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ABSTRACT
We present in this paper a summary analysis of log files
collected during an experiment designed to test the hypoth-
esis that prompting for free self-explanations leads to bet-
ter comprehension of computer code examples. Indeed, the
results indicate that students who were prompted to self-
explain while trying to understand code examples performed
significantly better at predicting the correct output of the
examples than students who were just prompted to read the
code examples and predict their output.
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1. INTRODUCTION
Code comprehension, i.e., understanding of computer code,
is a critical skill for both learners and professionals. Stu-
dents learning computer programming spend a significant
portion of their time reading or reviewing someone else’s
code (e.g., code examples from a textbook or provided by
the instructor). Furthermore, it has been estimated that
software professionals spend at least half of their time ana-
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lyzing software artifacts in an attempt to comprehend com-
puter source code. Reading code is the most time-consuming
activity during software maintenance, consuming 70% of the
total life-cycle cost of a software product [20]. O’Brien [20]
notes that source code comprehension is required when a
programmer maintains, reuses, migrates, re-engineers, or
enhances software systems. Therefore, offering support to
enhance learners’ source code comprehension skills will have
lasting positive effects for their academic success and future
professional careers.

In fact, such support should have a significant impact on as-
piring Computer Science (CS) students’ learning, self-efficacy,
and overall success and graduation rates. Indeed, although
computing skills are in high-demand, and the number of as-
piring CS students is encouraging, a large gap between the
supply of CS graduates and the demand persists because
college CS programs have attrition rates of 30–40% (or even
higher) in introductory CS courses (e.g., CS1 and CS2) [13,
2]. Advances towards the development of effective and en-
gaging instructional interventions to improve comprehension
and learning in introductory Computer Science courses at
the college level, to reduce attrition rates and increase re-
tention, and to ultimately produce more and better trained
graduates are much needed. The result will be a win-win-
win situation for aspiring students, CS programs and their
organizations, and the overall economy.

Our broader research agenda is to propose and study such
novel instructional interventions to improve comprehension
and learning in intro-to-programming courses at college level.
Specifically, our goal is to develop a web-based learning and



research environment that allows us to model, monitor, scaf-
fold, and investigate source code comprehension and learn-
ing processes. A sub-goal is to explore instructional strate-
gies that promote deep code comprehension and learning.
One such strategy, based on theories of self-explanation, is to
elicit self-explanations, i.e., student self-generated explana-
tions of a target text, e.g. science paragraph from a science
textbook, or, in our case, of a code example. To this end, we
present in this paper a summary of a randomized controlled
experiment in which we tested the hypothesis that prompt-
ing for free-self explanation, i.e., self-explanations that stu-
dents freely generate without any significant training.

2. RELATED WORK
Prior CS education research documented the difficulty novice
programmers face with constructing accurate mental mod-
els during key learning activities, such as source code com-
prehension [26, 21, 22, 16]. This challenge is not surprising
given that constructing mental representations is considered
a higher-level skill of comprehension, typically engendering a
high cognitive load [14, 27, 25, 12]. The importance of build-
ing accurate mental models during learning tasks has been
well established for decades in domains like science [7, 11, 19,
10] as well as in CS education [26, 21, 22, 16]. Nevertheless,
further research is needed to fully understand what factors
can mediate the construction of accurate mental model and
learning and build effective instructional interventions that
can monitor and scaffold learners’ comprehension and learn-
ing processes. The intervention can be instructor driven or
Artificial Intelligence driven like in adaptive instructional
systems of the kind we intend to develop.

Self-explanation theories [5, 4] indicate that students who
engage in self-explanations, i.e. explaining the target ma-
terial to themselves, while learning are better learners, i.e.
learn more deeply and show highest learning gains. The pos-
itive effect of self-explanation on learning has been demon-
strated in different science domains such as biology [6] and
physics [9], math [1], and programming [3]. Self-explanation’s
effectiveness for learning is attributed to its constructive na-
ture, e.g., it activates several cognitive processes such gen-
erating inferences to fill in missing information and inte-
grating new information with prior knowledge, monitoring
and repairing faulty knowledge, and its meaningfulness for
the learner, i.e., self-explanations are self-directed and self-
generated making the learning and target knowledge more
personally meaningful, in contrast to explaining the tar-
get content to others [23]. Several types of self-explanation
prompts have been identified and explored such as justification-
based self-explanation prompts [8] and meta-cognitive self-
explanation prompts [6].

Indeed, there are different ways to elicit self-explanations
which result in different types of self-explanations such as
spontaneous self-explanations (no prompting), free or open-
ended self-explanations (simple prompting to self-explain),
guided (see the Socratic method description later), and scaffold-
ed self-explanations (in this case students are encouraged
to self-explain as much as possible by themselves and of-
fered support in the form of hints when floundering). Other
forms of self-explanations have been tried such as ”complete
given self-explanations (fill-in the blank self-explanations)”
[15] and ”select a self-explanation/menu-based self-explanations”

[1] which one may argue are not true self-explanations as
the learner does not generate the explanation, i.e., the ’self’
part of the ’self-explanation’ is missing. Furthermore, self-
explanation prompts can emphasize various aspects of self-
explanations resulting in justification-based self-explanation
prompts [9] or meta-cognitive self-explanation prompts [6].
Self-explanations can also be categorized based on being spo-
ken (or thinking out loud) versus typed or written. The
former can be regarded as reflecting more directly students
thinking process whereas the latter may represent a more
refined version of their thinking process as when writing we
have a tendency to refine our sentences and therefore one
can argue the typed self-explanation engage some reflection
and refinement processes. Both have been studied in the
literature for other domains, e.g., [17] studied think aloud
self-explanations of instructional materials in the context of
science learning and science text comprehension, whereas
[18] explored the role of written self-explanations for read-
ing comprehension of scientific texts and learning of target
concepts or trying to solve a problem. They found that this
type of self-explanation benefits proficient readers in general
compared to less proficient readers [18].

We explore here the role of prompting for typed, free self-
explanations during comprehension and learning tasks. While
students received no significant training with respect to what
a self-explanation should look like, e.g., integrating new in-
formation with prior knowledge through bridging inferences,
they were shown an ideal self-explanation for one code ex-
ample at the beginning of the experiment because our pilot
experiments demonstrated that most students just ”trans-
late in plain English” when prompted for self-explanations
of code, i.e., they restate in words each line of code with no
inferencing about the higher level functionality of various
blocks of code. To measure the accuracy of the constructed
mental models for given code example, we ask students’ to
predict the output of each of the code examples. As control,
we use a condition in which students are asked to read and
predict the output of the code examples (no self-explanation
were asked for).

3. EXPERIMENTAL SETUP
We conducted a randomized control trial experiment in which
participants were assigned to two approximately equal ex-
perimental groups: a free Self-Explanation group and a Pre-
diction Only (control) group. To balance the number of par-
ticipants in each group, we used a group balancing approach
which kept half students in one group while other half stu-
dents in second group. Participants were debriefed about
the purpose of the experiment and given an informed con-
sent form which participants had to read and sign if they
agreed with it. Those who agreed to participate in the ex-
periment were given clear instructions by the experimenter
and a quick introduction to the interface of the experimental
system which was accessed through a browser.

The experiment consisted of students answering a brief back-
ground questionnaire regarding their programming experi-
ence, a more specific programming knowledge self-efficacy
questionnaire, a confidence survey targeting the program-
ming concepts/topics covered by the main task, a pre-test
assessing their prior knowledge of the topics covered in the
main task, a self-efficacy survey, the main task which in-



volved understanding 6 Java code examples and predicting
their output, a 1-minute break to allow students to recover
after the main task, a post-test assessing their knowledge
on the same topics, and post main task self-efficacy sur-
vey. The programming concepts that we tried to cover dur-
ing our experiment are: operator precedence, nested if-else,
for loops,while loops,arrays,creating objects and using their
methods.

In the main task, students were shown 6 Java code examples
and were asked to read in order to understand what they do
and then based on their understanding predict the output
of the code examples. When predicting the output, they
were also asked to indicate their confidence. The correct
output to each Java code example was shown immediately
after they entered their prediction. In the Self-Explanation
condition, they were asked to self-explain while reading the
code. The following self-explanation instructions were given:
in their own way what does that code block do to collect the
self-explanations from them.

When you read a Java code example in order to
comprehend it, like the JAVA code below, you
are supposed to read each line of the code care-
fully and while doing so explain what the code
means to you. While self explaining, you may
want to think of:

What new information does each line provide for
you? How does it relate to what you’ve already
read? Does it give you a new insight into your
understanding of how the code works? or does it
raise a question in your mind?

Describe whatever is going through your mind -
even if it seems unimportant. You may need to
go back and re-read parts of the code to really
understand the whole code. Some people find it
helpful, when reading difficult material, to draw a
picture or take notes on a piece of paper. Please
feel free to do what is best for you. Once you
finished reading the whole code, please explain
briefly what the overall goal of the code is, e.g.,
generating a Bingo board, and predict its output.
Keep in mind that there are no ”right”or ”wrong”
self-explanations.

We have been looking for self-explanation instructions in
the literature and with few exceptions they were not men-
tioned. The instructions can have a significant impact on
the outcome of the experiment which is the reason we show
them here as seen by the participants. We believe any fu-
ture attempts to reproduce our results should use the above
instructions verbatim.

Then, participants were shown 6 code examples and asked to
either self-explain what the code does (free Self-Explanation)
or just predict the output of the code examples (Prediction
Only). As noted before, all participants took a pretest be-
fore being being assigned to an experimental condition and
posttest afterwards. The pre-/post-test scores were used to
calculate learning gains as a measure for the effectiveness of
the interventions. We used a web-based software system to
run the experiment.

We conducted a t-test to compare the mean learning gains of
the experimental groups. Furthermore, we categorized par-
ticipants into low and high-prior knowledge groups based on
their mean pretest score for both the free Self-Explanation
and the Socratic method groups separately. Then, we con-
ducted an independent sample t-test to compare learning
gains between the low and high prior knowledge groups.
More details about group design, participants, materials
used, experiment protocol and measures are given in the
following sections. It should be noted that all interactions
between each participant and the system were logged in an
anonymous manner and have been used to do the post ex-
periment analyses presented later.

3.1 Group Design
Participants were randomly assigned to two different groups
i.e. first group were shown a model self-explanation of a
code example and then prompted to self-explain 6 Java code
examples and then predict the output of each of the code
examples while the second group had to predict the output
by only reading in order to understand each of the code
examples. Out of the 39 students involved, 20 participants
were assigned to the first group and 19 participants in the
second group.

3.2 Participants
While our intention initially was to recruit participants from
the intro-to-programming classes (CS0, CS1, and CS2), due
to low recruitment rates from those courses we expanded
our pool of subjects to all undergraduates and graduate stu-
dents. The low recruitment rates from the CS0, CS1, and
CS2 courses was low due primarily to the timing of our ex-
periment which was at the end of the Spring semester, right
before the final exams. Other factors contributed as well
such as the whole COVID-19 (corona virus) situation be-
cause of which all experimental session were run fully online.
We ended up recruiting and fully running 39 participants
from two US universities of which 36 were undergraduate
students and 3 graduates students. The undergraduate par-
ticipants were attending the following courses: CS1 (4 stu-
dents), CS2(21), Data Structures - also called CS3 by some
(8), and CS 3351???? (1). All participants were familiar
with the JAVA programming language.

3.3 Materials
Participants in each of the two experimental conditions were
shown same set of 6 source code examples, i.e., we controlled
for content but not for time which as we will see later in the
experimental results analysis had an impact in terms of tir-
ing effects for the Self-Explanation group of participants.
We call the 6 code examples the main task. As mentioned
before, participants took a pre-test as well that consisted
of 6 code examples matching in terms of content, i.e., tar-
get concepts, the code examples in the main task. Fur-
thermore, participants took a post-test consisting of 6 code
examples matching in content that examples in the main
task and pre-test. For the pre-test and post-test, learners
were supposed to just provide the predicted output. As al-
ready noted, the pre-test and post-test were not identical
but they were equivalent in term of concepts tested and dif-
ficulty level. The main programming concepts covered by
the experiment were: operator precedence, nested if − else,



for loops, while loops, arrays, creating objects and using
their methods. Each of these concepts were present in the
in the code examples used in the pre-test, post-test, and the
main task.

4. RESULTS
As noted earlier, the experimental system logged all student
responses to various system prompts including time stamps
associated with various student actions. The log files have
been the basis of the analyses presented in this section. The
analyses presented here are just a subset of the type of data
analyses or data mining that can be done on the logged
experimental data.

As a reminder, the key research question or goal of the ex-
periment was to see if prompting for free self-explanation
helps source code comprehension. This can be measured
by the participant’s performance on the main comprehen-
sion tasks: the average score was 5.05 for Self-Explanation
group while the Prediction-only group had an average score
of 4.1 for correctly predicting the output of each of the 6
Java code examples they were supposed to read and com-
prehend. The accuracy of the predicted output on the main
comprehension tasks is a direct reflection of the accuracy
of the mental models students constructed during the read-
ing of those code examples. The results in Table 1 shows
us that there is an statistical significant difference between
Self-Explanation group ( M = 5.05, SD = 1.129) and Pre-
diction group (M =4.10 and SD = 1.410) in the main task.
The magnitude of the difference in the means (mean differ-
ence = -0.953, 95% confidence interval: -1.784 to -0.121) is
large (Cohen’s d = 0.199) as suggested by [24]. Based on
these results, we conclude that prompting for typed, free
self-explanations leads to better code comprehension.

As a next step and as a way to better understand the main
result of the experiment outlined above, we explored whether
prior knowledge, as measured by the pre-test, can be a medi-
ating factor and if it differs among the experimental groups.

Table 1: Independent sample t-test for main task of self ex-
planation and prediction group

Group N Mean SD t-val Sig.
Self Explanation 19 5.05 1.129 -2.326 0.026
Prediction 20 4.10 1.410

Overall, participants had an average pre-test score of 4.84
for the Self-Explanation group and 4.75 for the Prediction
group. A t-test, which met all the standard assumptions
(continuous scale for dependent variable, random sampling,
independence of observations, normal distribution and ho-
mogeneity of variance), indicated that the two groups i.e.
Self-Explanation and Prediction, are equivalent in term of
prior knowledge. The result of the t-test can be seen in
Table 2.

Once we showed the groups are equivalent, we performed
an independent t-test between the predictions score of self-
explanation and prediction group to compare their scores.

We also performed analysis of covariance (ANCOVA) by tak-
ing experimental condition as grouping factor and pre-test

Table 2: Independent sample t-test for pretest of self expla-
nation and prediction group

Group N Mean SD t-val Sig.
Self-Explanation 19 4.84 1.537 -0.212 0.834
Prediction 20 4.75 1.164

score as covariate which also resulted in a significant dif-
ference. The Self-Explanation group performed better than
the Prediction-only group (5.05 - 4.10)/6 * 100 = 15.83 %.

Given the positive impact of prompting for typed, free self-
explanations, we wondered if prior knowledge is a mediating
factor for participants in the Self-Explanation group. That
is, we wondered if higher prior knowledge leads to better
self-explanations and better comprehension. To this end,
we divided the students in the Self-Explanation group in two
subgroups: high prior knowledge versus low prior knowledge.
We used the mean pre-test score of 4.84 as the splitting
point. We are aware that using the mean score to obtain
the two subgroups may lead to some students in the the two
subgroups having very similar scores, e.g., those participants
with scores close to the mean score. However, using a top
and bottom quartile split, which would eliminate this issue
of students in the different subgroups having similar scores,
would have led to small subgroups given that our overall
n = 39 participants.

Based on the main comprehension task performance, there
was a significant difference between the high prior knowl-
edge and low prior knowledge subgroups. Table 3 shows
us that there is an statistical significant difference between
main tasks of self-explanation group with low prior knowl-
edge ( M = 6.00, SD = 0.00) and high prior knowledge (M
= 4.692 and SD = 1.182). The magnitude of the difference
in the means (mean difference = 1.307, 95% confidence in-
terval: 0.165 to 2.449) is large (Cohen’s d = 0.498).

Table 3: Independent sample t-test for main task of self ex-
planation group based on low prior knowledge and high prior
knowledge

Group N Mean SD t-val Sig.
Low Prior 5 6.00 0.00 3.989 0.002
High Prior 13 4.692 1.182

5. CONCLUSIONS
We presented in this paper the results of a series of analyses
of log data from a randomized controlled trial experiment
designed to test the hypothesis that an instructional strat-
egy that prompts for typed, free self-explanations can help
code comprehension. The experimental results obtained do
indeed support the hypothesis. Furthermore, we found out
that students with lower prior knowledge are much more
helped by prompting for typed, free self-explanations. That
is, this strategy seems to be particularly useful for low prior
knowledge students.

We do plan to further analyze the results of the experiment
we conducted. For instance, we would like to analyze the
mental models students constructed by annotating the self-
explanations along a number of 10 dimensions inspired by



theories of self-explanation and code comprehension as pro-
posed by Lasang and et al. (2021). Furthermore, we intend
to conduct more experiments to understand what other fac-
tors mediate the quality of the mental models constructed
such as the readability of the code being red. In the current
experiment, the code examples followed professional code
writing style and therefore could be deemed as highly read-
able. However, there were no comments in those code ex-
amples which could further increase the readability of the
examples. However, the presence of comments may give
some students the illusion of understanding by demotivat-
ing them to read carefully the code and be tempted to just
read the comments thus leading to less effective comprehen-
sion processes. There is much work to be done and we are
excited to further the very promising work presented here.
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