) (at a point in time 𝑡𝑎) and 𝑥(𝑡𝑏) (at a point in time 𝑡𝑏)
are connected, if, for any other value (𝑥(𝑡𝑐), 𝑡𝑐), which is placed between them (i.e., 𝑡𝑎 < 𝑡𝑐 < 𝑡𝑏),
the condition is satisfied:

𝑥(𝑡𝑐) < 𝑥(𝑡𝑎) + (𝑥(𝑡𝑏) − 𝑥(𝑡𝑎))
𝑡𝑐 − 𝑡𝑎
𝑡𝑏 − 𝑡𝑎

.

Note that the visibility graph is always connected by definition and also is invariant under
affine transformations, due to the mapping method.

An alternative (and much simpler) algorithm is the horizontal visibility graph (HVG) [345],
in which a connection can be established between two data points a and b if one can draw a
horizontal line in the time series joining them that does not intersect any intermediate data
by the following geometrical criterion: 𝑥(𝑡𝑎), 𝑥(𝑡𝑏) > 𝑥(𝑡𝑐) for all 𝑐 such that 𝑡𝑎 < 𝑡𝑐 < 𝑡𝑏 (see
figure 26).

Figure 26: Illustration of constructing the visibility graph (red lines) and the horizontal visibility graph
(green lines) [348].
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In multiplex networks, there are two tasks [347]: (1) turn separate time series into the network
for each layer; (2) connect the intra-loop networks to each other. The first problem is solved
within the framework of the standard algorithms described above. For multiplex networks, the
algorithm of the MVG for the three layers is presented in figure 27.

Figure 27: Scheme for forming bonds between three layers of the multiplex network [347].

The cross-recurrent multiplex network (MCRP) is formed from recursive diagrams of individ-
ual layers.

8.2. Spectral and topological graph properties

Spectral theory of graphs is based on algebraic invariants of a graph – its spectra [27]. The
spectrum of graph 𝐺 is the set of eigenvalues 𝑆𝑝(𝐺) of a matrix corresponding to a given graph.
For adjacency matrix 𝐴 of a graph, there exists a characteristic polynomial |𝜆𝐼 − 𝐴|, which is
called the characteristic polynomial of a graph 𝑃𝐺(𝜆). The eigenvalues of the matrix 𝐴 (the
zeros of the polynomial |𝜆𝐼 − 𝐴|) and the spectrum of the matrix 𝐴 (the set of eigenvalues) are
called respectively their eigenvalues.

Another common type of graph spectrum is the spectrum of the Laplace matrix 𝐿. The
Laplace matrix is used to calculate the tree graphs, as well as to obtain some important spectral
characteristics of the graph. It can be defined as 𝐿 = 𝐷 − 𝐴 where 𝐷 – diagonal matrix of order
𝑛:

𝑑𝑖𝑗 = {
𝑑𝑖, 𝑖 = 𝑗,
0, 𝑖 ≠ 𝑗,

(45)

with 𝑑𝑖 – the degree of corresponding vertex in the graph.
The spectrum 𝑆𝑝𝐿(𝐺) of the matrix 𝐿 is the root of the characteristic equation:

|𝜆𝐼 − 𝐿| = |𝜆𝐼 − 𝐷 + 𝐴| = 0. (46)

Comparing the spectra of 𝑆𝑝 with 𝑆𝑝𝐿 , it is easy to establish that

𝑆𝑝(𝐺) = [𝜆1, 𝜆2, … , 𝜆𝑛] ,

𝑆𝑝𝐿(𝐺) = [𝑟 − 𝜆𝑛, 𝜆𝑛−1, … , 𝑟 − 𝜆1] ,
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where 𝜆1 = 𝑟.
The number zero is the eigenvalue of the matrix 𝐿, which corresponds to an eigenvector

whose coordinates are equal to unity. The multiplicity of the null eigenvalue is equal to the
number of connected components of the graph. The rest of eigenvalues 𝐿 are positive. The
least of the positive eigenvalues 𝜆2 is called the index of algebraic connectivity of the graph.
This value represents the “force” of the connectivity of the graph component and is used in the
analysis of reliability and synchronization of the graph.

Important derivative characteristics are spectral gap, graph energy, spectral moments, and
spectral radius. The spectral gap is the difference between the largest and the next eigenvalues
of the adjacency matrix and characterizes the rate of return of the system to the equilibrium
state. The graph energy is the sum of the modules of the eigenvalues of the graph adjacency
matrix:

𝐸(𝐺) =
𝑛
∑
𝑖=1

|𝜆𝑖| .

The spectral radius is the largest modulus of the eigenvalue of the adjacency matrix. Denote
by 𝑁𝑐 the value, which corresponds to an average eigenvalue of the graph adjacency matrix:

𝑁𝑐 = ln (1
𝑛

𝑛
∑
𝑖=1

exp(𝜆𝑖))

and is called natural connectivity.
The 𝑘𝑡ℎ spectral moment of the adjacency matrix is determined by the expression

𝑚𝑘(𝐴) =
1
𝑛

𝑛
∑
𝑖=1

𝜆𝑘𝑖 ,

with 𝜆𝑖 that represents eigenvalues of the adjacency matrix, and 𝑛 is the vertex of 𝐺.
Among the topological measures, one of the most important is the node degree 𝑘 – the number

of links attached to this node. For non-directed networks, the node’s degree 𝑘𝑖 is determined by
the sum 𝑘𝑖 = ∑𝑗 𝑎𝑖𝑗, where the elements 𝑎𝑖𝑗 of the adjacency matrix.

For characterizing the linear size of the network, there are useful concepts of average ⟨𝑙⟩ and
maximum 𝑙𝑚𝑎𝑥 shortest paths. For a connected network of 𝑛 nodes, the average path length
(ApLen) is equal to

⟨𝑙⟩ = 2
𝑛(𝑛 − 1)

∑
𝑖>𝑗

𝑙𝑖𝑗, (47)

where 𝑙𝑖𝑗 – the length of the shortest path between the nodes. The diameter of the connected
graph is the maximum possible distance between its two vertices, while the minimum possible
is the radius of the graph.

If the average length of the shortest path gives an idea of the whole network and is a global
characteristic, the next parameter – the clustering coefficient – is a local value and characterizes
a separate node. For a given node 𝑖, the clustering coefficient 𝐶𝑖 is defined as the ratio of the
existing number of links between its closest neighbors to the maximum possible number of
such relationships:

𝐶𝑖 =
2𝐸𝑖

𝑘𝑖(𝑘𝑖 − 1)
. (48)
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In equation (48), 𝑘𝑖(𝑘𝑖 − 1)/2 is the maximum number of links between the closest neighbors.
The clustering coefficient of the entire network is defined as the average value of 𝐶𝑖 for all its
nodes. The clustering coefficient shows how many of the nearest neighbors of the given node
are also the closest neighbors to each other. It characterizes the tendency to form groups of
interconnected nodes – clusters. For the real-life networks, the high values of the clustering
coefficient are high.

Another feature of the node is betweenness. It reflects the role of the node in establishing
network connections and shows how many shortest paths pass through this node. Node
betweenness 𝑐(𝑣)) is defined as

𝑐(𝑣) = ∑
𝑖≠𝑗

𝜎(𝑖, 𝑗 | 𝑣)
𝜎(𝑖, 𝑗)

, (49)

where 𝜎(𝑖, 𝑗) – the total number of shortest paths between nodes 𝑖 and 𝑗; 𝜎(𝑖, 𝑗 | 𝑣) – the number
of those shortest paths between 𝑖, 𝑗 passing through 𝑣. The value of (49) is also called the load or
betweenneess centrality.

One of the main characteristics of the network is the degree distribution 𝑃(𝑑), which is
defined as the probability that the node 𝑖 has a degree 𝑑𝑖 = 𝑑. Most natural and actual artificial
networks follow a power law distribution

𝑃(𝑑) ∼ 1/𝑑𝛾, 𝑑 ≠ 0, 𝛾 > 0. (50)

Also, important topological characteristic is the vertex eccentricity – the largest distance
between 𝑖 and any other vertex, that is, how far the vertex is far from the other vertices of
the graph. The centrality of the vertex measures its relative importance in the graph. At the
same time, the farness of a node is defined as the sum of its distances to all other nodes, and its
closeness is defined as the backward distance. Thus, the centrality of the node is lower than its
total distance to all other nodes.

Another important measure is the link density in the graph, which is defined as the number
of links 𝑛𝑒, divided by the expression 𝑛𝑛(𝑛𝑛 − 1)/2, where 𝑛𝑛 is the number of nodes of the graph.

From spectral measures, we consider the maximal node degree (𝑑𝑚𝑎𝑥 – figure 28a and figure
28b). From the topological measures, the average path length (APLen – figure 28c and 28d) is
found, which is in accordance with equation (47).

Figure 28 demonstrates the asymmetric response of the spectral and topological measures of
network complexity. For the complete series, the calculation parameters are as follows: window
length of 100 days, step is of 1 day.

Figures above show that all of the above spectral measures have maximum values in pre-crisis
periods. The complex system has the greatest complexity. With the approach of the crisis,
the complexity of the system decreases, recovering after the crisis. Some of the topological,
in particular, APLen, shows an opposite relationship. Indeed, in more complex systems you
can always find shorter paths that connect any nodes. During the crisis (reducing complexity,
increasing the chaotic component), the length of the corresponding path increases.
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(a)

(b)

(c)

(d)

Figure 28: Maximal node degree 𝑑𝑚𝑎𝑥 (a, b) and average path length ⟨𝑙⟩ (c, d) for two periods of Bitcoin
time series.
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8.3. Multiplex complexity measures

A multilayer/multiplex network [349, 84] is a pair 𝑀=(𝐺, 𝐶) where {𝐺𝛼 | 𝛼 ∈ 1, … ,𝑀} is a family
of graphs (whether directed or not, weighed or not) 𝐺𝛼 = (𝑋𝛼, 𝐸𝛼) that called layers and

𝐶 = {𝐸𝛼𝛽 ⊆ 𝑋𝛼 × 𝑋𝛽 | 𝛼 , 𝛽 ∈ 1, … ,𝑀, 𝛼 ≠ 𝛽}

is a set of links between nodes of layers 𝐺𝛼 and 𝐺𝛽 where 𝛼 ≠ 𝛽. The elements of each 𝐸𝛼 are
intralayer edges in 𝑀 in contrast to the elements of each 𝐸𝛼𝛽 that called interlayer edges.

A set of nodes in a layer 𝐺𝛼 is denoted as 𝑋𝛼={𝑥𝛼1 , … , 𝑥𝛼𝑁𝛼
}, and an intralayer adjacency matrix

as 𝐴[𝛼] = (𝑎𝛼𝑖𝑗) ∈ Re𝑁𝛼×𝑁𝛼 , where

𝛼𝛼𝑖𝑗 = {
1, (𝑥𝛼𝑖 , 𝑥

𝛼
𝑗 ) ∈ 𝐸𝛼,

0, otherwise.
(51)

for 1 ≤ 𝑖 ≤ 𝑁𝛼, 1 ≤ 𝑗 ≤ 𝑁𝛽 and 1 ≤ 𝛼 ≤ 𝑀. For an interlayer adjacency matrix, we have

𝐴[𝛼, 𝛽](𝑎𝛼𝛽𝑖𝑗 ) ∈ Re𝑁𝛼×𝑁𝛽 , where

𝛼𝛼𝛽𝑖𝑗 = {
1, (𝑥𝛼𝑖 , 𝑥

𝛽
𝑗 ) ∈ 𝐸𝛼𝛽,

0, otherwise.
(52)

A multiplex network is a partial case of interlayer networks, and it contains a fixed number of
nodes connected by different types of links. Multiplex networks are characterized by correlations
of different nature [331], which enable the introduction of additional multiplexes.

Let’s evaluate the quantitative overlap between the various layers. The average edge overlap
is defined as [341]

𝜔 =
∑𝑖∑𝑗>𝑖∑𝛼 𝑎

[𝛼]
𝑖𝑗

𝑀 ∑𝑖∑𝑗 1 − 𝛿0,∑𝛼 𝛼
[𝛼]
𝑖𝑗

(53)

and determines the number of layers in which this edge is presented. Its value lies on the
interval [1/𝑀, 1] and equals 1/𝑀 if the connection (𝑖, 𝑗) exists only in one layer. In other words,
if there is a layer 𝛼 such that 𝑎[𝛽]𝑖𝑗 = 0∀𝛽 ≠ 𝛼. If all layers are identical, then 𝜔 = 1. Consequently,
this measure can serve as a measure of the coherence of the output time series: high values of
𝜔 indicate a noticeable correlation in the structure of the time series.

The total overlap 𝑂𝛼𝛽 between the two layers 𝛼 and 𝛽 is defined as the total number of edges
that are shared between the layers 𝛼 and 𝛽:

𝑂𝛼𝛽 = ∑𝑎𝛼𝑖𝑗𝑎
𝛽
𝑖𝑗 , (54)

where 𝛼 ≠ 𝛽.
For a multiplex network, the node degree 𝑘 is already a vector

𝑘𝑖 = (𝑘[1]𝑖 , … , 𝑘[𝑀]
𝑖 ), (55)
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with the degree 𝑘[𝛼]𝑖 of the node 𝑖 in the layer 𝛼, namely

𝑘[𝛼]𝑖 = ∑𝑗 𝑎
[𝛼]
𝑖𝑗 ,

while 𝑎[𝛼]𝑖𝑗 is the element of the adjacency matrix of the layer 𝛼. Specificity of the node degree
in vector form allows to describe additional quantities. One of them is the ovelapping degree of
node 𝑖

𝑜𝑖 =
𝑀
∑
𝛼=1

𝑘[𝛼]𝑖 . (56)

The next measure quantitatively describes the interlayer degree correlations of the selected
node in two different layers. If a chosen pair (𝛼, 𝛽) from 𝑀 layers is characterized by the
distributions 𝑃(𝑘[𝛼]), 𝑃(𝑘[𝛽]), the so-called interlayer mutual information is determined as:

𝐼𝛼,𝛽 = ∑∑𝑃(𝑘[𝛼], 𝑘[𝛽]) log
𝑃(𝑘[𝛼], 𝑘[𝛽])

𝑃(𝑘[𝛼]), 𝑃(𝑘[𝛽])
, (57)

where 𝑃(𝑘[𝛼], 𝑘[𝛽]) is the probability of finding a node degree 𝑘[𝛼] in a layer 𝛼 and a degree 𝑘[𝛽]
in a layer 𝛽. The higher the value of 𝐼𝛼,𝛽, the more correlated (or anti-correlated) is the degree
distribution of the two layers and, consequently, the structure of a time series associated with
them. We also find the mean value of 𝐼𝛼,𝛽 for all possible pairs of layers – the scalar ⟨𝐼𝛼,𝛽⟩ that
quantifies the information flow in the system.

The quantity that quantitatively describes the distribution of a node degree 𝑖 between different
layers is the entropy of a multiplexed degree:

𝑆𝑖 = −
𝑀
∑
𝛼=1

𝑘[𝛼]𝑖
𝑜𝑖

ln
𝑘[𝛼]𝑖
𝑜𝑖

. (58)

Entropy is zero if all connected to 𝑖 edges are in the same layer, and has the maximum value
when they are evenly distributed between different layers. So, the higher value of 𝑆𝑖, the more
evenly distributed edges connected to 𝑖 between different layers.

A similar indicator is the multiplex participation coefficient :

𝑃𝑖 =
𝑀

𝑀 − 1
[1 −

𝑀
∑
𝛼=1

(
𝑘𝛼𝑖
𝑜𝑖
)
2
] . (59)

The 𝑃𝑖 takes values on the interval [0, 1] and determines how homogeneously are distributed
the links of a node 𝑖 among 𝑀 layers. If a node is only active on one layer, 𝑃𝑖 = 0; 𝑃𝑖 = 1 if a
node has an precisely defined number of incident links that are equally distributed across 𝑀
layers.

Obviously, measures 𝑆𝑖 and 𝑃𝑖 are very similar.
We will show that some of these spectral and topological indicators serve as the measures of

system complexity, and the dynamic of their changes allow us to build precursors of crashes
and critical events in the cryptocurrency market.
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As far as multiplex measures are concerned, they are very similar in their dynamic to the
spectral and topological representations above (see figure 28). In the case of a shorter sample of
a base of three layers – Bitcoin, Ethereum, Litecoin (see figure 29-31), we have the asymmetric
behavior of the multiplex measures 𝐼 , 𝑂, 𝑜 (Equations (57), (54), (56) and 𝑆, 𝑃 (Equations (58) and
(59)) for different methods of building multiplex networks.

(a)

(b)

Figure 29: Dynamics of the second BTC period and multiplex measures for a base of three layers. The
graph was built using the multiplex visibility graph.

Figures 29-31 show that the mentioned multiplex measures are excellent indicators that warn
about the approaching crisis phenomenon, that is, are indicator-precursors.

9. Quantum precursors

Quantum econophysics, a direction distinguished by the use of mathematical apparatus of
quantum mechanics as well as its fundamental conceptual ideas and relativistic aspects, devel-
oped within its boundaries just a couple of years later, in the first decade of the 21𝑠𝑡 century
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Figure 30: Dynamics of BTC daily prices and multiplex measures 𝑂. The graph was built using the
MHVG.

Figure 31: Dynamics of BTC daily prices and multiplex measures 𝑜. The graph was built using the
MCRP.

[350, 351, 352, 42].
According to classical physics, immediate values of physical quantities, which describe the

system status, not only exist but can also be exactly measured. Although non-relativistic
quantum mechanics does not reject the existence of immediate values of classic physical
quantities, it postulates that not all of them can be measured simultaneously (Heisenberg
uncertainty ratio). Relativistic quantum mechanics denies the existence of immediate values for
all kinds of physical quantities, and, therefore, the notion of system status seizes to be algoristic.

In this section, we will demonstrate the possibilities of quantum econophysics on the example
of the application of the Heisenberg uncertainty principle and the Random Matrices Theory to
the actual and debatable now market of cryptocurrencies [81, 353].
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9.1. Heisenberg uncertainty principle and economic analogues of basic
physical quantities

In our paper [43], we have suggested a new paradigm of complex systems modeling based on
the ideas of quantum as well as relativistic mechanics. It has been revealed that the use of
quantum-mechanical analogies (such as the uncertainty principle, the notion of the operator, and
quantum measurement interpretation) can be applied to describing socio-economic processes.
Methodological and philosophical analysis of fundamental physical notions and constants, such
as time, space, and spatial coordinates, mass, Planck’s constant, light velocity from modern
theoretical physics provides an opportunity to search for adequate and useful analogs in socio-
economic phenomena and processes.

The Heisenberg uncertainty principle is one of the cornerstones of quantum mechanics. The
modern version of the uncertainty principle, deals not with the precision of a measurement and
the disturbance it introduces, but with the intrinsic uncertainty any quantum state must possess,
regardless of what measurement is performed [354, 355]. Recently, the study of uncertainty
relations, in general, has been a topic of growing interest, specifically in the setting of quantum
information and quantum cryptography, where it is fundamental to the security of certain
protocols [356, 357].

To demonstrate it, let us use the known Heisenberg’s uncertainty ratio which is the fun-
damental consequence of non-relativistic quantum mechanics axioms and appears to be (e.g.,
[358]):

Δ𝑥 ⋅ Δ𝑣 ⩾ ℏ
2𝑚0

, (60)

where Δ𝑥 and Δ𝑣 are mean square deviations of 𝑥 coordinate and velocity 𝑣 corresponding to
the particle with (rest) mass 𝑚0, ℏ – Planck’s constant. Considering values Δ𝑥 and Δ𝑣 to be
measurable when their product reaches their minimum, according to equation (60) we derive:

𝑚0 =
ℏ

2 ⋅ Δ𝑥 ⋅ Δ𝑣
, (61)

i.e., the mass of the particle is conveyed via uncertainties of its coordinate and velocity – time
derivative of the same coordinate.

Economic measurements are fundamentally relative, local in time, space and other socio-
economic coordinates, and can be carried out via consequent and/or parallel comparisons “here
and now”, “here and there”, “yesterday and today”, “a year ago and now”, etc.

Due to these reasons constant monitoring, analysis, and time series prediction (time series
imply data derived from the dynamics of stock indices, exchange rates, cryptocurrency prices,
spot prices, and other socio-economic indicators) become relevant for the evaluation of the
state, tendencies, and perspectives of global, regional, and national economies.

Suppose there is a set of 𝐾 time series, each of 𝑁 samples, that correspond to the single
distance 𝑇, with an equally minimal time step Δ𝑡𝑚𝑖𝑛:

X𝑖(𝑡𝑛), for 𝑛 = 0, 1, … , 𝑁 − 1; for 𝑖 = 1, 2, … , 𝐾. (62)

To bring all series to the unified and non-dimensional representation, accurate to the additive
constant, we normalize them, have taken a natural logarithm of each term of the series. Then,
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consider that every new series X𝑖(𝑡𝑛) is a one-dimensional trajectory of a certain fictitious
or abstract particle numbered 𝑖, while its coordinate is registered after every time span Δ𝑡𝑚𝑖𝑛,
and evaluate mean square deviations of its coordinate and speed in some time window Δ𝑇 =
Δ𝑁 ⋅ Δ𝑡𝑚𝑖𝑛 = Δ𝑁 , 1 ≪ Δ𝑁 ≪ 𝑁. The “immediate” speed of 𝑖𝑡ℎ particle at the moment 𝑡𝑛 is
defined by the ratio:

𝑣𝑖(𝑡𝑛) =
𝑥𝑖(𝑡𝑛+1) − 𝑥𝑖(𝑡𝑛)

Δ𝑡𝑚𝑖𝑛
= 1

Δ𝑡𝑚𝑖𝑛
ln

X𝑖(𝑡𝑛+1)
X𝑖(𝑡𝑛)

(63)

with variance 𝐷𝑣𝑖 and standard deviation Δ𝑣𝑖.
Keeping an analogywith equation (1), after some transformations, we canwrite an uncertainty

ratio for this trajectory [43]:

1
Δ𝑡𝑚𝑖𝑛

(⟨ln2
X𝑖(𝑡𝑛+1)
X𝑖(𝑡𝑛)

⟩𝑛,Δ𝑁 − (⟨ln2
X𝑖(𝑡𝑛+1)
X𝑖(𝑡𝑛)

⟩𝑛,Δ𝑁)
2
) ∼ ℎ

𝑚𝑖
, (64)

where 𝑚𝑖 – economic “mass” of a X𝑖 series, ℎ – value which comes as an economic Planck’s
constant.

Since the analogy with physical particle trajectory is merely formal, ℎ value, unlike the
physical Planck’s constant ℏ, can, generally speaking, depend on the historical period, for which
the series are taken, and the length of the averaging interval (e.g., economical processes are
different in the time of crisis and recession), on the series number 𝑖 etc. Whether this analogy is
correct or not depends on the particular series’ properties.

In recent research [359, 30], we tested the economic mass as an indicator of crisis phenomena
on stock index data. Here, we test the model for the cryptocurrency market on the example of
Bitcoin [80, 81, 353, 360].

Obviously, there is a dynamic characteristic value 𝑚, depending on the internal dynamics of
the market. In times of crashes and critical events marked by arrows, mass 𝑚 is significantly
reduced in the pre-crash and pre-critical periods.

Obviously, 𝑚 remains a good indicator-precursor even in this case. Value 𝑚 is considerably
reduced before a special market condition. The market becomes more volatile and prone to
changes.

Next method of quantum econophysics is borrowed from nuclear physicists and is called
Random Matrix Theory.

9.2. Random matrix theory and quantum indicators-precursors

Random Matrix Theory (RMT) developed in this context the energy levels of complex nuclei,
which the existing models failed to explain (Prevedel et al. [357], Benítez Rodríguez and Aguilar
[354], Rozema et al. [355]). Deviations from the universal predictions of RMT identify specific,
nonrandom properties of the system under consideration, providing clues about the underlying
interactions.

Unlike most physical systems, where one relates correlations between subunits to basic
interactions, the underlying “interactions” for the stock market problem are not known. Here,
we analyze cross-correlations between stocks by applying concepts and methods of random
matrix theory, developed in the context of complex quantum systems where the precise nature
of the interactions between subunits are not known.
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(a)

(b)

(c)

(d) (e) (f)

Figure 32: Dynamics of measure 𝑚 for two entire periods, and its dynamics for their local crashes (c, e)
and critical events (d, f) with the window size of 50 days and step of 1 day.

RMT has been applied extensively in studying multiple financial time series [361, 356, 362,
358, 43, 353, 359, 360, 363].

Special databases have been prepared, consisting of cryptocurrency time series for a certain
time. The largest number of cryptocurrencies 689 contained a base of 456 days from 31.12.2017 to
31.05.2020, and the smallest (22 cryptocurrencies) contained a base, respectively, from 11.09.2013
to 31.05.2020 (https://coinmarketcap.com/all/views/all/). In order to quantify correlations, we
first calculate the logarithmic returns of the cryptocurrencies price series over a time scaleΔ𝑡 = 1
day. We calculate the pairwise cross-correlation coefficients between any two cryptocurrency
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time series returns. for the largest database, a graphical representation of the pair correlation
field is shown in figure 33a. For comparison, a map of correlations of randomly mixed time
series of the same length shown in figure 33 b.

(a)

(b)

Figure 33: Visualization of the field of correlations for the initial (a, c) and mixed (b, d) matrix cryp-
tocurrency.

For the correlation matrix 𝐶 we can calculate its eigenvalues, 𝐶 = 𝑈Λ𝑈 𝑇, where 𝑈 denotes
the eigenvectors, Λ is the eigenvalues of the correlation matrix, whose density 𝑓𝑐(𝜆) is defined
as 𝑓𝑐(𝜆) = (1/𝑁 )𝑑𝑛(𝜆)/𝑑𝜆, where 𝑛(𝜆) is the number of eigenvalues of 𝐶 that are less than 𝜆.
In the limit 𝑁 → ∞, 𝑇 → ∞ and 𝑄 = 𝑇/𝑁 ⩾ 1 fixed, the probability density function 𝑓𝑐(𝜆) of
eigenvalues 𝜆 of the random correlation matrix 𝑀 has a closed form:

𝑓𝑐(𝜆) =
𝑄

2𝜋𝜎2
√(𝜆𝑚𝑎𝑥 − 𝜆)(𝜆 − 𝜆𝑚𝑖𝑛)

𝜆
, (65)

with 𝜆 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥], where 𝜆𝑚𝑎𝑥𝑚𝑖𝑛 is given by 𝜆𝑚𝑎𝑥𝑚𝑖𝑛 =𝜎2(1 + 1/𝑄 ± 2√1/𝑄) and 𝜎2 is equal to the
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variance of the elements of matrix 𝑀.
We compute the eigenvalues of the correlation matrix 𝐶, 𝜆𝑚𝑎𝑥 = 𝜆1 > 𝜆2 > ⋯ > 𝜆15 = 𝜆𝑚𝑖𝑛.

The probability density functions of paired correlation coefficients 𝑐𝑖𝑗 and eigenvalues 𝜆𝑖 for
matrices of 110, 298, and 689 cryptocurrencies are presented in figure 34.

(a)

(b)

Figure 34: Comparison of distributions of the pair correlation coefficients (a) and eigenvalues of the
correlation matrix (b) obtained for initial cryptocurrencies and their shuffled version.

From figure 34 it can be seen that the distribution functions for the paired correlation
coefficients of the selected matrices differ significantly from the distribution function described
by the RMT. It can be seen that the crypto market has a significantly correlated, self-organized
system, and the difference from the RMT of the case, the correlation coefficients exceed the
value of 0.6-0.8 on “thick tails”. The distribution of eigenvalues of the correlation matrix also
differs markedly from the case of RMT. In our case, only one-third of its values refer to the RMT
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region.
Eigenvectors correspond to the participation ratio PR and its inverse participation ratio IPR

𝐼 𝑘 = ∑
𝑁
𝑙=1 [𝑢

𝑙
𝑙]
4
, (66)

where 𝑢𝑙𝑘, 𝑙 = 1, … , 𝑁, are the components of the eigenvector 𝑢𝑘. So, PR indicates the number of
eigenvector components that contribute significantly to that eigenvector. More specifically, a
low IPR indicates that cryptocurrencies contribute more equally. In contrast, a large IPR would
imply that the factor is driven by the dynamics of a small number of cryptocurrencies.

The irregularity of the influence of eigenvalues of the correlation matrix is determined by
the absorption ratio (AR)

𝐴𝑅𝑛 =
∑𝑛

𝑘=1 𝜆𝑙
∑𝑁

𝑘=1 𝜆𝑘
, (67)

which is a cumulative risk measure and indicates which part of the overall variation is described
from the total number of 𝑁 eigenvalues.

The difference in dynamics is due to the peculiarities of non-random correlations between the
time series of individual assets. Under the framework of RMT, if the eigenvalues of the real-time
series differ from the prediction of RMT, there must exist hidden economic information in those
deviating eigenvalues. For cryptocurrencies markets, there are several deviating eigenvalues in
which the largest eigenvalue 𝜆𝑚𝑎𝑥 reflects a collective effect of the whole market. As for PR,
the differences from RMT appear at large and small 𝜆 values and are similar to the Anderson
quantum effect of localization [364]. Under crash and critical event conditions, the states at the
edges of the distributions of eigenvalues are delocalized, thus identifying the beginning of one
of these events. This is evidenced by the results presented in figure 35b.

We find that both 𝜆𝑚𝑎𝑥 and 𝑃𝑅𝜆𝑚𝑎𝑥 have large values for periods containing the crypto
market crashes and critical events. At the same time, their growth begins in the pre-crashes
periods. As well as the economic mass, they are quantum precursors of crashes and critical
events phenomena.

10. Conclusions

Definitely, the factors from within and outside of the cryptocurrencies universe are going to
evolve all of them. The great influence will go from incumbents and policymakers, as well
as challengers and users. Current mistrust on the part of the government may lead to the
introduction of specific licensing requirements that may make these digital currencies less
attractive. Similarly, the adaptation to them and acceptance of cryptocurrencies may lead to
increasing demand for them. The current situation with coronavirus is of paramount importance
and is of significant danger.

From the literature overview, we have understood that crashes and critical events do not
disappear without a trace, but will also affect the fate of individuals. On the other hand, in the
future, the influence of these events may attract users to alternative forms of currency such
as cryptocurrencies. Increased trading activity on cryptocurrency exchanges could positively
affect the popularity of stablecoins. Lastly, the overall monetary system may be fundamentally
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(a)

(b)

Figure 35: Inverse participation ratio (a) and (b) quantum measures of complexity 𝜆𝑚𝑎𝑥 and its partici-
pation ratio.

changed through the introduction of a central bank digital currency, potentially upstaging
stablecoins [365].

In order to give reliable, powerful, and simple indicators-precursors that are able to minimize
further losses as a result of changes, we addressed the reach arsenal of the theory of complexity
and the methods of nonlinear dynamics that can identify special trajectories in the complex
dynamics and classify them. Following our research, we obtain informational, (multi-)fractal,
chaos-dynamical, recurrent, irreversible, based on complex networks, and quantum measures
of complexity.

The obtained quantitative methods were applied to classified crashes of the Bitcoin market,
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where it was seen that these indicators can be used in order to protect yourself from the
upcoming critical change. To draw some conclusions about its evolution and factors that
influence it, we pointed out the most influential critical changes in this market. Relying on
different research articles and our previous experience, such changes were classified as crashes
and critical events. Moreover, we assume crash as strong, time localized drop with high volatility
whose percentage decline exceeds 30%. Critical events are those falls with less percentage decline
and volatility. The analysis of the crypto market with the sliding (rolling or moving) window
approach allowed us to draw some conclusions about its evolution and factors that influence it.
Regarding empirical results, we have shown that some of the measures are very sensitive to the
length of the sliding window and its time step. For example, if we consider two closest to each
other events, a previous event that had much more volatility can have a great influence on the
corresponding measure of complexity and spoil the identification of the next less influential,
but important event. Thus, time localization is significant while calculating the measure of
complexity. The less time localization and time step, the more corresponding changes are taken
into account. For a much larger time window and its step, we can have less accurate estimations.

It turned out that most of the chosen measures of complexity respond in advance to the
corresponding changes of complexity in the cryptocurrency market and can be used in the
diagnostic processes. Suchmeasures can be presented as indicators or even indicators-precursors
of the approaching crashes and critical events.

Relying on the information theory and its powerful toolkit, we emphasized four measures
of complexity, such as the measure of Lempel-Ziv, classical Shannon entropy, and its two
modifications (Approximate entropy and Permutation entropy). We referred to the complexity
of the systems, how it was described in different studies, and what methods were applied to
quantify its degree. Our results show that in the pre-crash or pre-critical period, the complexity
of Bitcoin starts to change that is it starts to decrease, indicating that such events presented
to be more predictable and corresponding patterns are more structured. Thus, the degree of
predictability increases in times of such events.

Along with information theory, we referred to the multifractal properties of the cryptocur-
rency market. As it was obtained with multifractal detrended fluctuation analysis, the scaling
exponents remain non-linear, and the width of singularity spectrum changes in time that gives
evidence that at different times (scales) BTC time series exhibits more or less complex behavior,
indicating that cryptocurrency exhibits multifractal properties. Applying the width of multi-
fractality as an indicator of possible critical states we found that before crash or critical event,
this measure starts to decrease that tell us that the series is expected to be more predictable
and stable, while its dynamics after such events is increasing that present system to be more
susceptible to fluctuations.

Chaos-dynamical measures were applied to study bitcoin from the perspective of Chaos
theory. Transitions between chaotic and non-chaotic behavior were identified with Lyapunov
exponents where there was selected the largest Lyapunov exponent. The beginning of each crash
or critical event can be characterized by the convergence of the two considered, initially close
trajectories where the Largest Lyapunov exponent reflects the rate of such convergence, while
the high-price level regimes are characterized by the divergence of the initially close trajectories.
Whereas decreasing largest Lyapunov exponent indicates that patterns in the system tend to be
predictable (trajectories converge), increasing indicates that the system goes into an unstable
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regime. Our empirical results obtained with the sliding window presented the largest Lyapunov
exponent to be an indicator of such regimes. Moreover, we considered that such extreme events
can be related to the fat-tails and better described with non-Gaussian distributions, particularly,
described by Lévy alpha-stable distribution and its four parameters. As it is still debatable
whether the stable distribution is completely applicable or not, we addressed to its group of
stable parameters, and during tests, we emphasized that the characteristic exponent that serve
to describe the thickness of tails is the best for serving as an indicator-precursor of possible
crashes and critical events. Thus, is shown that such a complex system as the bitcoin market,
with growth and preferential attachments, is characterized by power-laws.

The analysis of the crypto market with the measures from the recurrence quantification
analysis revealed that its toolkit is suitable for distinguishing diverse market periods. Such
measures as recurrence rate, determinism, the entropy diagonal line histogram, recurrence
periodic density entropy, recurrence entropy, and divergence, which methodology is based on
clusters of isolated points, vertical/diagonal lines, etc., are presented to be great for detection of
the periods of instability or relaxation.

Also, applying the concept of time irreversibility (asymmetry), we found it changes for the
period of crashes and critical events, and corresponding measures detect such phenomena. Thus,
time irreversibility based on permutation patterns can serve as a good base for further models of
financial control. However, muchmoremeasures can be added to this list [108, 366, 367, 317, 368].

Moreover, we have demonstrated the possibility of studying complex cryptosystems within
the network paradigm. The time series can be presented as an economic network (visibility
graph) and multiplex network with a set of both spectral and topological characteristics, which
are sensitive to the critical changes in the BTC market.

Addressing to quantum econophysics and its apparatus where appropriate measures of
complexity were obtained. Such quantitative methods as Heisenberg uncertainty and the
Random matrix approach have confirmed their effectiveness for studying the cryptocurrency
market. We found that economic “mass” along with 𝜆𝑚𝑎𝑥 and 𝑃𝑅 𝜆𝑚𝑎𝑥 are presented to be
effective due to their robustness, computational efficiency, and simplicity.

Apparently, the impact of different crashes and critical events was reflected in the cryptocur-
rency market, as well as the coronavirus pandemic and therefore, the dynamics of past events,
as well as of the subsequent could be identified in advance using the appropriate indicators of
the theory of complexity. In our further studies, we are going to aim our view on exploring
and analyzing of other methods from the theory of complexity. Being emerging currency that
still needs to become trustworthy among as many people as possible, bitcoin’s dynamics is
the subject not only to high fluctuations but also to various attacks [369, 370, 371, 372, 373]
of blockchain [374] and Proof-of-Work protocol [375]. Thus, particular interest presents re-
search on implementing the theory of complex systems and its enormous toolkit for iden-
tifying such abnormal activity when transactions between users happen to make appropri-
ate actions in advance. Equally interesting is the development of the theory of quantum
computation and quantum information [376, 377, 378, 379] where it would be interesting
to see their influence on blockchain and cryptocurrencies. Moreover, the research in the
field of artificial intelligence, machine, and deep learning does not remain without attention
[380, 381, 52, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391].
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[28] S. Drożdż, L. Minati, P. Oświȩcimka, M. Stanuszek, M. Wa̧torek, Competition of noise and
collectivity in global cryptocurrency trading: Route to a self-contained market, Chaos: An
Interdisciplinary Journal of Nonlinear Science 30 (2020) 023122. doi:10.1063/1.5139634.

[29] M. Wa̧torek, S. Drożdż, J. Kwapień, L. Minati, P. Oświȩcimka, M. Stanuszek, Multiscale
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