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ABSTRACT
In this paper, we attempt to estimate how much learning
happens in required practice activities (homework) relative
to elective practice activities (studying). This analysis is
done in the context of a large enrollment (N = 601) intro-
ductory programming course that made heavy use of auto-
grading randomizing question (item) generators. Because
these item generators (and other problems) were used as
homework, on practice exams, and as part of exams, a given
student may have encountered the same generator multiple
times during the class, providing snapshots of the evolution
of the student’s ability to complete that problem correctly.

We use a post hoc model of “this-item-correct” prediction to
estimate individual student knowledge on each attempt of
a given question. Across five exams, correctness tracing at-
tributes 57-65% of the learning that occurs to the homework
period and the remainder to elective practice (the study pe-
riod).
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1. INTRODUCTION
A well-designed course provides students with many oppor-
tunities to learn (e.g., readings, direct instruction, activities
with peers, homework). While summative assessment allows
us to estimate how much learning has occurred, it doesn’t
shed light on where the learning happened. If we could at-
tribute learning to the activities in which it occurred, this
would allow teachers to increase their use of effective activi-
ties and deprecate ineffective ones. Our goal as educators is
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to engage students, to assist both them and us in diagnosing
their progress, and to provide formative experiences during
their learning careers [8, 15,21,34].

In most courses, the bulk of the students’ time is spent
outside of course meetings, either completing homework or
performing elective practice (studying). It has been shown
that well-formed homework has a positive impact on stu-
dent performance and motivation [5, 6, 14, 22]. There are,
however, disagreements between experts among the learning
and assessment communities on how to craft good home-
work [2, 37]. Studying is usually motivated by a desire to
score well on exams and does not typically have a grade
associated with it [33].

We were curious to explore the degree to which we can
attribute student learning between two kinds of formative
practice activities: required homework and elective practice
performed prior to a summative assessment. Additionally,
as our course utilizes multiple types of questions, we were cu-
rious to know if student experiences differed between types.
To do so after the completion of the course, we use a post hoc
knowledge estimation method developed by Chen et al [9].
This method, which we call “correctness tracing” (CT) as
shorthand, models student learning as the likelihood of stu-
dents getting specific questions correct on a given attempt
for those questions. The method estimates the chance of a
student getting “this-item-correct” for a given item (ques-
tion) at every attempt the student makes on that item, for
all items.

We apply CT to student submission data from an on-campus
introductory programming course. The course used ran-
domly selected questions from question pools and random
item generators for exam creation, with many of the ques-
tions appearing previously on homework (and optional prac-
tice exams) as a studying motivator for students. We use
data from student homework, practice exams, and these
proctored exams to build a cohesive snapshot of student
experience with the same questions in multiple contexts.
Specifically, we share our experience investigating students’
learning in this fashion to address the following questions:



RQ1: How much learning happens during required
practice activities (homework) relative to elective prac-
tice (studying)?

RQ2: Does student learning differ based on the type of
the questions (e.g., multiple-choice vs. short answer)
asked?

The rest of our paper is organized as follows. Section 2
describes related work on student learning and knowledge
tracing. Section 3 discusses the course from which we col-
lected data and the handling of that data. In Section 4,
we explain the assumptions behind CT and detail our use
of the method. We follow with our results from the model-
ing in Section 5 and with interpretation and limitations in
Section 6. We conclude in Section 7.

2. RELATED WORK

2.1 How are students learning on homework
and through studying?

How students learn is an area of significant study. We are
specifically interested here in how formative assessment (e.g.
homework) helps students learn. Historically, formative as-
sessment is claimed to benefit student learning, although
there is little consensus on what exactly makes good for-
mative assessment [7]. There is evidence, however, that
frequent and distributed practice, such as frequent testing,
boosts student achievement and learning [1, 4, 24,32].

Research on homework often considers benefits to students’
motivation and self-regulatory ability as opposed to just
content learning. Ramdass and Zimmerman used correla-
tional studies to show that homework leads to higher self-
regulatory abilities and traits, like time management and
self-efficacy [29]. Similarly, Bembenutty and White showed
that students who approach homework with help-seeking at-
titudes and as motivating exercises displayed stronger aca-
demic performance [5].

Mandatory homework is found to be beneficial in existing
research, but in large part due to feedback. Gutarts and
Bains found that homework that provides feedback appears
to enhance student performance [14]. However, Johnson and
McKenzie found that while mandatory homework may in-
centivize homework-related motivation and learning, it was
not correlated with exam performance in their macroeco-
nomics course [17]. Ryan and Hemmes found homework
was correlated with improved quiz performance, but that
points are a necessary contingency to get students to do
homework, with feedback-only approaches reducing student
engagement [31].

The benefits of studying are less clearly defined. Chew sug-
gests the benefit of study can be improved by teaching stu-
dents how to study and that expecting students to know
how without designing assignments and material to aid their
studying may be a mistake on the part of some instruc-
tors [11]. Fakcharoenphol et al. found that there was a
learning increase in studying old exams with solutions and
feedback, but that this learning may be shallow [13].

The idea that studying itself may be comparatively shal-
low is supported in the literature on long-term retention.
Karpicke and Blunt found that the retrieval practice from
exams was superior for learning than elaborative studying
processes [18]. Additionally, Roediger and Nestojko found
that, while studying did improve long-term retention of con-
cepts, retrieval during testing still had superior results [30].

2.2 Knowledge tracing and student modeling
There is a wealth of work on different methods of tracing
student knowledge and modeling student learning and stu-
dent behavior. Many of these stem from Corbett and An-
derson’s original knowledge tracing paper [12]. Since the
original tracing paper, there has been more work on dealing
with issues such as student slip and guess behavior, the ben-
efits and traceability of learning resources, and other parts
of students’ learning environments. Pelanek’s significant re-
view shows how learner modeling has grown to encompass
domain knowledge structuring, learner clustering, student
observations, and more just over the last decade [27]. We
address a few below.

Pardos and Heffernan modeled individualized learning in
Bayesian knowledge tracing (BKT) [25]. In their method,
students’ skills were used to set each student’s individualized
knowledge for more accurate individual knowledge tracing.
They later introduced individual item difficulty as a way to
make knowledge tracing more robust to unseen items [26].
As opposed to skills being used for individual student pri-
ors, Khajah et al. used latent factors pulled from student
populations to predict individual student performance [20].
Other approaches use machine learning methods to estimate
student guess or slip chances as opposed to students having
not yet learned course material [3].

Deep learning methods have also been applied to knowl-
edge tracing in deep knowledge tracing (DKT) [28]. Ad-
ditions to DKT include prerequisite modeling in students’
concepts [10], problem level features like time to complete
and student hint usage [39], and dynamic student group-
ing based on performance [23]. There is some evidence to
suggest that, while DKT is powerful, BKT can similarly be
extended and that the gains do not require “deep” learn-
ing techniques explicitly [19]. Additionally, methods such
as predictive failure analysis can perform similarly to DKT
so long as care is taken to structure data appropriately [38].

3. DATA COLLECTION
Our data was collected in a large enrollment, introductory
programming course for non-CS majors in Fall 2019. The
course had 601 total students, with 246 women and 355 men.
The majority of students who took the course were freshmen
(67%) and sophomores (21%). The course predominantly
taught Python programming with some coverage of basic
Excel and HTML/web concepts.

3.1 Course context
The course was organized as a flipped class that covered one
major topic each week. Students were expected to complete
readings in an interactive textbook and an assignment con-
sisting of true/false and multiple-choice questions prior to
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Figure 1: Every three weeks the course had a proctored exam
(E0 to E4). Weight relative to the final course grade is pro-
vided as a percentage.

lecture. The weekly 90-minute lecture used peer instruc-
tion to reinforce concepts, and the weekly 80-minute lab
consisted of practice activities students could complete in-
dividually or in pairs, supervised by course staff. Finally,
each topic culminated with a weekly homework assignment
that consisted of a mix of short answer (e.g., “What is the
value of the variable x after the following piece of code ex-
ecutes?”, “Write a statement that removes the 4th element
of a list called ’animals’.”) and small programming (i.e., no
more than a small function) questions.

Due to the size of the course, almost all of the homework ac-
tivities were auto-graded. The course used the open-source
assessment platform (PrairieLearn) [35, 36] for all home-
work and other assessments. PrairieLearn both instantly
grades student submissions and provides automatic feed-
back. Homework assignments were configured for students
to be fearless: there was no penalty for wrong answers, only
points to gain as they got answers correct. On homework,
this allowed students to practice with course content repeat-
edly until they got the correct answer. Students were able
to repeat questions until they earned full credit and revisit
questions at any point for studying purposes.

Many of the homework questions were item generators that
could produce many possible questions of similar difficulty
on the same topic [16]. The true/false and multiple-choice
item generators randomly selected items from pre-populated
pools of questions. Short answer questions are randomly pa-
rameterized (e.g., changing the list a student has to read or
changing the method applied to a given list). To encour-
age mastery, homework often expected students to correctly
answer these item generators multiple times. Weekly home-
work assignments typically included 12 to 30 items or item
generators and students needed to complete 90% of them to
achieve a full score on the homework.

The course’s primary mean of summative assessment was
through five proctored exams. All the exams had a 50-
minute fixed time limit, except for the final exam (E4) which
allowed for 3 hours. All but the first exam were worth a
significant portion (≥ 10%) of the course grade. These ex-
ams were conducted in a proctored computer lab with stu-
dent scheduled exam times within a three-day window [40–
42]. Students were given access to a Python interpreter and
Python’s documentation, but no other resources were pro-
vided. The exam schedule is given in Figure 1.

Exams featured all four kinds of questions seen on home-
work (T/F, MC, short, programming), except for E0 which
did not have programming questions. Each exam consisted
of 20–30 question slots (41 on the final). Each slot drew ran-

domly from a pool of questions on a given topic with similar
difficulties. Most questions permitted students to attempt
them multiple times with a score penalty for each subse-
quent incorrect attempt until chances to earn credit were
exhausted.

Because of the course’s heavy use of item generators and
to motivate students to take homework seriously, a signif-
icant fraction of the exams were drawn from the course’s
pre-lecture and homework assignments. In general, 85–90%
of the pools on the exam were drawn from questions previ-
ously on homework, and exam-only “hidden” questions were
written with similar form and content to previous homework
questions. Prior to each exam, students were provided access
to a practice exam generator that was similar to the actual
exam generator, but without the hidden questions. Reused
programming questions are largely recall exercises, as most
do not feature random generation. Short answer questions
are transfer tasks as they are all parameterized and no two
instances of the question should possess the same exact pa-
rameters and the same expected student answer.

In spite of the exams including a large fraction of previously
seen material, we don’t believe that rote memorization was
a useful strategy for these exams due to their heavy use
of randomization and question pools combined with a large
number of questions (20–30) on the exam. True/false and
multiple-choice slots on the exam generally drew from pools
of 20 to 100 questions, while short answer and programming
question slots had pool sizes of 5 to 12. In addition, short
answer item generators typically produce at least dozens of
meaningfully different variants.

3.2 Homework and study periods
The decision for exams to mostly use the same questions as
homework assignments and practice generators created an
interesting context for attributing student learning. Specif-
ically, we could analyze student performance on homework
assignments, practice exams, and actual exams to observe
how students’ ability to answer these questions improved
as they engaged with course material. We pulled all stu-
dent submissions from PrairieLearn for the entire semester,
keeping only submissions for any questions that appeared
on both homework and exams.

We cleaned this data set by removing students who had not
completed all of the exams, retaining 584 of the 601 students.
In total, we retained 1,064,547 individual submissions across
homework, optional practice, and exams. Each submission’s
score ranges from 0 (incorrect) to 1 (full credit), with scores
in-between indicating partial credit.

We subdivide our analysis of the course by exam, focusing
on the three week window preceding each of the five exams.
As shown in Figure 2, each exam is comprehensive, includ-
ing material that was present on previous exams. For this
analysis, we focus solely on the content introduced since the
previous exam to see how practice during the homework and
study periods contribute to learning for the material’s first
summative assessment.

Each student submission is assigned to one of three periods:
homework, study, and exam (Figure 3):
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Figure 2: Exams are cumulative and largely drawn from item
generators and questions previously on homework. Hidden
questions only appear on exams. New questions were on
homework since the previous exam, while old questions were
previously on earlier homework and one or more previous
exams. While the fraction of exam slots dedicated to old
questions does increase as the semester progresses, this figure
is somewhat deceptive because old pools typically have many
more questions than new and hidden pools, except on the
final (E4) where each week’s material is represented equally.

• The homework period includes all the submissions to
homework on or before the homework due date. Sub-
missions in this period represents required practice;
while students are allowed as many submissions as they
need to get full credit, there is a deadline to receive
that credit.

• The study period includes all submissions on practice
exam generators as well as any submissions on home-
work after the homework deadline. The homework sys-
tem remains open and students can repeat problems
and complete any problems not previously completed
(only 90% of questions are needed to achieve a full
homework score). Submissions in this period are elec-
tive practice, bearing no credit directly.

• The exam period includes the submissions on the ac-
tual exam.

The above periods are coarsely defined to capture the dif-
ference between the time spent on required practice with
homework assignment and any additional practice following
the homework deadline. For our context, problems being
completed by students on practice exams as well as after a
homework deadline are both elective activities and are suit-
able to be counted together.

For our analysis, we also tag each student’s first attempt
on each question on homework, so that we can estimate
the student’s ability to solve that question gained before
attempting the question the first time (e.g., from readings,
lecture, or solving other problems). A breakdown of the
number of submissions during each period is provided in Fig-
ure 4. The decrease in submissions throughout the semester
in the homework and studying buckets is a result of home-
work shifting toward fewer, more difficult problems as the
semester progresses.

HW deadline Start of exam
Time On-time HW

Homework
Period

Exam
Period

Study
Period

HW assigned

Practice Exam

Exam

After deadline HW

Figure 3: We subdivide the students’ practice into two peri-
ods: the homework period is all homework attempts before
the deadline. The study period is all attempts on practice
exams and any homework attempts after the deadline.

4. METHODS
To analyze the evolution of student knowledge from home-
work to exam time, we track student learning at the granu-
larity of individual item generators. This is clearly a signifi-
cant approximation to reality for two reasons: 1) because of
pools (of true/false and multiple-choice questions) and pa-
rameter randomization (for short answer questions) there is
some variation between instances of a given item generator,
and 2) there are relationships between item generators (e.g.,
practice on a programming question relating to loops would
likely improve students ability to complete a short answer
question related to loops and vice-versa).

Nevertheless, for our purposes, we believe this approach is
viable. The items of each item generator were considered
sufficiently similar by the instructor to be fungible with re-
spect to the exams. Furthermore, the method is robust to
whether or not learning occurs between subsequent attempts
on the same problem or from students attempting a prob-
lem, trying new problems, and returning again to an older
problem. If the student learns significantly by completing
many other homework problems between two attempts at
a given problem during the homework period, we can still
correctly attribute the learning to having taken place dur-
ing the homework period. As such, we made no attempt at
topic modeling in this work.

4.1 Correctness tracing: post hoc modeling for
student knowledge

In general, knowledge tracing (KT) techniques were devel-
oped as predictors of student performance or estimators of
the latent knowledge state of students. KT is used either
to estimate a student’s likelihood of getting the next at-
tempt correct based on previous attempts, adjusting after
each success and failure as the student engages with an as-
sessment, or to track changes in students’ latent knowledge
over time. Much of the difficulty of KT techniques results
from attempting to instantaneously obtain a signal of stu-
dent knowledge as students are engaging with learning op-
portunities. In our case, we already have all the data from
the course as the course has ended and do not need an in-
stantaneous, updating measure of student knowledge. In-
stead, we desire to perform a post hoc analysis of students’
submissions to estimate how their learning changed over an
entire course’s worth of data. Our chosen method, CT, mea-
sures students’ knowledge as demonstrated by an increase in
the likelihood that they would get given items correct more
frequently over time.



Exam 0 Exam 1 Exam 2 Exam 3 Exam 4
Exams

0

25000

50000

75000

100000

125000

150000

175000
Co

un
t o

f s
ub

m
iss

io
ns

14378

40014
30412

15700
22984

47987

131641

92533

58711
67181

77048

178481

120436

61033 55526

10859 14588 10936 7151 6948

Submissions per bucket by exam subset
First
Homework
Studying
Exam

Figure 4: The submission count per period. Total, there are 1,064,547 submissions in our data set. As the semester progressed,
homework had fewer but harder problems, which accounts for the reduction in submissions.

The method presented by Chen et al [9] can be summarized
by the following formulation:

optimize: L(p1, . . . , pn;x1, . . . , xn)

subject to: 0 ≤ pi ≤ 1 for all i

pi ≤ pj for all i < j

(1)

where x1, . . . , xn is the result of a series of submissions which
are either 1 (correct) or 0 (incorrect), and the method tries
to find a series of predictions p1, . . . , pn that optimizes the
loss function, under the constraints that: (1) p1, . . . , pn are
between 0 and 1, as they represent an estimate of the instan-
taneous probability that the student would get each attempt
correct and (2) p1, . . . , pn are monotonically non-decreasing,
which is based on the assumptions that the attempts are
made over a short enough time period that forgetting is in-
significant and additional practice would not hurt a student’s
ability to answer these questions. Since the homework, prac-
tice, and exam attempts occurred over a three-week win-
dow, during which there were a lot of related practice, we
believe these assumptions are reasonable. Rather than hav-
ing a model with explicit parameters as found in BKT, the
method calculates the probabilities p1, . . . , pn by optimizing
them directly for the target loss function. Chen et al have
shown that minimizing root-mean-square error (RMSE) and
maximizing log-likelihood would yield the same optimal so-
lution under constraints specified in Equation 1.

We chose to use CT over BKT or DKT as it nicely fit our use
case. The CT method is able to finely locate and predict the
“jumps”in a students’ likelihood of getting a question correct
when analyzing the data in a post hoc fashion, which may
be too precise a transition for usual predictive knowledge
tracing. For our purposes, a high accuracy, post hoc model
was ideal for analyzing changing student knowledge as a
historical trend from our course’s data.

One important weakness of CT, however, is that it is prone
to underestimate student knowledge on an incorrect first at-
tempt because the optimizer sets the probability of correct-
ness to be zero so as to minimize error on that attempt. Sim-

ilarly, the probability on a correct final attempt will always
be estimated as 1.0, which may be an overestimate. This po-
tentially could be remedied by adding additional constraints
to the method (e.g., limiting the rate of increase), but we
did not attempt such constraints with this work.

4.2 Demonstrating CT using “Harlow”, a sam-
ple student

To clarify our use of CT, we present a walk-through of how
the method models our data for one individual and two
questions from Exam 3, selected randomly from students
whose behavior allows for representative variety in CT’s
estimates. We refer to the student as Harlow, which is a
name that was not present in the actual class. On Exam 3,
two of the questions that were randomly selected for Harlow
to complete were the programming question progLargest-

LessThanValue and the short answer question valueOfList-

Reordering.

Harlow had notably different experiences with these ques-
tions; Figure 5 plots the correctness of Harlow’s individual
submissions as dots that are color coded based on the pe-
riod in which the submission occurred. With progLargest-

LessThanValue, Harlow made two attempts on homework to
get the question correct once, got it correct once on a prac-
tice exam with a single attempt, and tried it twice on Exam
3 without getting a correct answer. With valueOfList-

Reordering, Harlow had 9 attempts on homework with 6
correct submissions, 4 encounters across two practice exams
for 2 correct submissions total, and a correct answer as the
only attempt on Exam 3.

Figure 5 also shows the result of running CT as a line indi-
cating the instantaneous estimate of Harlow’s likelihood of
getting the question correct. In both cases, Harlow got the
first attempt wrong, so the model assign’s Harlow’s likeli-
hood of getting the question correct as 0%, so as to mini-
mize the error relative to the actual outcome. While Har-
low is flipping between correct and incorrect attempts, the
model computes a likelihood of correctness for each attempt
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Figure 5: The results of running CT on Harlow’s answers to
our two selected questions. Harlow eventually appeared to
learn how to do valueOfListReordering. However, Har-
low’s ability to complete the programming question never
stabilized, so the model never attributed more than a 50%
chance that Harlow had learned the question’s material.

that minimizes the error for those correct and incorrect at-
tempts, constrained to be non-decreasing. Because Harlow’s
last three attempts at valueOfListReordering were all cor-
rect, the model decides that Harlow has mastered the ques-
tion with a 100% likelihood of getting the question correct.

We ran CT for each student on each question independently.
From each trace, we extract six estimates of the student’s
likelihood of getting a question right: their first and last
attempts in the homework period (First, End Homework),
their first and last attempts in the study period (Start Study-
ing, End Studying), and their first and last attempts on the
exam (First Exam, End Exam). Any student without a sub-
mission in that period (i.e., students who did not study or
students who did not get that question on their exam) has
their previous submission to that point in the timeline used
in compliance with CT’s assumption that students do not
forget. We then average these likelihoods across all students
and all questions for a given exam period. This allows us to
explore the changing student knowledge as an average for all
the students in a course across the different learning oppor-
tunities presented by homework, studying, and assessment.

5. RESULTS
5.1 CT attributes significant learning to both

the homework and study period; home-
work contributes slightly more

The results of running CT are shown in Figure 6. From
the slopes of the lines, it can be seen that CT estimates
that more learning is occurring (i.e., the change in student
likelihood of correct attempts is larger) during the homework
period than the study period. The plot suggests that the
course material tends to get more difficult as the semester
progresses, with the initial and final likelihood of correctness
both decreasing as we move from Exam 0 to 3. Furthermore,
the lines for Exams 0 through 3 show almost identical trends.
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Figure 6: The changing average “this-item-correct” chance
from CT per period. CT suggests the majority of student
learning is occurring during the homework period, although
the study period is also significant.

Exam 4, the final exam, behaves differently from the other
four exams, which we’ll consider in the discussion section.

Figure 7 plots the change in likelihood of correctness from
the beginning to the end of each period. When we compare
the pre-exam increase in student knowledge (as measured by
likelihood of correctness) between the homework and study
period, CT attributes 57–65% of the learning to the home-
work period and 35–43% to the study period, across the five
exams. The CT method also attributes some learning to the
exam period, which we’ll consider in the discussion section.

5.2 Learning trends are largely independent
of question type

To address RQ2, we disaggregated the exam data sets by
question type to see whether there was any notable difference
between types. For this analysis, we omitted Exam 0, as
Exam 0 did not feature programming questions.

Figure 8 shows the per-question type CT results. The only
notable finding is that different questions start at different
levels of initial student knowledge and end with different
amounts of knowledge, which changes the starting and end-
ing points in Figure 8. Because of this, different questions
drop off faster than others in terms of how much is learned
during the practice period. Generally, students have less to
learn with true/false and multiple-choice questions through
the practice period than they do on programming and short
answer questions, although all question types experience a
learning drop-off through to the exam.

6. DISCUSSION AND LIMITATIONS
6.1 RQ1: Students in this course learn slightly

more during the homework period than
the study period
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Figure 7: The average change in student knowledge by pe-
riod according to CT. The largest change occurs during the
homework period, with a smaller change from study, and the
smallest on exams.

CT attributes more learning to the mandatory homework
period in this particular course. This is represented as the
largest increase in student knowledge from their first home-
work submission to the last. That gives us some confidence
that a course with significant homework opportunities does
provide students with productive chances to learn as op-
posed to just inundating students with “busy work.”

Interestingly, CT also indicates performance on the exam is
better than at the end of the study period. There are a few
possible explanations for this. The most likely explanation
is that, given the higher stakes of the exam, students are try-
ing harder, resulting in a higher correct rate that is being
observed by the model. In addition, some of the score im-
provements observed on the exam could be attributed to the
last pre-exam practice attempt if, for example, the student
got the question wrong, but learned from seeing the correct
answer. This also might be just be an artifact of CT, as any
students that have incorrect and correct attempts to a given
question on the exam will have learning attributed to them.
Finally, actual learning might be occurring during the exam.
The amount of “learning” attributed to the exam period is,
however, fairly negligible.

Importantly, one should not attempt to generalize about the
learning potential of homework relative to elective practice
for all courses from these results. We expect that courses
that assign less homework might observe less learning during
the homework period and students might compensate by
studying more, thereby making more of the learning occur
during that optional studying. It could also be the case
that there are diminishing returns on each attempt on a
specific question, which the first attempt providing the most
learning benefit, then the second, decreasing further with
each attempt from homework through the study period. It
is reassuring, though, to see that this course’s homework and
study opportunities (i.e., the practice exam generators made
available to students) both appear to contribute significantly
to student learning.
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Figure 8: The changing average “this-item-correct” chance
from CT for each question type from Exams 1 to 4. Different
question types start out with a higher assumed learning to
start, which suggest more students got those questions right
on their first attempt.

6.2 RQ2: All question types show similar learn-
ing trends

When we disaggregate the analysis by question type, the
general shape and progression of results is the same for ev-
ery question type compared to the source exam. Different
questions start with lower amounts of student knowledge,
but this appears to mostly be a function of the difficulty of
the problem’s type: programming and short answer ques-
tions, which require more actual coding on the students’
parts, tended to start and end lower.

The lack of different behavior when we disaggregate by ques-
tion type is more interesting than it may initially appear.
This means that the “shape” of student learning does not
differ significantly with the question type. Given this, it ap-
pears that homework and additional studying have the same
impact on student results regardless of the kind of question.
This does mean there are diminishing returns on easier ques-
tion types over the period compared to harder ones, but not
a deficiency in how homework and practice helps on question
types where students still have learning they can do.

6.3 Limitations
There are some obvious limitations to the current work.
First, our findings about the relative learning during the
homework and study periods cannot be assumed to gener-
alize to other course contexts. Courses with different home-
work, study materials, and exam structures will likely have
different breakdowns of learning in each phase.



Second, CT is a fairly coarse measure of learning. Scores
as a performance indicator are not alone proof of student
learning. Additionally, CT’s potential for underestimating
likelihood of correctness of first attempts (by strictly opti-
mizing for RMSE) could make the model overestimate the
learning that is occurring in the first few attempts, which is
likely occurring in the homework period. We do not have
confidence that these measures of learning are particularly
precise. While we omit it from the paper, we also ran a
regression model to estimate the learning in the same peri-
ods of the course. The regression generally showed the same
trends as CT, giving us more confidence in CT’s results.

Finally, these methods do not disambiguate from learning
that happens during the homework and studying periods
and learning that occurs specifically from homework and
elective practice problems. There are notable reasons to
believe that students are learning significantly from reading
the textbook, engaging in active learning exercises, and, per-
haps, even from listening to the lecturer speak. The learning
that occurs during these activities is attributed to the period
in which it occurs, rather than to the specific task.

7. CONCLUSION
In this work, we explored the degree to which we can at-
tribute student learning between required homework and
elective study performed prior to a summative assessment.
To analyze learning, we used a post hoc method of“this-item-
correct” likelihood (correctness tracing) to estimate student
knowledge. We found that (required) homework and (elec-
tive) studying both contributed significantly to student learn-
ing, with homework contributing slightly more. Further,
despite using multiple question types, we found the most
notable difference between question types is where student
knowledge starts and not the shape of their learning im-
provements.

We think that our results show that frequent, exam-relevant
homework and highly-accessible means for study (e.g., prac-
tice exam generators) are both effective means of facilitating
student learning and believe that these findings could gen-
eralize to other contexts. The magnitude of learning from
each component may differ, but courses with similar home-
work and studying opportunities will hopefully see similar
learning gains during each period.

There remain areas for future work. Considering data, we
only use students’ submissions to questions that also appear
on homework. Some ability to include other learning events,
such as reading a textbook, would give a clearer picture of
students’ learning process. Additionally, some topic-level
labeling might allow us to include questions unique to exams
in our data and analysis.

With respect to CT’s model, we made no attempt to com-
pensate for the method’s tendency to underestimate on ini-
tial incorrect attempts. Future work could investigate con-
straining this behavior by limiting the allowable slope. Fur-
ther, there is room to adapt the model to using a richer
source of information than students’ correctness on submis-
sions — for example, by fitting a similar optimization on
students’ knowledge as estimated by methods such as Item
Response Theory (IRT).
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