
Investigating Elements of Student Persistence in an 
Introductory Computer Science Course

Juan D. Pinto 
University of Illinois at 
Urbana-Champaign 

jdpinto2@illinois.edu 
 

Yingbin Zhang 
University of Illinois at 
Urbana-Champaign 

yingbin2@illinois.edu 
 

Luc Paquette 
University of Illinois at 
Urbana-Champaign 

lpaq@illinois.edu 
 

Aysa Xuemo Fan 
University of Illinois at 
Urbana-Champaign 

xuemof2@illinois.edu

ABSTRACT 

We explore how different elements of student persistence on 

computer programming problems may be related to learning 

outcomes and inform us about which elements may distinguish 

between productive and unproductive persistence. We collected 

data from an introductory computer science course at a large 

midwestern university in the U.S. hosted on an open-source, 

problem-driven learning system. We defined a set of features 

quantifying various aspect of persistence during problem solving 

and used a predictive modeling approach to predict student scores 

on subsequent and related quiz questions. We focused on careful 

feature engineering and model interpretation to shed light on the 

intricacies of both productive and unproductive persistence. 

Feature importance was analyzed using SHapley Additive 

exPlanations (SHAP) values. We found that the most impactful 

features were persisting until solving the problem, rapid guessing, 

and taking a break, while those with the strongest correlation 

between their values and their impact on prediction were the 

number of submissions, total time, and (again) taking a break. This 

suggests that the former are important features for accurate 

prediction, while the latter are indicative of the differences between 

productive persistence and wheel spinning in a computer science 

context. 
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1. INTRODUCTION 
Research on student modeling has identified various behaviors and 

patterns related to learning outcomes and student success. One 

construct has both a history of research outside of Educational Data 

Mining (EDM) and is receiving renewed attention in the EDM 

community. Known by the diverse names of grit [8], perseverance 

[25], academic tenacity [9], and persistence, studies have focused 

on measuring the trait, identifying when students are exhibiting it, 

and quantifying its effects on various aspects of student learning. 

More traditional efforts on this front have focused on measuring 

persistence using questionnaires and testing its effect based on 

grades and test scores [8, 17, 41]. Efforts to identify persistence in 

log data of game-based learning systems [7, 27, 34] or intelligent 

tutoring systems (ITS) [15] have shown great promise. Many of 

these efforts have specifically focused on improving persistence 

detectors for on-the-fly student feedback systems or interventions. 

One aspect of persistence that has gained interest in the EDM 

community in particular is the distinction between productive and 

unproductive persistence. Persistence is typically characterized by 

a determination to stick with a problem for long durations despite 

facing obstacles, and it has often been portrayed as a positive trait. 

However, researchers have come to question this simplistic stance, 

noting that there seem to be two related but opposing sides to 

persistence. On one hand, persistence may produce productive 

results when it leads to consistent, long-term effort [8] or when 

students relish the opportunity to overcome challenges [9]. On the 

other hand, students who are "stuck" may be better off going back 

to learning more about the subject rather than continuing to spend 

time working on a problem they don't yet fully understand [3]. In 

such cases, the student’s persistence might be characterized as 

unproductive. 

Given the opposing academic outlook of this dichotomy, 

understanding what differentiates productive from unproductive 

persistence is of critical importance. The latter has been termed 

wheel spinning in the literature and has been defined as "a student 

who spends too much time struggling to learn a topic without 

achieving mastery" [3]. Recent research has specifically focused on 

creating and improving automatic detectors of wheel spinning in 

ITSs [11, 15, 24, 39, 42] and game-based learning systems [27]. 

In the context of computer science education, [23] have suggested 

that fostering grit can lead to higher retention among CS students. 

Other research has identified a weak correlation between grit and 

measures of academic success [17, 25, 41], especially when 

focusing on one of the two main components of grit—perseverance 

of effort—which most closely aligns with definitions of persistence 

[35]. 

In this paper, we add to the existing literature by exploring how 

different elements of persistence on computer programming 

problems may contribute to learning outcomes. We defined a set of 

features quantifying various aspects of persistence during problem 

solving and used predictive modeling approaches to predict student 

scores on subsequent and related quiz questions. We focus on 

careful feature engineering and model interpretation to shed light 

on the intricacies of both productive and unproductive persistence. 

By investigating these constructs within a computer science course, 

our study also aims to better understand their application in this 

context. 
Copyright © 2021 for this paper by its authors. Use permitted under 
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2. RELATED WORK 

2.1 Modeling Productive Persistence vs. 

Wheel Spinning 
The EDM community’s interest in persistence was sparked by [3], 

who found that students who struggle to master a skill within a 

certain timeframe are unlikely to do so at all. Besides identifying 

wheel spinning and describing how it differs from productive 

persistence, the same study found a clear correlation between wheel 

spinning and other negative behaviors such as gaming the system 

and disengagement. 

Subsequent studies have devised variations in criteria for 

differentiating between productive persistence and wheel spinning 

[42], with many models defining mastery based on the number of 

correct submissions in a row and others relying heavily on the 

stability of Bayesian knowledge tracing (BKT) student model 

predictions [16]. Despite differences in operationalization, 

however, predictive machine learning models have been found to 

serve as successful wheel-spinning detectors. Some of the 

algorithms that have been used include linear regression [3], 

logistic regression [11, 42], decision trees [15, 27, 39], random 

forest [27, 42], and neural networks [24]. Most of these studies 

calculated productive persistence or wheel spinning labels based 

solely on the data gathered rather than relying on human observers 

or coders. Two notable exceptions are [24, 27]. 

The goal of the most recent studies has been to identify wheel 

spinning in ITSs as early as possible. [42] compared different 

criteria and feature sets and have shown that it is possible to make 

predictions with acceptable accuracy as early as step four of a 

problem. They were also surprised to find that a logistic regression 

model trained on only one feature (“correct response percentage”) 

resulted in prediction performance that was close to their best 

models. Relying on hint requests, submission correctness, and time 

per skill, [39] concluded that models can detect students who will 

wheel spin after only three questions. 

The studies mentioned thus far have focused almost exclusively on 

ITSs, which are most commonly used to teach math. Detecting and 

studying persistence on computer programming problems requires 

first understanding how data from these tasks has been analyzed in 

past studies. 

2.2 Using Action Logs to Study Programming 

Behaviors 
There is growing interest in leveraging data analytic methods to 

study students’ action logs produced during programming activities 

[13], including to better understand the students’ programming 

processes, behaviors and strategies. Log data have been used to 

generate visualizations of student behaviors that can be manually 

inspected to better understand their programming approach [5, 10], 

explore how students progress through homework assignments [6, 

30], understand the learning pathways of novice programmers [4] 

and analyze problem-solving behavior in a debugging game [20].  

Generally, two broad categories of features have been used: 1) 

frequencies of behaviors and 2) similarity/distance between 

programs. The first category provides aggregated information 

related to the quantity of actions performed by the student. This 

includes the number of blocks used in a Scratch program [10], how 

often a program was compiled and how many characters it included 

[5], the number of actions and logic primitives used [4], and the 

number of lines added, deleted, and modified [6]. [20] leveraged 

expert judgments to identify meaningful behaviors, such as massive 

deletion and replacing loops with repetitive code. 

Studies have also developed features to evaluate how similar or 

different two computer programs are. [30] used a combination of 

the differences in bag of words, abstract syntax tree (AST) edits and 

similarity in calls to the application programing interface (API) to 

identify similar program states. [6], in addition to using this same 

method, considered the frequency of changes in a student’s 

program and the magnitude of those changes. 

As our goal was to focus on behaviors related to how students 

approach solving a problem, rather than investigating the content 

of the submitted solution, we used an approach in line with the first 

category to investigate elements of student persistence in a series 

of computer programming problems. This allowed us to focus 

specifically on the productive and unproductive behaviors of 

persistent students. 

3. METHODS 

3.1 Data Collection and Label Generation 
We collected data from an introductory computer science course at 

a large midwestern university in the U.S. hosted on PrairieLearn, 

an open-source, web-based problem-driven learning system [40]. 

Throughout the semester, 733 students used PrairieLearn to submit 

almost-daily programming homework problems, take weekly 

quizzes, and complete cumulative exams. In addition, students 

were free to practice past problems and questions as much as they 

desired. As our work aims to investigate the relationship between 

persistence during homework and subsequent assessment, we 

filtered the data to focus on attempts submitted towards solving a 

homework problem or a quiz question. After removing practice 

submissions and other non-credit assignments, our resulting data 

set consisted of 290,703 individual homework problem attempts 

and 313,097 quiz question attempts. 

All homework assignments were programming problems with 

checkstyle, compiler, and problem-specific tests that students’ code 

had to pass to receive full credit. Students had one day to 

successfully complete each homework problem. They were 

allowed to submit solution attempts as often as required until they 

successfully passed all the tests. After each submission, the system 

ran tests to check the correctness of the solution and provided 

feedback indicating mistakes. First, the system tested whether the 

solution had any checkstyle and compiler errors. If such error 

existed, the system showed feedback about these errors and 

stopped. If there were no checkstyle or compiler errors, the system 

further used several problem-specific tests to examine whether the 

solution fulfilled the requirement. For example, given some random 

input, would the solution generate the correct output? If not, the 

system would return feedback about the problem-specific test error. 

Otherwise, the solution was regarded as correct. 

We aggregated our dataset at the student-problem level using a 

series of features specifically related to persistence. While 

persistence can be studied at various grain sizes, we chose this level 

due to our interest in how students tackle difficulties within a 

particular programming problem. Similarly, we only kept instances 

that demonstrated struggling, as defined in section 3.2.1, since 

these were the cases that could elicit persistence from students. 

Quizzes were conducted weekly as part of regular class activity to 

assess learning and consisted of both multiple-choice questions and 

programming tasks. Quizzes were made available at the end of the 

week and were designed to provide early assessment related to the 

content of the homework problems assigned earlier that week. We 

aligned the content of each homework problem to corresponding 

multiple-choice quiz questions to directly investigate the 



relationship between persistence in specific homework problems 

and outcome on related assessment questions. Once we had these 

alignments, we calculated for each student-problem instance the 

total number of points obtained on the relevant quiz questions and 

the maximum possible points. Using these values, we then 

calculated the point percentage as the indicator of learning. Only 

quiz questions that students attempted were considered for these 

calculations. After these changes and calculations, our aggregated 

dataset consisted of 7,673 instances of student-problem pairs, 

submitted by a total of 710 students. 

The resulting distribution of the score outcome variable had a 

strong negative skew, with most instances accumulated at higher 

scores, as shown in Figure 1. This is because students often 

managed to obtain a perfect score on their aligned quiz questions. 

Students were typically given two chances to select the right 

answer, the second time for half credit. 

 
Figure 1. Distribution of score values 

3.2 Feature Engineering 
Given our goal to study how specific behaviors might be related to 

persistence, our feature engineering efforts focused on developing 

features based on an underlying rationale about their relationship to 

productive or unproductive persistence. Following the Carnegie 

Foundation for the Advancement of Teaching’s definition of 

productive persistence—“tenacity plus the use of good strategies” 

[18]—we sought to identify good learning strategies and habits 

based on the available data. Other features were based on more 

generalized applications of the aspects of unproductive persistence 

that have been identified in the wheel-spinning literature. This 

process resulted in a total of 12 base features. We also standardized 

most of these at the problem level (by subtracting the problem’s 

mean and dividing by the problem’s standard deviation) to create 

an additional 10 features. The rest of this section describes each 

feature and our rationale behind it. 

3.2.1 Struggling threshold features 
Whether the student went beyond a problem’s corresponding time 

or attempt threshold. 

We defined students as struggling if they worked on a programming 

problem for a long time or if they submitted a high number of 

solutions to a problem. We considered that students could only 

show persistence in the context of problems for which they 

struggled. 

This operationalization of struggling depends on identifying both a 

time and attempt threshold, each specifically calculated for that 

homework problem. Thus, once we calculated the thresholds for 

each problem, we created two binary struggling threshold features: 

beyond time threshold and beyond attempt threshold. We only kept 

instances of students that satisfied at least one of these two criteria. 

We also created two numerical features that measured a student’s 

deviation from each of these thresholds. Because the thresholds 

were already calculated at the problem level, standardizing these 

deviation features would result in perfectly collinear features, so we 

did not standardize them. 

For the time threshold, we used the minimum value between the 

75th quantile of students’ total time on each problem and 15 

minutes. We combined the 75th quantile and 15 minutes to 

determine the time threshold based on several reasons. First, given 

that the course is only an introductory CS course, it is reasonable 

that one fourth of students struggled with difficult programming 

problems. Second, the proportion of students who struggled with 

unchallenging problems would be smaller. Using an absolute 

threshold would be better for these cases. Third, we used 15 

minutes as the absolute threshold because 57.56% of problems had 

a 75th quantile of total time smaller than 15 minutes. It seems 

reasonable to regard close to half of problems as unchallenging. 

Given that the number of attempts is an important indicator of 

persistence, many attempts on a problem might also be indicative 

of struggling, even when the total time spent on the problem falls 

under the time threshold. Analogous to deciding the time threshold, 

we used the minimum value between the 75% quantile of the 

number of attempts on a problem and 9 attempts to determine the 

attempt threshold. If the 75th quantile of the number of attempts on 

a problem was smaller than 9 attempts, the later became the attempt 

threshold. We used 9 attempts as the absolute threshold because 

56.06% of problems had a 75th quantile of the number of attempts 

no more than 9 attempts. This number was close to 57.56%, the 

proportion of problems with a 75th quantile of total time smaller 

than 15 minutes. 

3.2.2 Solved 
Whether the student successfully solved the programming problem 

before the deadline.  

This is directly related to wheel spinning as defined by [11]: 

"problem solving without making progress towards mastery." 

While PrairieLearn is not suited for measuring mastery the way 

[11] did with the Cognitive Algebra Tutor and ASSISTments ITSs 

(three consecutive, correct responses within a specific skill), 

persistence while struggling that does not lead to an eventual 

correct solution can be considered a form of wheel spinning or 

unproductive persistence. Based on this, we hypothesized that 

solving a challenging problem (productive persistence) would lead 

to a higher quiz-question score than not solving the problem (wheel 

spinning). 

3.2.3 Number of submissions  
The count of how many times the student submitted an attempted 

solution for the problem.  

This is a typical measure used in the persistence literature [15, 39, 

42]. Since submissions on PrairieLearn typically end when a 

student successfully solves a problem, this feature is a count of the 

number of failed attempts + 1. In essence, this is one way of 

measuring the level of persistence demonstrated. We reasoned that 

more unsuccessful attempts would indicate more wheel spinning, 

resulting in lower quiz scores. 

3.2.4 Total time on problem 
The total amount of time (in seconds) spent solving the problem. 

As with the number of submissions, the time that students spend on 

a challenging problem might indicate the amount of persistence 

being demonstrated. We again reasoned that more time (and thus 

more wheel spinning) may be predictive of more struggling and 

lower scores on the quiz questions. 



Our platform only allowed us to measure the time between 

submissions, so we had no way of knowing with certainty how 

much time was spent working on a problem. If the time difference 

between a student’s two consecutive submissions was beyond 15 

minutes, we regarded this student as being away from this problem 

during that interval (see the feature taking a break below for the 

choice of 15 minutes as a threshold). In these cases, we replaced 

this time difference with the student’s mean time difference 

between other consecutive submissions on this problem so that we 

could estimate the student’s total time on the problem more 

accurately. 

3.2.5 Taking a break 
Whether the student spent time away from the problem after 

passing one of the struggling thresholds. 

We defined taking a break as a struggling student being away from 

the problem at least once. When the time between two consecutive 

submissions on the same problem went beyond 15 minutes, we 

regarded the student as away from the task. As discussed above, 15 

minutes might be sufficient for solving unchallenging problems if 

students did not struggle. Moreover, 81.57% of pairs of consecutive 

submissions had a time difference less than 15 minutes. This 

proportion only increased slightly to 83.77% when increasing this 

threshold from 15 minutes to 1 hour. Thus, it is reasonable to use 

15 minutes as the threshold for being away from the problem. Note 

that if a student attempted other homework problems between two 

consecutive submissions on the same problem, we regarded this 

student as interleaving rather than taking a break. 

Our rationale for measuring break taking is based on the idea that a 

wheel-spinning state may be overcome by time away from task. 

Some of the cognitive benefits of breaks have been documented [1, 

19, 26, 36] and seem to be especially impactful for intensive and 

prolonged tasks. The term wheel spinning itself was coined in 

reference to the imagery of a car spinning its wheels but not going 

anywhere, suggesting that the indiscriminate tactic of subsequent 

attempts may not always be productive. In their article defining this 

new construct, [3] suggest devising ways to break up fruitless 

attempts at solving problems. Our feature tries to capture students 

who independently choose to break up their homework in this way. 

3.2.6 Interleaving 
Whether the student switches to a different problem for a time and 

then comes back to continue attempting the original problem. 

Interleaved practice, as opposed to blocked practice, refers to a 

learning technique that mixes up the order of topics, lessons, or 

problems presented. Studies have shown that this practice usually 

improves learning outcomes [32, 38], though—to the best of our 

knowledge—this has not been explored in a CS context. For the 

purposes of our study, we measured interleaving as a student 

attempting a problem without solving it, attempting a different 

problem, and then returning to continue working on the original 

problem. We reasoned that such a practice could potentially serve 

to break up the monotony and potential frustration associated with 

wheel spinning and thereby lead to better learning. We considered 

this an alternative to taking a break and did not double count such 

instances in the features.  

3.2.7 Rapid guessing 
Whether the student submitted at least three quick submissions in a 

row. 

Quick, consequent submissions may indicate guessing or uncritical 

attempts to fix problems without much reflection. This behavior has 

been associated with students trying to game the system [2, 28] and 

with wheel spinning [3]. Given the nature of programming tasks as 

opposed to attempts in an ITS, we defined a quick submission as a 

gap between attempts of less than 15 seconds. If a student’s 

submission stream to a problem contains three or more consecutive 

quick submissions, we labeled this student as performing rapid 

guessing on the problem. We hypothesized that rapid guessing 

would be associated with a lower score on related quiz questions. 

3.2.8 Time interval between consecutive submissions 
The student’s mean and standard deviation of time intervals 

between consecutive attempts on the problem. 

Shorter time between submissions may indicate more unproductive 

attempts to push through to an answer without stopping to 

think/work carefully or take breaks [39]. This is also similar to the 

common practice of cramming, as opposed to the more effective 

practice of spaced repetition. [15] found both the mean and standard 

deviation of time differences to be about equally as predictive of 

wheel spinning. We nevertheless chose to include both features in 

our initial model to test this claim. We did not count cases of break 

taking (intervals longer than 15 minutes) towards these features. 

Because of its association with wheel spinning, we hypothesized 

that we would find a positive correlation between these features and 

score. 

3.3 Machine Learning and Interpretation 
To test the importance of our various features, we created a random 

forest model using a shuffled 70/30 validation/testing split grouped 

by student with 5,396 and 2,277 instances respectively. We 

conducted 500 iterations of Bayesian hyperparameter optimization 

on the validation set using 10-fold cross validation grouped by 

student. This hyperparameter tuning was set to optimize the R2 

score. 

We originally tested a wide array of models, including various 

linear, tree-based, and ensemble algorithms, and we further tuned 

some of the most promising ones. We found that variations of 

gradient boosting models performed best. However, we chose to 

focus on random forest for our feature interpretation for two 

reasons: (1) the performance gained by using the best models over 

random forest was negligible, and (2) random forest models have 

been shown to be useful for predictions related to persistence in 

other EDM research [27, 42]. 

Once we had constructed our final model, we re-trained it on the 

entire dataset in preparation for feature interpretation. For the task 

of interpreting feature importance, we analyzed SHapley Additive 

exPlanations (SHAP) values. SHAP is a game-theoretic approach 

that calculates the effect that each value in the feature matrix has 

on that instance’s prediction, relative to the mean prediction [22]. 

That is, we can output a matrix with the same dimensions as the 

features data set, each value serving as an explanation of that 

feature’s effect on the prediction made for that particular instance. 

These SHAP values are in the same unit as the target label—

percentage score in our case—further lending themselves for 

interpretation. Though SHAP values are very resource-intensive to 

fully and accurately calculate, the nature of tree-based models 

makes it possible to optimize the process significantly [21]. 

It is important to note that the mean of the SHAP values for any 

feature will always be zero. This is because SHAP values are 

calculated as the difference of each feature-instance from the mean 

predicted score. However, by finding the mean absolute value of 

the SHAP values for each feature, we can identify which features 

have the strongest broad, average impact on prediction. 



While mean Gini impurity has been used to interpret features in the 

persistence literature [42], and permutation feature importance is 

commonly used as well, numerous studies have identified potential 

issues with these approaches that can lead to misleading 

interpretations [12]. This is especially true when using highly 

correlated features [37], which is the case with our data. 

Furthermore, SHAP allows for investigation into the interplay 

between features beyond what these other methods can do. 

We conducted all our work using open-source Python packages 

built on top of Scikit-learn [29]. We tested and tuned a variety of 

models using PyCaret [31], performed Bayesian optimization [14] 

with scikit-optimize [33], and investigated feature importance 

using SHAP [22]. 

4. RESULTS AND DISCUSSION 

4.1 Model Results and Preliminary Analysis 
Our tuned random forest model attained an average cross-validated 

R2 of 0.133 and an average RMSE of 0.129 on the validation set. 

On the held-out testing set, the resulting R2 was 0.145 and the 

RMSE was 0.130. Our persistence features accounted for roughly 

14% of the variation in related quiz scores. 

A preliminary analysis of our model uncovered certain important 

patterns. For one, our least impactful features were all binary 

measures—such as whether interleaving, rapid guessing, or break-

taking were observed—whereas our top features were the 

standardized measures of those binary features. Figure 2 shows the 

entire set of feature rankings based on mean absolute SHAP values. 

 
Figure 2. Preliminary model feature rankings 

A detailed exploration of these features revealed what appears to be 

an opposing impact between some binary features and their 

standardized counterparts. For example, the feature solved has a 

negative correlation between its values and its SHAP values 

(r = -0.217, p < 0.0001), whereas its standardized version, 

solved_std, has a positive correlation (r = 0.33, p < 0.0001). 

Measuring this correlation between feature and SHAP values 

allows us to better understand how the model is using the feature. 

Higher correlation, and thus a stronger linear relationship, suggests 

a more straight-forward interpretation for the feature’s role in the 

model. While the impact of solved is very small in the overall model 

(ranked 17th, mean absolute SHAP = 0.00003), solved_std is our 

top feature in terms of overall impact on the predicted score (mean 

absolute SHAP = 0.02129). We found this same inverted 

relationship between many other impactful standardized features 

and their original, binary, far less impactful counterparts. 

Because we standardized features at the problem level, the 

correlation between each unstandardized and corresponding 

standardized feature is never quite perfect, but some do come close. 

Random forest models typically do not suffer from collinear 

features the way more traditional statistical regression methods do. 

This is largely because of the way features are randomly sampled 

for each tree. Even when both collinear features are part of the 

feature subset, a decision tree will typically ignore one in favor of 

the other. We suspect that much of our model’s preference for the 

standardized features over unstandardized ones is the added 

problem-level information they contain, which could be interpreted 

as information regarding the difficulty of the problem.  

However, while the predictive power of a random forest is not 

affected by collinear features, model interpretability suffers, as we 

found through our preliminary analysis. Given our goal of better 

understanding the different aspects of persistence and their 

relationships, we decided to remove the original non-standardized 

features. We also removed time_threshold_deviation and 

attempt_threshold_deviation, which were very highly correlated 

with total_time_std and num_submissions_std respectively. We 

then re-trained and re-tested our model.  

After removing these features, we found that our model’s average 

cross-validated R2 on the validation set increased slightly, from 

0.133 to 0.134, while RMSE remained constant. On the held-out 

testing set, its R2 also increased, from 0.145 to 0.147, while RMSE 

remained constant. We then re-trained our model on the entire 

dataset in preparation for our in-depth feature analysis. 

4.2 Feature Importance and Interpretation 

4.2.1 Feature rankings 
Our analysis using SHAP values found that the solved_std and 

rapid_guessing_std features had the biggest effect, accounting for 

an average impact of 0.0215 and 0.0172 on the predicted score 

respectively. The third most important feature, taking_break_std, 

had an average impact less than half as strong at 0.0076. Together, 

these three features account for 75% of all features’ total impact on 

the predicted score. Figure 3 shows the feature rankings based on 

mean absolute SHAP values, while Table 1 allows for comparison 

with other methods such as Gini-impurity-based importance and 

permutation importance. Rankings based on these three different 

approaches yielded almost identical results with only minor 

variations, strengthening the reliability of our findings. 

 
Figure 3. Final model feature rankings 



Besides ranking the features by impact on the predicted score, 

SHAP values allow us to explore the nature of that impact more 

deeply, as well as the interactions between features. Figure 4 is a 

beeswarm plot of SHAP values by feature with color indicating the 

value of each individual instance. 

 
Figure 4. SHAP beeswarm plot 

To further aid our interpretation, we also explored which features 

had the highest absolute correlation between their values and their 

corresponding SHAP values. In essence, this correlation is a 

measure of just how linear each feature’s effect is on the predicted 

score. We calculated Pearson’s r for all features (see Table 1) and 

found that all p values were below 0.0001, except for sd_time_diff. 

Throughout this analysis, we point out when a feature’s correlation 

is indicative of a linear relationship. 

4.2.2 Solved 
We can see (Figure 4) that the bulk of solved_std is composed of 

high values (red color), indicating that most students managed to 

solve most homework problems. The long positive skew suggests 

that small, positive variations in this feature could potentially push 

the predicted quiz score up by about 0.1. The few lower values in 

this feature (blue color) are found on the left side of the plot, 

suggesting that not solving the problem tended to pull the predicted 

score down. Indeed, we found a moderate positive linear 

relationship between solved_std and its SHAP values (r = 0.34), 

further confirming our initial analysis. 

This confirms our hypothesis. It suggests that solving a challenging 

problem (productive persistence) may be related to a better 

understanding of the underlying concepts, whereas not solving the 

problem (wheel spinning) suggests a lack of understanding. 

4.2.3 Rapid guessing 
Our models’ second most impactful feature, rapid_guessing_std, is 

in many ways the opposite. Most students did not engage in rapid 

guessing. Those who did, particularly on homework problems 

where few others did—identified by high rapid_guessing_std, or 

red color in the beeswarm plot (Figure 4)—were more generally 

affected negatively in their predicted score based on this feature. 

This effect can more clearly be seen when plotting the SHAP values 

for the feature against the values of the feature itself (Figure 5). 

This view allows us to get a better sense of how most instances with 

a higher rapid_guessing_std value impact the predicted score 

negatively. This aligns with our hypothesis: rapid guessing, with its 

potential implications of wheel spinning [3] and gaming the system 

[2, 28], is indicative of lower learning outcomes. 

 
Figure 5. Correlation between rapid_guessing_std and its 

SHAP values, with solved_std as color 

By adding the values of our top impactful feature, solved_std, as 

the color of the plot illustrated in Figure 5, we can also see an 

interesting interaction between the two features. It appears that the 

impact of the high rapid_guessing_std values is at least partly 

dependent on solved_std—instances where the student failed to 

solve the problem (in blue) were less negatively impacted by 

rapid_guessing_std (as indicated by their mostly positive SHAP 

Table 1. Feature impact measures (r is correlation between feature values and corresponding SHAP values) 

feature mean absolute SHAP Gini importance permutation importance r p 

solved_std 0.02149 0.26554 0.17083 0.340 < 0.0001 

rapid_guessing_std 0.01724 0.20987 0.17059 -0.076 < 0.0001 

taking_break_std 0.00758 0.10511 0.04310 -0.608 < 0.0001 

beyond_time_threshold_std 0.00373 0.07514 0.02790 -0.349 < 0.0001 

beyond_attempt_threshold_std 0.00369 0.07028 0.02760 -0.080 < 0.0001 

num_submissions_std 0.00326 0.07751 0.03082 -0.833 < 0.0001 

total_time_std 0.00257 0.07871 0.02550 -0.773 < 0.0001 

avg_time_diff_std 0.00099 0.05398 0.01558 -0.158 < 0.0001 

sd_time_diff_std 0.00098 0.06166 0.01856 0.008 > 0.5 

interleaving_std 0.00017 0.00219 0.00028 0.126 < 0.0001 

 



values). One explanation may be that students who rely on rapid 

guessing and manage to solve the problem may come away with 

more misguided confidence in their mastery of the material than 

those who fail to solve the problem and are thus less likely to 

consider reviewing before a quiz. However, this hypothesis was not 

investigated further. 

4.2.4 Taking a break 
Our model’s third most impactful feature, taking_break_std, has a 

very clear pattern that is easily observable in Figure 4. Lower 

feature values generally lead to a positive impact on predicted 

score, whereas taking a break is more likely to have a negative 

impact on score. We found a negative linear relationship between 

taking_break_std and its SHAP value (Figure 6), with Pearson’s r 

of -0.608. The distribution of SHAP values for this feature indicates 

a potential negative impact about three times as large as the positive 

one.  

 
Figure 6. Correlation between taking_break_std and its SHAP 

values 

This result is the opposite of what we hypothesized. Since taking 

breaks during a difficult task has been shown to improve cognition 

[36], we hypothesized that students who took a break while 

struggling would ultimately be more productive. We specifically 

marked a student as taking a break only if there was a large gap 

between submissions (15 minutes) after they had passed one of the 

two struggling thresholds. 

One possible explanation is that students who took a break did, in 

fact, perform better than they would have otherwise. Since our 

method does not directly test causation, our model may be using 

this feature as a proxy for students who struggled more than others. 

Another possibility is that this feature is not solely capturing 

intentional break-taking, but also interruptions to students’ work, 

which may serve as distractions—certainly not an ideal learning 

situation. We did not calculate how many times students took a 

break, only if there was at least one 15-minute gap between 

submissions when struggling. Finally, because homework 

problems were due at midnight on the day they became available, 

students may simply not have had sufficient time for effective break 

taking. Without additional information about learning context or 

calculating additional features, we have no way of knowing which 

of these explanations, if any, are the most likely. 

4.2.5 Struggling threshold features 
For beyond_time_threshold_std, we can see in Figure 4 that lower 

values generally lead to increases in the predicted score and vice 

versa. This is indicative of the underlying attribute this feature 

attempts to capture—going beyond the time threshold yields 

smaller (generally negative) SHAP values, whereas not going 

beyond the time threshold yields larger (generally positive) values, 

the exact value being heavily affected by how much other students 

crossed the threshold on the same problem. For students who take 

longer than the norm, this generally has a negative effect on their 

score. The relationship here is moderately linear with an r of -0.349. 

The fifth top feature that we identified, 

beyond_attempt_threshold_std, does not have such a clear pattern. 

The SHAP values seem to be widely spread irrespective of the 

feature’s values. The feature’s distribution is bimodal, as is the case 

with most of the features that standardize a binary variable, and we 

did find a small distinction in the SHAP values between the two 

modes (Figure 7). While the mean for each mode is essentially zero, 

higher instances of beyond_attempt_threshold_std, which 

correspond with student-problem instances that went beyond that 

problem’s attempt threshold, have a moderate negative correlation 

with their SHAP values (r = -0.409, p < 0.0001) and lower 

instances, on the other hand, have a positive correlation about 

equally as strong (r = 0.382, p < 0.0001). This suggests that the 

impact of this feature on predicted score is highly dependent on 

how much one’s status on the underlying binary variable 

(beyond_attempt_threshold) varies from the norm for that given 

homework problem.  

 
Figure 7. Correlation between beyond_attempt_threshold_std 

and its SHAP values (with annotations) 

4.2.6 Number of submissions 
We found that num_submissions_std, our model’s sixth top feature 

in terms of impact, has the strongest correlation between its feature 

values and SHAP values (r = -0.833). This fits with our hypothesis. 

The more attempts that students submit, the more likely they are to 

be struggling, and the less likely they are to perform well when 

tested on the same skills during their weekly quiz. 

4.2.7 Time features 
We found that our three time-related features—not including 

beyond_time_threshold_std, which is of a very different nature 

since its non-standardized version is a binary feature—had some of 

the weakest predictive power in our model. total_time_std had a 



still moderate mean absolute SHAP at 0.00257 and a very strong 

correlation between its feature and SHAP values with r = -0.773. 

avg_time_diff_std and sd_time_diff_std, by comparison, had a 

much lower mean absolute SHAP (respectively 0.00099 and 

0.00098) and no correlation. 

The strong, negative correlation between total_time_std and its 

SHAP values mean that the model is interpreting longer time on a 

problem as being related to lower learning outcomes, or at the very 

least as a student struggling enough with a problem to lead to a 

lower score on the weekly quiz. This latter possibility is in line with 

our hypothesis and with what we found for 

beyond_time_threshold_std. Interestingly, this pattern is far more 

pronounced for instances that went beyond the time threshold (red 

points in Figure 8), whereas the relationship is seemingly reversed 

for cases where students did not go beyond the time threshold 

(blue/purple points in Figure 8).  

 
Figure 8. Correlation between total_time_std and its SHAP 

values, with beyond_time_threshold_std as color 

As for the two features that specifically look at time between 

submissions (avg_time_diff_std and sd_time_diff_std), their 

weakness both in predictive impact and correlation with SHAP 

values suggest at face value that this factor has little value at 

predicting learning success (or lack thereof) when students struggle 

with a problem. These features’ impact may also have been affected 

by the high correlation between them (r = 0.76). Similar 

information may have also been captured by a combination of 

beyond_time_threshold_std and beyond_attempt_threshold_std. 

4.2.8 Interleaving 
Finally, our model’s least impactful feature, interleaving_std, had 

by far the lowest mean absolute SHAP value (0.00017) and a low 

correlation between its features and its SHAP values (r = 0.126). 

We originally hypothesized that this feature would play a bigger 

role in predicting students’ scores, considering that the practice of 

interleaving when struggling is generally considered a good 

learning practice [32, 38]. However, its low impact in our model is 

likely because we had so few instances of interleaving—only nine 

out of 7,673 instances. Most of these nine did lead to an increase in 

predicted score, but without more examples of the practice, we are 

unable to make any sound conclusions regarding its role. 

4.3 Limitations 
Our study suffers from limitations primarily related to the aligned-

quiz-question scores we calculated for each student-problem 

instance. For one, the score distribution was heavily skewed due to 

the abundance of almost perfect quiz scores. Additionally, while 

the PrairieLearn platform allowed us to use the course’s quizzes 

without requiring students to take an additional posttest, the scores 

did not take into account students’ prior knowledge and skills. This 

made it difficult to measure the impact of students’ productive vs. 

unproductive persistence directly.  

These factors likely led to our model’s limited predictive 

performance (R2 = 0.147 on the held-out test set). While we believe 

that our final model’s performance was sufficient for our purposes 

of interpreting the relationship between elements of persistence and 

learning outcomes, it should be possible to create a more accurate 

model without severely sacrificing interpretability. 

5. CONCLUSION 
The most impactful features were those related to solving the 

problem, rapid guessing, and taking a break. Those with the most 

straightforward linear effect were the number of submissions, total 

time, and (again) taking a break. All three of the latter had a strong 

negative correlation between their feature values and their impact 

on prediction. In other words, more attempts, taking a longer time, 

and taking a break are all correlated with lower scores on related 

quiz questions. Solving the problem—our most impactful feature—

had a moderate positive correlation, highlighting the positive nature 

of the relationship between successfully completing homework 

problems and score on subsequent related quiz questions. 

This all suggests that solving the problem and rapid guessing are 

important features for accurate prediction, while the number of 

submissions and total time are indicative of the differences between 

productive persistence and wheel spinning in a computer science 

context. Taking a break fits into both of these categories. 

Perhaps most important, we were able to identify features that are 

directly related to learning strategies. Our findings suggest that 

students should avoid rapidly submitting subsequent programming 

attempts without actively trying to address problems in their code 

(rapid guessing). Taking a break may also be unproductive 

behavior, though this finding may be an artifact of the specific 

context in which students were able to submit homework in this 

course, as well as the particular way in which we calculated this 

feature. As for interleaving, its predictive strength in our model was 

low, but its effects nevertheless suggest that a future investigation 

should study whether it can be an effective practice when struggling 

on a problem. 

In order to address the limitations of our study, we suggest that 

future research focus on devising a more robust measure of learning 

that takes into account students’ individual starting points. 

Additionally, for the CS context of this study, a valid measure of 

programming proficiency that considers the problem-solving 

process would be superior to the quiz scores we used as proxy. 
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