
Investigate Effectiveness of Code Features in Knowledge
Tracing Task on Novice Programming Course.

Poorvaja Penmetsa, Yang Shi, Thomas Price
North Carolina State University

ppenmet@ncsu.edu, yshi26@ncsu.edu, twprice@ncsu.edu

ABSTRACT
Predicting student performance has been a major task in
student modeling. Specifically, in open-ended domains such
as computer science classes, the student submissions con-
tain more information, however they also require more ad-
vanced analysis methods to extract this information. Tradi-
tional student modeling approaches use knowledge compo-
nents (KCs) to predict a student’s success on specific prac-
ticed skills. These approaches are useful and necessary in
helping learning environments like Intelligent Tutoring Sys-
tems (ITS) personalize feedback, hints, and identify strug-
gling students. However, when working with programming
data, code features provide more information than skill tags
representing KCs, and this information is not leveraged by
traditional KC models. This work incorporates an implicit
representation of KCs into a student model by including
features extracted from students’ code with data from an
undergraduate introductory programming course. This rep-
resentation is then evaluated by using deep learning predic-
tive models and investigated to see how well they are able
to leverage code features to model student knowledge and
compare and contrast against other learning models. The
study shows a modest, but consistent improvement in mod-
els that use time-sequential data with even the simplest code
features, implying that these aspects may improve student
modelling.

Keywords
Student Modeling, Code Features, Knowledge Tracing, Knowl-
edge Components, LSTM, DKT

1. INTRODUCTION
Modeling student learning activities can improve their learn-
ing outcome, and automatically achieving this requires the
system to model student’s knowledge through tracking Knowl-
edge Components (KCs) [2]. A knowledge component is an
acquired concept that a learner uses to accomplish a task [8].
An exercise problem may consist of one or a combination of

Copyright ©2021 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0)

interrelated KCs depending on the domain, while multiple
KCs are usually present in computer science problems in-
volving programming [7]. Traditional KC models developed
by domain experts used KCs to represent a student’s knowl-
edge state and are dependent on experts’ knowledge [5].

Knowledge Tracing (KT) tracks KCs to model students’
knowledge. It is a method of using data from their previous
submissions on different problems (features), to predict on
their performances on future problems (labels) [3]. Histori-
cally, student performance is defined as the academic perfor-
mance of a student and KCs are represented with skill IDs
[11, 6]. Our work builds data-driven KT models in computer
science (CS) classes, and uses preliminary features from stu-
dent code submissions to further tune and optimize standard
KT models, and make predictions on student struggle.

Previous work has used data-driven methods to tune the
parameters of a KT model, for example, Corbett and An-
derson developed LISP tutors [6]. In their work, they used
a model called Bayesian Knowledge Tracing (BKT) to mon-
itor a student’s changing knowledge state during program-
ming assignments, and updated an estimate of the student’s
learned skills and modelled their knowledge state as stu-
dents completed problems. Some recent works optimized
the implementations of BKT, for example, pyBKT [4] uses
expectation maximization to fit parameters.

This standard BKT model has been advanced by a lot of
newer models such as Deep Knowledge Tracing (DKT) [12],
Item Difficulty Effect Model (KT-IDEM) [11], etc., as they
incorporate many different factors or use more complex mod-
els structure. Out of these improved models, we use DKT
to serve as a model for our proof of concept, as it is widely
served as a baseline model, and can also integrate student
code to be used as features. Some recent works advanced
DKT by adding more variants in the model [9, 10], while
DKT is their base framework.

We compare DKT and BKT models in our work, along with
classical deep learning models such as multi-layer perceptron
(MLP) and Long-Short Term Memory (LSTM) to see if code
features improve the ability of KT models, and if it also
has a positive effect on static or non-time-sequential models.
While skill IDs are hardly available for BKT without manual
labeling, we use the problem or assignment IDs to serve as
the KCs there [15, 12]. In DKT’s case, the classical model
can already use the IDs as inputs, automatically extracting



knowledge components to be tracked [12].

While compared in our work, these standard KT models also
have two important limitations when adding code features
in: 1) Need extra accommodation standard KT models use
correctness of KCs as features, while they do not accept code
features with the original structure. There are some recent
works adding textual information in KT models [15, 14], but
they work with non-programming data. Some other works
such as PKT [16] and Code DKT [17] use programming
data, but they use an hour-long programming code database
(Hour-of-Code) rather than a university course. 2) Defini-
tion of Student Performance: they usually define the binary
score as the student’s academic performance. However, stu-
dents usually have a biased success rate in CS programming
classes (in our case, > 84%), as they are allowed to submit
multiple times and receive feedback immediately. Predicting
on whether students successfully finished the problem is less
meaningful than directly detecting their struggles, as they
may spend a lot of effort before reaching the goals.

The usage of code features, however, is not rare in general CS
education domain or software engineering domain. Recent
works have used sub-trees [19], Bag of Words [1], and au-
tomatically learned representations [13] for student progress
modeling, grade prediction, or bug discovery tasks. Their
models cannot be directly applied to sequential tasks such
as KT. In our work, we use term frequency-inverse document
frequency (TF-IDF) as the base features for this exploratory
study.

We build preliminary KT models to predict whether novice
university CS students struggle with the integration of code
features. To verify whether code features can improve the
KT models, we experiment with term frequency-inverse doc-
ument frequency (TF-IDF), simply to show possible effects
of the usage of code features in this task, and compare with
other baseline models. To address the aforementioned limi-
tations of classical KT models, we define our research ques-
tion as: Do code features improve the ability to model stu-
dent struggle pattern in CS in time-sequential and non-time-
sequential KT models? Our results suggest that simple code
features coupled with time sequential information have the
potential to improve the KT model performance on student
struggle prediction tasks.

2. METHODS
2.1 Data
The data used in this work is called CodeWorkout1 and is
from an undergraduate programming course at a large, pub-
lic university in the southeast United States, collected in
Spring 2019. The dataset includes code submissions from 5
assignments, 50 problems, and 413 students, recording stu-
dents’ attempts in implementing functions in Java. Each
assignment contains 10 problems. A student could submit
any number of attempts for a problem, each attempt’s code
is tested against given test cases and given a score from
0 to 1 based on how the code tested. Our statistics show
that not all 413 students work on every problem and most
students eventually get a full score (score = 1). Assign-
ments are ordered by time stamp, and problems are grouped

1https://pslcdatashop.web.cmu.edu/Project?id=585

in each assignment. Different assignments covered different
concepts, according to their problem descriptions, and the
complexity of problems increases over time. The dataset
also provides the descriptions of the problems. For example,
early problems include simple concepts such as if condi-
tions, while a later problem in the same assignment may
ask about nested-if conditions.

Each assignment is a combination of multiple different con-
cepts, with at least one new concept or advanced concept
being introduced for each assignment. The entire course
covers a wide range of introductory concepts including con-
ditional statements, loops, strings, and arrays, which sug-
gests that the knowledge tracing task across all problems is
a non-trivial task.

The traditional goal of KT is to model knowledge to pre-
dict student performance. Historically, this has been inter-
preted as whether or not a student gets a problem correct.
However, in many programming classes, including the one
analyzed here, most students (at least 84% of students in
this dataset) got a full score in the problems they attempt.
So, it is more important to predict student struggle instead
of success. In this programming setting, students can use
multiple attempts and finally succeed. This allows us to
use their number of attempts as a quantitative measure for
their struggle. We define a struggling student as someone
who uses more attempts than at least T% of the students.
In order to find the threshold for T , we explored the data
to find the division of two relatively separate groups of stu-
dents corresponding to those who required a lot of effort to
complete the problem, and those who didn’t struggle. We
found that the 75th percentile of attempts for each problem
is a good division of attempts for most problems. A student
is identified as struggling on the problem if they: 1) didn’t
pass all the test cases or 2) passed all test cases but took
more than the 75th percentile of attempts for that particu-
lar problem. So a student who scored 1 on a problem might
have also struggled with that problem. The prediction that
a student is struggling is the positive class which is also the
minority class.

2.2 Feature Representations
2.2.1 TF-IDF Features

We use simple code features in the form of Term Frequency-
Inverse Document Frequency (TF-IDF) weights, a text anal-
ysis technique that represents documents based on its term
frequency. The algorithm uses Term Frequency (TF) to find
the frequency of a word in a document and normalizes these
weights with Inverse Document Frequency (IDF), the fre-
quency of the word in the corpus. The final weights reflect
the importance of terms for a particular document.

This method is more commonly found in work involving pro-
cessing text rather than code. However, the novice pro-
gramming concepts present in this data can be partially
represented by keywords since they are focused on famil-
iarizing the students with syntax. More complex concepts,
such as stacks and queues are not part of the course curricu-
lum. The vocabulary used in our work consists of keywords
in Java such as ’for’, ’if’, and ’public’ that represent some
novice concepts a beginner programming course might in-
clude. Other keywords such as ’throw’ and ’extends’ are also



included to identify students who might have had a back-
ground in programming. These students may not struggle in
the problems in this course compared with other students.

The models in this experiment predict at the problem level,
so each problem done by a student is represented as one
input. We define a corpus as the attempts across all students
who worked on problem p − 1 and use the TF-IDF vector
of the last attempt a student made on this problem as code
feature input. In this way, the frequencies of keywords for
each attempt in a problem are calculated and the TF-IDF
weights for the keywords in a student’s best attempt are
included in the code features.

Although other, more complex extraction methods such as
code2vec, ASTNN, and pq-grams exist that extract deeper
code and structural information, we use TF-IDF for this ex-
ploratory study. Our goal is not to use complicated vector-
ization approaches, but rather to examine whether a simple
yet effective approach can represent information before mov-
ing on to more complex approaches. TF-IDF fits this goal
because it not only simplifies model architecture, but it puts
more weight on relatively rarer keywords and may help in
identifying concepts in a problem.

2.2.2 Feature Groups and Usage
This experiment uses 4 sets of models: 1.) Standard BKT
model [4], 2.) DKT models [12] with and without code
features, 3.) MLP based models with and without code
features, and 4.) LSTM-based models with and without
code features. Each model throughout the experiment uses
student struggle on past problems (student performance on
problems 1 to p− 1) along with other features to predict on
the labels, or future student performance on problem p. We
extracted the following features:

ID-Label Group: The Problem ID, Assignment ID, Uniform
ID, and the binary label of whether the student struggles in
problems 1 to p − 1. Uniform ID groups employs the same
IDs for all problems, with one ID that represents all KCs
and only the label changes.

Attempt-Score Group: The number of attempts the student
made (with any score) and the maximum score achieved on
unit tests on any attempt for problems 1 to p− 1.

Code Feature Group: The TF-IDF features of the last at-
tempt at the problems 1 to p− 1 (TF-IDF weights).

Because of the lack of IDs directly representing KCs in the
data, we experiment with three different level of IDs (Prob-
lem ID, Assignment ID, Uniform ID). The BKT model uses
the Uniform ID along with the labels of past struggle, as-
suming that one ID represents all the KCs in the dataset.
The DKT set of models are compared using features across
the entire ID-Label group.

The Attempt-Score group is used in the MLP and LSTM
based models. Because of these features (Attempts and
Score), these models are named Attempt-Score MLP (AS-
MLP) and Attempt-Score LSTM (AS-LSTM). The Code
Feature group is used for MLP, DKT, and LSTM models.
We refer all models that don’t use TF-IDF features as base-

line models.

2.3 Models
2.3.1 BKT

We used the pyBKT implementation of the standard BKT
model [4]. This model tracks student knowledge with the
probability that a student has learned a skill. The output
of one state is directly used as the input to the next state,
making it a time-sequential model. For this reason, it re-
quires inputs to be ordered sequentially. The purpose of this
model in this experiment is to use a standard KT model on
the current data. The input to pyBKT is two dimensional,
including Uniform ID and the label for problem p− 1.

2.3.2 DKT
We used the classical DKT implementation used in the Github
repository2, as the standard DKT model with Problem, As-
signment, and Uniform ID as mentioned in the section above.
We added the TF-IDF features to these models to create
DKT with TF-IDF features, and compared those without
TF-IDF features. Our DKT uses an embedding layer to ini-
tialize a random vector representing each input feature and
updates this vector as the model trains. This is followed by
an LSTM and a linear layer. The number of embeddings is
one more than twice the number of questions (50) and the
embedding dimension for D02 is 20, while D01 and D03 is
200. The batch size is 192 with a sequence size of 50, and
learning rate of 0.001. The models with code features take
in two inputs, the TF-IDF weights from code and the ID
associated with the code. DKT with Problem ID and TF-
IDF features (D04) and DKT with Uniform ID and TF-IDF
features (D05) use a batch size of 192, a sequence size of 50,
and a learning rate of 0.00001.

The general DKT model is designed to process time series
data (i.e. multiple problem attempts over time) and uses
LSTM networks which use a recurrent structure to serve the
target. When predicting the label for student s and prob-
lem p, the input sequence includes the features for problems
1 to p − 1 done by the student s. We used a fixed input
sequence length of 50, the maximum number of problems
a student can do, and a padding of 0’s when needed. The
padding makes sure that the input is always a fixed length.
In addition to ID and/or TF-IDF features, the DKT models
require student representation to measure the student per-
formance, in this case, student struggle. We refer to this
representation as the struggle feature where the model iden-
tifies the student’s struggle on past problems. In both DKT
and BKT sets of models, this struggle feature is binary be-
cause it represents whether or not a student struggled in the
past problems.

In the DKT models without code features, models incorpo-
rate the struggle feature for problems 1 to p − 1 to predict
for problem p. There are three of these models with prob-
lem ID (D01), uniform ID (D02), or assignment ID (D03).
Another two DKT models use code features. Besides the
code features, one uses problem ID, and another one uses
uniform ID. Both models, D04 and D05, combine TF-IDF
vectors (length 63) with the embedded vector of ID and

2https://github.com/seewoo5/KT



struggle (length 20) resulting in the LSTM input dimension
63 + 20 = 83.

2.3.3 Multilayer Perceptron Models
Attempt and Score MLP (AS-MLP) models with (M02) and
without code features (M01) do not take in a sequential
input and do not explicitly use the output of one state as
input to the next, so they are not time-sequential. However,
neural network structure allows MLP to incorporate code
features. So, the purpose of these models is to compare
the effect of performance features and code features in a
static model on this struggle prediction task. Both AS-MLP
models share the same architecture, with three linear layers.
M01 uses a batch size of 260, and a learning rate of 0.001
and the AS-MLP model with code features (M02) uses the
same batch size with a learning rate of 0.0001.

The inputs for the Attempt-Score-MLP models are less com-
plex than that of any LSTM. Unlike the DKT input struc-
ture, the AS-MLP models don’t use an empty sequence to
predict for the 1st problem a student has attempted. In the
AS-MLP model without code features (M01), the input size
is two dimensional, including attempts and maximum score
of problem p−1, while the other MLP model with code fea-
tures has an input dimension of 63 + 2 where 63 is the fixed
length of TF-IDF code features.

2.3.4 LSTM Models
We created two Attempt-Score-LSTM (AS-LSTM) models:
AS-LSTM with (L02) and without TF-IDF features (L01).
These models incorporate performance features (attempt
and score) compared to DKT’s struggle feature. AS-LSTMs’
input is similar to the DKT input, except that AS-LSTM
doesn’t predict on the 1st problem. In L01 both features
represent the student performance on past problems and in
L02, these performance features are appended to the TF-
IDF features. So L01 also inputs a two dimensional array,
while L02 inputs a vector sized 63+2. Both AS-LSTM mod-
els share the same architecture of one LSTM layer followed
by a linear layer. L01 uses a learning rate of 0.001 and a
batch size of 260 over 100 epochs. L02 uses a learning rate
of 0.000001 and batch size 260 over 250 epochs.

We used 8:2 split for data, and performed repeated resam-
pling for AS-MLP, AS-LSTM models, while we use 5 fold
cross validation for DKT and BKT models, reporting the
average AUC/Recall/Precision and F1 scores in the result
section.

3. RESULTS AND DISCUSSION
TF-IDF features and time-sequential information. Table 1
shows three pairs of models: D01 and D04, D02 and D05,
M01 and M02, and L01 and L02 which are all identical ex-
cept that the latter models (D04, D05, M02, and L02) in-
clude TF-IDF features. Before TF-IDF, the DKT models
are biased towards label 1, while after adding TF-IDF fea-
tures, the models are biased towards label 0. So we mainly
use AUC, which is more symmetric to bias towards any class,
to compare these models’ performances in this section.

The results in Table 1 show how D04, D05, and L02 can
distinguish between classes slightly better than D01, D02,
or L01. L02 performs slightly better than D04 and D05
maybe due to its non-binary struggle feature. By looking at
the confusion matrices of D04 and D01 in Table 2, it can be
calculated that with TF-IDF, the DKT model is 6.2 times
more likely to mark an at-risk student as needing help than
a non-at-risk student by examining the ratio of TP

FP
: FN

TN
.

Without TF-IDF, it’s only almost twice as likely. Similarly,
the confusion matrices of D02 and D05 show that D05 is
5.5 times more likely to mark an at-risk student as needing
help while D02 is 3.9 times as likely. Meanwhile, L01 and
L02 have a smaller difference with L01 at about 4.5 times
likely to mark an at-risk student as needing help while L02
is about 4.7 times as likely.

While it has been an open question whether the addition
of code features would do so, in our experiments, both L02
and D05 have a range of 3% to 6% improvement in their
AUC. For example, Wang et. al. found that a large number
of code features can lead models to overfit to the training
data [18]. This has likely happened with D05 and L02, their
LSTM input dimensions increased at least 4-fold from D02
and L01 respectively, making it possible that the models
would overfit. However, it also shows that the AUC of D05
and L02 still increased, suggesting the models benefited from
the additional complexity.

For AS-MLP models, M02 did not improve with TF-IDF
features and performed similar to M01 as shown in Table 1.
This suggest that time-sequential information is important
for KT tasks and that TF-IDF features alone cannot improve
model performance.

The current model performances are not ready for imple-
mentation in real education settings. This modest perfor-
mance was predicted because examining the effect of TF-
IDF features in modeling student knowledge is a very diffi-
cult task due to the open-ended nature of the domain and
the wide range of concepts in the dataset. Although the
performances of models with TF-IDF features were modest,
there is still a 3% to 6% increase in AUC of these mod-
els compared to other baselines. This improvement marks
potential for more complex code features.

3.1 Discussion
Difficulty of Knowledge Tracing for Programming: As hy-
pothesized, this is a difficult KT task because of the wide
range of concepts covered throughout the course. As the
students progress through the different problems and assign-
ments, new concepts are introduced which the models try to
infer from either through an ID or student code features. Re-
sults across all models in Table 1 show that neither IDs nor
code features are particularly successful in representing or
inferring KCs. Of all the models in the experiment, BKT is
the worst performing model with an AUC of 0.64 which sug-
gests that this particular definition for student performance
(labels) may not be the best fit with a standard BKT model.

Because there is a lack of tags to directly represent KCs,
we use naive ways to represent them in the 3 DKT models.
D01 treats each problem as a separate concept, D02 treats
each assignment as a separate concept, and D03 treats all



Models Precision (1) Recall (1) F1 Score (1) Macro F1 score AUC ACC
BKT Uniform ID 0.57 ± 0.00 0.46 ± 0.01 0.51 ± 0.00 0.65 ± 0.00 0.64 ± 0.00 0.70 ± 0.00
MLP No TFIDF (M01) 0.35 ± 0.00 0.83 ± 0.01 0.50 ± 0.00 0.54 ± 0.00 0.70 ± 0.00 0.56 ± 0.00
MLP TFIDF (M02) 0.35 ± 0.01 0.80 ± 0.03 0.47 ± 0.00 0.55 ± 0.02 0.69 ± 0.02 0.56 ± 0.00
DKT Problem ID (D01) 0.37 ± 0.02 0.89 ± 0.01 0.52 ± 0.02 0.45 ± 0.05 0.71 ± 0.00 0.46 ± 0.04
DKT Uniform ID (D02) 0.42 ± 0.01 0.82 ± 0.01 0.56 ± 0.00 0.57 ± 0.02 0.71 ± 0.00 0.57 ±0.02
DKT Assignment ID (D03) 0.40 ± 0.01 0.88 ± 0.00 0.55 ± 0.00 0.51 ± 0.01 0.72 ± 0.00 0.51 ± 0.01
DKT TF-IDF & Problem ID
(D04)

0.55 ± 0.01 0.33 ± 0.02 0.41 ± 0.01 0.63 ± 0.00 0.73 ± 0.00 0.76 ± 0.00

DKT TF-IDF & Uniform ID
(D05)

0.60 ± 0.02 0.34 ± 0.02 0.44 ± 0.02 0.64 ± 0.00 0.75 ± 0.00 0.77 ± 0.00

LSTM No TF-IDF
(L01)

0.50 ± 0.00 0.52 ± 0.07 0.50 ± 0.05 0.69 ± 0.02 0.74 ± 0.00 0.73 ± 0.03

LSTM TF-IDF
(L02)

0.42± 0.03 0.74 ± 0.10 0.52 ± 0.00 0.62 ± 0.04 0.76 ± 0.00 0.64 ± 0.00

Table 1: Results of Models with or without Code features. Bold figures suggest best in the corresponding metric.

D04 D01
TP = 301 FN = 575 TP = 398 FN = 454
FP = 238 TP = 2224 FP = 395 TP = 2008

Table 2: DKT Problem ID without (D01) and with (D04)
TF-IDF features confusion matrices.

L02 L01
TP = 541 FN = 311 TP = 398 FN = 454
FP = 618 TP = 1785 FP = 395 TP = 2008

Table 3: AS-LSTM without (L01) and with (L02) TF-IDF
features confusion matrices.

concepts the same. As shown in Table 1, they all are biased
towards label 1 (struggling student). Further examinations
into D01 - D03 from Table 1 show that that they perform
similarly, with D03 having the best AUC and D02 with the
highest macro F1 score. Because both IDs have similar re-
sults, this suggests that neither is better at representing con-
cepts.

Why were DKT and the other KT approaches unsuccess-
ful?: The original DKT work that the D01 code is based on
states that the algorithm can leverage skill or KC tags but
doesn’t need them to perform predictions [12]. Looking at
the results in Table 1, it is clear that the D01 model which
uses problem ID as features and incorporates the number of
attempts in the labels, has mediocre results. The only dif-
ference between the D01 model and the original DKT model
lies in the definition of student performance. However, there
are other differences in the data used. The original DKT
work used non-programming data where the problem ids
represented the skills or KCs better. The original work also
uses far more data from online courses than available from a
formal education setting, so there is more data representing

D05 D02
TP = 298 FN = 578 TP = 888 FN = 220
FP = 211 TP = 2251 FP = 1124 TP = 1106

Table 4: DKT Uniform ID without (D02) and with (D05)
TF-IDF features confusion matrices.

each KC. Where the smallest dataset in [12] has 4K stu-
dents and 200K entries, the data used here has 400 students
and 16K entries (after cleaning). The original work used
each attempt as an entry and in this work, the last attempt
is used. Moreover, students who worked on CodeWorkout
did not all do problems in the same order for an assignment.
This makes it very difficult to predict the feature importance
of a problem based on past problems for all students.

Our results suggest that there is some improvement, but
only for models that use time-sequential information. There
is a 3% - 6% increase in the AUC for LSTM-based mod-
els that use TF-IDF features when compared with their
counterparts that don’t use them. Considering the difficulty
of this task, this improvement suggests that more complex
models may improve performance more.

When code features are added to static models such as AS-
MLP (M02), there is no improvement in performance. Com-
paring M02 to the final time-sequential models, (D04, D05,
L02), there is a 7% to 10% increase in AUC suggesting that
in the presence of time-series data, the impact of code fea-
tures is more. However, only one non-time-sequential model
is implemented with code features, so it is not clear if these
results are robust.

4. LIMITATIONS AND FUTURE WORK
One limitation in this work is that the vocabulary used for
TF-IDF may not be generalizable to more advanced curric-
ula. The second limitation is that we only use one type of
non-time-sequential and one type of time-sequential models
to compare code features. So the results may be specific
to LSTM or MLP based models. In the future, we plan to
work with expert-based features like PQ-grams and incor-
porate other models into our experiment.

In conclusion, in this work, we experimented with mod-
els with and without both simple code features and time-
sequential information. The results show that even these
simple code features can affect model performance and that
time-sequential information is important when using these
features. These experiments mark the potential that code
features have in representing CS KCs over an entire course.



5. REFERENCES
[1] B. Akram et al. Assessment of students’ computer

science focal knowledge, skills, and abilities in
game-based learning environments. 2019.

[2] V. Aleven. Rule-Based Cognitive Modeling for
Intelligent Tutoring Systems, pages 33–62. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[3] J. Anderson, A. Corbett, K. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned.
Journal of the Learning Sciences, 4:167–207, 04 1995.

[4] A. Badrinath, F. Wang, and Z. Pardos. pybkt: An
accessible python library of bayesian knowledge
tracing models, 2021.

[5] R. Clark, D. Feldon, J. J. G. Van Merrienboer,
K. Yates, and S. Early. Cognitive task analysis.
Handbook of Research on Educational Communications
and Technology, pages 577–593, 01 2008.

[6] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Modeling and User-Adapted Interaction,
4:253–278, 1994.

[7] B. Haberman and O. Muller. Teaching abstraction to
novices: Pattern-based and adt-based problem-solving
processes. In 2008 38th Annual Frontiers in Education
Conference, pages F1C–7. IEEE, 2008.

[8] K. Koedinger, A. Corbett, and C. Perfetti. The
knowledge-learning-instruction (kli) framework:
Toward bridging the science-practice chasm to
enhance robust student learning. Cognitive science,
36:757–98, 04 2012.

[9] S. Pandey and G. Karypis. A self-attentive model for
knowledge tracing. CoRR, abs/1907.06837, 2019.

[10] S. Pandey and J. Srivastava. Rkt: Relation-aware
self-attention for knowledge tracing. Proceedings of the
29th ACM International Conference on Information
Knowledge Management, Oct 2020.

[11] Z. Pardos and N. Heffernan. Kt-idem: Introducing
item difficulty to the knowledge tracing model. pages
243–254, 01 1970.

[12] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

[13] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In LAK21: 11th
International Learning Analytics and Knowledge
Conference, pages 606–612, 2021.

[14] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi.
SAINT+: integrating temporal features for ednet
correctness prediction. CoRR, abs/2010.12042, 2020.

[15] Y. Su, Q. Liu, Q. Liu, Z. Huang, Y. Yin, E. Chen,
C. H. Q. Ding, S. Wei, and G. Hu. Exercise-enhanced
sequential modeling for student performance
prediction. In AAAI, pages 2435–2443, 2018.

[16] L. Wang, A. Sy, L. Liu, and C. Piech. Deep knowledge
tracing on programming exercises. In Proceedings of
the Fourth (2017) ACM Conference on Learning @
Scale, L@S ’17, page 201–204, New York, NY, USA,
2017. Association for Computing Machinery.

[17] L. Wang, A. Sy, L. Liu, and C. Piech. Deep knowledge
tracing on programming exercises. pages 201–204.
Association for Computing Machinery, 2017.

[18] W. Wang, Y. Rao, Y. Shi, A. Milliken, C. Martens,
T. Barnes, and T. Price. Comparing feature
engineering approaches to predict complex
programming behaviors. 5 2020.

[19] R. Zhi, T. Price, N. Lytle, Y. Dong, and T. Barnes.
Reducing the state space of programming problems
through data-driven feature detection. 07 2018.


