
Comparing Ebook Student Interactions With Test Scores:
A Case Study Using CSAwesome

Hisamitsu Maeda, Barbara Ericson, Paramveer Dhillon
University of Michigan, Ann Arbor, MI, USA

{himaeda|barbarer|dhillonp}@umich.edu

ABSTRACT
Interactive ebooks have better learning gains than static
ebooks, students prefer them, and more computing courses
are using interactive ebooks. The number of computing
ebooks on the open-source Runestone interactive ebook plat-
form increased from one in 2011 to over 30 in 2020. Rune-
stone currently serves over two million page views a week.
It includes books for CS0, CS1, CS2, data science, and
web development and supports coding in Java, Python, and
C++. The ebooks include instructional material: text, im-
ages, videos, and interactive practice problems with imme-
diate feedback: multiple-choice, fill-in-the-blank, write code
(active code), mixed-up code (Parsons), clickable code, and
matching. User interaction with the ebooks is timestamped
and logged. This information includes page views, video
plays, video completion, Parsons moves, problem answers,
and learner written code. This fine grained data may help
us automatically identify struggling students. This paper re-
ports on several analyses comparing student activities to the
midterm score from one of the Runestone ebooks, CSAwe-
some. Specifically, we compared the major types of log file
entries to the midterm score and also conducted an in-depth
analysis of mixed-up code (Parsons) problem data.

Keywords
e-book, data mining, Parsons problem

1. INTRODUCTION
Research has shown that interactive ebooks have better learn-
ing gains than static ebooks [20]. In addition, most students
report that the interactive features help them learn and want
to use interactive ebooks in future courses [15]. A 2013 work-
ing group predicted that traditional CS textbooks would be
replaced by interactive ebooks [13].

Runestone is an open-source ebook platform that has grown
from serving one interactive ebook [15] in 2011 to over 30
free ebooks in 2021. It supports several languages, including

Copyright ©2021 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0)

Python, Java, C++, and SQL [10]. During the 2020-21
academic year, Runestone had 69,400 registered users and
served an average of over two million page views a weeks.

Runestone interactive ebooks log timestamped user interac-
tions1. For the analyses in this paper, we use the CSAwe-
some interactive ebook. CSAwesome has been endorsed by
the College Board for the Advanced Placement (AP) Com-
puter Science A (CSA) course [4]. Advanced Placement
courses are taken by secondary students for college credit
and/or placement. The AP CSA course is equivalent to a
first course for majors (CS1) at the college level and cov-
ers object-oriented programming in Java. Our CSAwesome
data is from custom courses. Instructors can create a cus-
tom course for any of the free ebooks on Runestone and have
their students register for that custom course.

Interactive ebooks provide rich data that could be lever-
aged to improve instruction [23]. We may be able to iden-
tify struggling students in order to provide help. Our re-
search questions were 1) what student activities correlate
with scores on the midterm and 2) what Parsons problem
activities correlate with the midterm score? To answer these
questions, we performed regression analyses at both the higher
level based on the major types of activities and at the lower
level with a more in-depth analysis of Parsons problem data.

2. RELATED WORK
We are interested in the relationship between students’ ac-
tivities in the ebook and their pretest and midterm scores.
In a related study, Pollari-Malmi et al. [20] found an in-
crease in use, motivation, and learning gains from use of an
interactive ebook versus an equivalent static ebook. Ericson
et al. [6] found that teachers who used more of the interac-
tive features in an ebook had higher gains in confidence and
higher scores on the final posttest. Parker et al. [18] found
that students and teachers used an interactive ebook differ-
ently with teachers showing more characteristics of expert
learners. Akçapınar et al. [1] used student reading behavior
in an ebook to predict at-risk students. Park et al. [17] used
statistical change detection techniques to detect changes in
student behavior from clickstream data in a Learning Man-
agement System (LMS). They found that students who in-
creased their reviewing activity relative to other students in
the course had a higher probability of passing the course.

1Researchers can request an anonymized logfile from Brad
Miller, the founder of Runestone.

Several researchers [3, 24, 21, 22, 9, 19, 2] have been ex-
ploring Parsons problems as both an alternative to writing
code from scratch and as a summative assessment. In Par-
sons problems learners must place mixed-up blocks of code
in the correct order. They may also have to correctly in-
dent the blocks. Parsons problems can also have distrac-
tors, which are code blocks that are not needed in a correct
solution. Helminen et al. [12] visualized students’ problem-
solving process on Parsons problems using a graphical rep-
resentation. They detected several different approaches to
solving Parsons problems including top-down, control struc-
tures first, and trial and error. Some learners got stuck in
circular loops and repeated the same incorrect solution. Er-
icson et al. [8] found that more learners attempted Parsons
problems than nearby multiple-choice questions in an inter-
active ebook. Maharjan et al. [14] proposed an edit distance
trail to show students’ solution paths in Parsons problems in
a simpler fashion than a graphical representation. They also
discussed potential issues with studying Parsons problems
using descriptive statistics methods. Morrison et al. [16]
found that subgoal labels help students solve Parsons prob-
lems. Du et al. [3] conducted a review of recent studies on
Parsons problems.

Ericson invented two types of adaptation for Parsons prob-
lems [7, 5]. In intra-problem adaptation the problem can
be dynamically made easier by removing a distractor, pro-
viding indentation, or combining two blocks into one. The
adaptation is triggered by clicking a ”Help” button. In inter-
problem adaptation the difficulty of the next problem is au-
tomatically modified based on the learner’s performance on
the last problem. The problem can be made easier by pairing
distractor and correct code blocks or by removing distrac-
tors. It can be made more difficult by using all distractors
and randomly mixing the distractor blocks in with the cor-
rect code blocks. Learners are nearly twice as likely to cor-
rectly solve adaptive Parsons problems than non-adaptive
ones and report that solving Parsons problems helps them
learn to fix and write code [5]. A randomized controlled
study provided evidence that solving adaptive Parsons prob-
lems takes significantly less time than writing the equivalent
code and with similar learning gains from pretest to posttest
[7].

3. DATASET
The log file used in our analysis comes from the CSAwesome
interactive ebook on the open-source Runestone platform.
This book was revised by Beryl Hoffman of Elms College
and the Mobile CSP project in 2019 for the 2019 AP CS
A exam [4]. The log includes page views, video interaction,
and the results from interactive practice problems: multiple-
choice, write code (active code), and mixed-up code (Parsons
problems).

An active code is a traditional programming exercise in
which students write/edit/run code in the ebook. Many
active code exercises have unit tests that students can use
to verify that their code is correct. Students can also use
a slider to view previous versions of the code. The “Show
CodeLens” button on the active code will display a program
visualizer (CodeLens), allowing students to step through
their code line by line and visualize the variables. It is a
version of Python Tutor [11]. A Parsons problem provides

Figure 1: Example Parsons Problem with Paired Distractors

mixed-up code blocks that the learner must place in the cor-
rect order [19] as shown in Figure 1. The Parsons problems
in this ebook were adaptive. While some adaptive systems
use selection adaptation in which the next problem is se-
lected from a set of possible problems based on the learner’s
performance, this system modifies the difficulty of the cur-
rent or next problem in the ebook based on the learner’s
performance.

We analyzed five categories of log file entries: page views,
video (play, pause, and completion), active code interac-
tion (run, edit, slide, and unit test), Parsons problem block
moves and answers, and answers to multiple-choice ques-
tions. Overall, the log file contained data from 1,893 stu-
dents in 57 custom classes. Most of these were high school
classes, but some of them were college classes. This paper
analyzed a subset of the log data from 505 students who took
both the pretest and midterm in their course. The summary
statistics of the data are shown in Table 1. Over 37% of the
log file activities were interaction with active code. This in-
cluded running the code, editing the code, sliding the history
to view different versions of the code, and running unit tests.
The AP CSA exam includes 40 multiple-choice questions and
four free response questions where the student must write
Java code to solve a problem. The ebook is broken into
10 content-based units and five practice units. At the end
of each content-based unit there are at least 10 multiple-
choice questions, mixed-up code (Parsons) problems, and
write code problems [4].

We were also interested in the effect of class size on students’
performance. For this analysis, we divided the students into
two groups: classes with less than 30 students, which is the
typical maximum class size in high school, and classes with
more than 30 students—224 students were in large classes,
and 281 were in small classes.

Event Type Count Percentage
active code 1,020,735 37.66%
page view 651,136 24.02%
Parsons move and answer 524,206 19.34%
multiple choice answer 261,321 9.64%
video 83,892 3.09%
other 169,363 6.25%

Total 2,710,653 100%

Table 1: Various types of events in our dataset.

4. METHODOLOGY
4.1 Regression analysis of student activities
In this section, we analyze the impact of student activities on
student performance. First, we explore the data and check
the relationship between different student activities. Fig-
ure 2 shows that the percentage correct on the midterm has
a positive correlation with the percentage of correct for each
activity. Multiple-choice problems have the highest correla-
tion with the midterm. This could be because the midterm
is a set of 20 multiple choice questions. On the other hand,
there is a negative correlation between the midterm and the
number of some other activities (i.e. the number of times
that CodeLens was used and the percent of videos that were
completed).

Next, we employ a linear regression model to this data with
the percentage of correct answers on the midterm exam as
the dependent variable. The count and type of student ac-
tivities were used as independent variables. Since the activ-
ity variables have a skewed distribution, we log-transformed
them as x → log(x + 1) and standardized them before run-
ning the regression analysis. Also, since there is a difference
in the test results based on the class size (as can be seen
from Figure 3), we add the class size as a dummy variable
in our regression model. The regression results are shown in
Table 2.

The percent correct on the midterm was negatively corre-
lated with being in a larger class, perhaps because there
is less one-on-one interaction with the instructor and, as
a result, lower learning outcomes. Midterm results were
also negatively correlated with the number of interactions
with the CodeLens and the number of videos completed.
This may indicate that both of these activities were more
likely to be used by struggling students. Midterm results
were positively correlated with the percent correct on the
pretest, percentage correct on other multiple-choice ques-
tions, the number of page views, and the number of videos
played. It is interesting that the midterm score is positively
correlated with the number of videos played, but negatively
correlated with the number of videos completed. It could
be that stronger students watch a video till they find what
they need and then quit.

4.2 Regression Analysis of Parsons Problems
In this section, we conduct an in-depth analysis of Parsons
problems. As described earlier, these Parsons problems used
both intra-problem and inter-problem adaptation. In intra-
problem adaptation, if a student submits at least three in-
correct solutions, they are notified that they can use a“Help”
button to make the problem easier. Each time the student

Figure 2: Correlation structure between the different activi-
ties.

Figure 3: Figure showing results for the pretest and midterm
exams.

clicks the “Help” button, the ebook will remove a distractor
block from the solution, provide the indentation, or combine
two blocks into one, hence providing an implicit hint.

First, we pre-process the log data to gather detailed infor-
mation on the Parsons interactions. As shown in Figure 4,
students have to move from a state where all the blocks are
jumbled to the state in which all the blocks are placed cor-
rectly. The final state is the correct solution. We count
each step taken by the students and the number of failures
incurred until a student finds the correct ordering. We count
the number of times a student got help (clicked the “Help”
button). We also count the number of steps and time until
a student asked for help. In order to tease apart the effect
of “getting help,” we add an interaction term with the “help
flag” in our regression.

The regression result is shown in Table 3. As can be seen
from the result, being in a large class is negatively related
to the midterm score, as we found in our previous regression
analysis. We also found that the number of steps before a

Variable Coefficient
Large Class (or not) -0.362***

(0.00)
Percentage correct for pretest 0.1045***

(0.009)
Percentage correct for multiple choice 0.5366***

(0.000)
Number of active code interactions 0.0901*

(0.09)
Number of CodeLens interactions -0.1403***

(0.002)
Number of page views 0.0931**

(0.03)
Number of videos played 0.158***

(0.005)
Number of videos completed -0.08**

(0.03)
N 417
R2 0.416

***p < 0.01, **p < 0.05, *p < 0.1

Table 2: Regression result: The outcome variable is the
midterm score and the independent variables are the various
student activities. Since the activity variables have a skewed
distribution, we log-transformed them as x → log(x+ 1) and
standardized them before running the regression analysis. p-
values are shown in parenthesis.

student got help from the software was positively correlated
with the midterm test results. This could be because the
students who received help from the software after perform-
ing more correct steps were more motivated to succeed in
the course in the first place. In other words, stronger stu-
dent learners could figure out more of the problem before
they asked for help. On the other hand, the time taken to
get support was negatively associated with the test score.
This implies that students who took too long to get support
scored poorly on the midterm. In addition, students who re-
ceived more support, i.e., received more help, did not score
as well on the midterm.

Figure 4: The process of solving the Parsons problem

Next, for a particular problem that the learners solved, draw-
ing a sideways L with a turtle in Unit 2 as shown in Figure1,
we also analyzed the number of block moves and the time
elapsed before the learner found the correct answer for each

Variable Coefficient
Large Class (or not) -0.0862***

(0.000)
Parsons problem correct 0.0797*

(0.09)
Number of incorrect submissions -0.0136***

(0.000)
Number of times help is used -0.0279**

(when the help is used) (0.03)
Number of steps before getting help 0.413*

(when the help is used) (0.07)
Elapsed time before getting help -0.3472*

(when the help is used) (0.08)
N 402
R2 0.141

***p < 0.01, **p < 0.05, *p < 0.1

Table 3: Regression analysis of Parsons problems. The de-
pendent variable is the midterm score and the independent
variables are the various student activities pertaining to Par-
sons problems. p-values are shown in parenthesis.

problem. As discussed earlier, we counted the number of
steps it took from the initial state to the correct order. We
define “extra steps” as the number of code-block moves be-
yond the required number of moves to a correct answer.
For example, if a solution can be reached in just 10 steps,
and a student took 12 steps, this would be two extra steps.
Additionally, we also measured the amount of time it took
students to correct the jumbled code blocks in the Parsons
problem. Figure 5 shows the number of extra steps taken as
a function of the time taken for students in both large and
small classes.

Figure 6 compares the extra steps taken as a function of
the class size and the midterm test score. As can be seen,
there is a significant relationship between students with good
midterm test scores and the number of extra steps taken (t-
statistic 5.082, p < 0.001). On the other hand, there is no
relationship between class size and the number of extra steps
taken (t statistic 1.151, p > 0.1).

Figure 7 shows the result comparing the time by class size
and midterm test score. Unlike the number of “extra steps,”
there is no significant association between students with
good midterm test scores and the time taken by the learners
(t statistic 1.7843, p < 0.07). Also, there is no relationship
between class size and time, t statistics 0.683, p > 0.1.

From this analysis, it appears that students who took fewer
extra steps while solving this Parsons problem have better
midterm scores. A similar trend is also observed in another
problem from Unit 4 as shown in Figure 8. This could mean
that taking extra steps and/or taking longer to solve a Par-
sons problem indicates that a student is struggling.

5. LIMITATIONS
The log file data was from a random selection of custom
courses on the Runestone platform. We do not have any
additional information about these courses, such as which
items were assigned, final grades, or student demographics.

Figure 5: Relationship between extra steps and time

Figure 6: Comparison extra step by midterm score and class
size. 1. small class and midterm score less than median, 2.
small class and midterm score greater than median, 3. large
class and midterm score less than median, and 4. large class
and midterm score greater than median

In the summer of 2021 we will be receiving log file data for
this same ebook from teachers who attended professional
development with the Mobile CS Team. That data should
allow for a more in-depth analysis.

6. CONCLUSION
In this paper, we performed several quantitative analyses
on the clickstream data from student interaction with the
CSAwesome ebook. We analyzed the relationship between
students’ activities on the ebook and their midterm scores.
We found several positive and negative correlations. In a
regression analysis the most highly weighted variable with
a positive correlation was the percentage correct on other
multiple choice questions and most highly weighted variable
with a negative correlation was being in a large class.

We also analyzed the learner interaction patterns on the
mixed-code (Parsons) problems. Specifically, we examined
the impact of the number of steps taken, time taken, as well
as the frequency of help on the students’ midterm scores.

Figure 7: Comparison time by midterm score and class size.
1. small class and midterm score less than median, 2. small
class and midterm score greater than median, 3. large class
and midterm score less than median, and 4. large class and
midterm score greater than median

Figure 8: Comparison extra step by midterm score and class
size of another problem in Unit 4 on nested loops

The results show a positive association between the number
of correctly completed Parsons problems and the learners’
midterm scores. Further, there was a negative association
between the midterm scores and the time the learner took to
get help on a Parsons problem as well as a negative associ-
ation between the class size and the midterm score. A close
look at two Parsons problems showed a negative correlation
with the number of extra steps and time to solve a Parsons
problem and the midterm score.

While our analyses uncover subtle patterns in students’ in-
teractions with the CSAwesome ebook, it will be interesting
to test the robustness of our findings and see if they gen-
eralize to other interactive ebook platforms or across dif-
ferent programming courses, e.g., C++ or Python. If Par-
sons problems can help detect struggling students early in
a course it may be possible to intervene to improve student
performance.

7. REFERENCES
[1] G. Akçapınar, M. N. Hasnine, R. Majumdar,

B. Flanagan, and H. Ogata. Developing an
early-warning system for spotting at-risk students by
using ebook interaction logs. Smart Learning
Environments, 6(1):4, 2019.

[2] P. Denny, A. Luxton-Reilly, and B. Simon. Evaluating
a new exam question: Parsons problems. In
Proceedings of the fourth international workshop on
computing education research, pages 113–124, 2008.

[3] Y. Du, A. Luxton-Reilly, and P. Denny. A review of
research on parsons problems. In Proceedings of the
Twenty-Second Australasian Computing Education
Conference, ACE’20, page 195–202, New York, NY,
USA, 2020. Association for Computing Machinery.

[4] B. Ericson, B. Hoffman, and J. Rosato. Csawesome:
Ap csa curriculum and professional development
(practical report). In Proceedings of the 15th
Workshop on Primary and Secondary Computing
Education, WiPSCE ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[5] B. Ericson, A. McCall, and K. Cunningham.
Investigating the affect and effect of adaptive parsons
problems. In Proceedings of the 19th Koli Calling
International Conference on Computing Education
Research, pages 1–10, 2019.

[6] B. Ericson, S. Moore, B. Morrison, and M. Guzdial.
Usability and usage of interactive features in an online
ebook for cs teachers. In Proceedings of the Workshop
in Primary and Secondary Computing Education,
pages 111–120, 2015.

[7] B. J. Ericson, J. D. Foley, and J. Rick. Evaluating the
efficiency and effectiveness of adaptive parsons
problems. In Proceedings of the 2018 ACM Conference
on International Computing Education Research,
pages 60–68, 2018.

[8] B. J. Ericson, M. J. Guzdial, and B. B. Morrison.
Analysis of interactive features designed to enhance
learning in an ebook. In Proceedings of the eleventh
annual International Conference on International
Computing Education Research, pages 169–178, 2015.

[9] B. J. Ericson, L. E. Margulieux, and J. Rick. Solving
parsons problems versus fixing and writing code. In
Proceedings of the 17th Koli Calling International
Conference on Computing Education Research, pages
20–29, 2017.

[10] B. J. Ericson and B. N. Miller. Runestone: A platform
for free, on-line, and interactive ebooks. In Proceedings
of the 51st ACM Technical Symposium on Computer
Science Education, pages 1012–1018, 2020.

[11] P. J. Guo. Online python tutor: embeddable
web-based program visualization for cs education. In
Proceeding of the 44th ACM technical symposium on
Computer science education, pages 579–584, 2013.

[12] J. Helminen, P. Ihantola, V. Karavirta, and L. Malmi.
How do students solve parsons programming
problems? an analysis of interaction traces. In
Proceedings of the Ninth Annual International
Conference on International Computing Education
Research, ICER ’12, page 119–126, New York, NY,
USA, 2012. Association for Computing Machinery.

[13] A. Korhonen, T. Naps, C. Boisvert, P. Crescenzi,

V. Karavirta, L. Mannila, B. Miller, B. Morrison,
R. R. Rodger, Susan H, and A. Shaffer, Clifford.
Requirements and design strategies for open source
interactive computer science ebooks. In Proceedings of
the ITiCSE working group reports conference on
Innovation and technology in computer science
education-working group reports, pages 53–72, 2013.

[14] S. Maharjan and A. Kumar. Using edit distance trails
to analyze path solutions of parsons puzzles. In EDM,
2020.

[15] B. N. Miller and D. L. Ranum. Beyond pdf and epub:
toward an interactive textbook. In Proceedings of the
17th ACM annual conference on Innovation and
technology in computer science education, pages
150–155, 2012.

[16] B. B. Morrison, L. E. Margulieux, B. Ericson, and
M. Guzdial. Subgoals help students solve parsons
problems. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, pages
42–47, 2016.

[17] J. Park, K. Denaro, F. Rodriguez, P. Smyth, and
M. Warschauer. Detecting changes in student behavior
from clickstream data. In Proceedings of the Seventh
International Learning Analytics amp; Knowledge
Conference, LAK ’17, page 21–30, New York, NY,
USA, 2017. Association for Computing Machinery.

[18] M. C. Parker, K. Rogers, B. J. Ericson, and
M. Guzdial. Students and teachers use an online ap cs
principles ebook differently: Teacher behavior
consistent with expert learners. In Proceedings of the
2017 ACM Conference on International Computing
Education Research, pages 101–109, 2017.

[19] D. Parsons and P. Haden. Parson’s programming
puzzles: a fun and effective learning tool for first
programming courses. In Proceedings of the 8th
Australasian Conference on Computing
Education-Volume 52, pages 157–163, 2006.

[20] K. Pollari-Malmi, J. Guerra, P. Brusilovsky, L. Malmi,
and T. Sirkiä. On the value of using an interactive
electronic textbook in an introductory programming
course. In Proceedings of the 17th Koli Calling
International Conference on Computing Education
Research, pages 168–172, 2017.

[21] W. Wang, R. Zhi, A. Milliken, N. Lytle, and T. W.
Price. Crescendo: Engaging students to self-paced
programming practices. In Proceedings of the 51st
ACM Technical Symposium on Computer Science
Education, pages 859–865, 2020.

[22] N. Weinman, A. Fox, and M. A. Hearst. Improving
instruction of programming patterns with faded
parsons problems. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems,
CHI ’21, New York, NY, USA, 2021. Association for
Computing Machinery.

[23] H. Yan, F. Lin, et al. Including learning analytics in
the loop of self-paced online course learning design.
International Journal of Artificial Intelligence in
Education, pages 1–18, 2020.

[24] R. Zhi, M. Chi, T. Barnes, and T. W. Price.
Evaluating the effectiveness of parsons problems for
block-based programming. In Proceedings of the 2019
ACM Conference on International Computing

Education Research, pages 51–59, 2019.

