
Investigating Elements of Student Persistence in an
Introductory Computer Science Course

Juan D. Pinto
University of Illinois at
Urbana-Champaign

jdpinto2@illinois.edu

Yingbin Zhang
University of Illinois at
Urbana-Champaign

yingbin2@illinois.edu

Luc Paquette
University of Illinois at
Urbana-Champaign

lpaq@illinois.edu

Aysa Xuemo Fan
University of Illinois at
Urbana-Champaign

xuemof2@illinois.edu

ABSTRACT

We explore how different elements of student persistence on

computer programming problems may be related to learning

outcomes and inform us about which elements may distinguish

between productive and unproductive persistence. We collected

data from an introductory computer science course at a large

midwestern university in the U.S. hosted on an open-source,

problem-driven learning system. We defined a set of features

quantifying various aspect of persistence during problem solving

and used a predictive modeling approach to predict student scores

on subsequent and related quiz questions. We focused on careful

feature engineering and model interpretation to shed light on the

intricacies of both productive and unproductive persistence.

Feature importance was analyzed using SHapley Additive

exPlanations (SHAP) values. We found that the most impactful

features were persisting until solving the problem, rapid guessing,

and taking a break, while those with the strongest correlation

between their values and their impact on prediction were the

number of submissions, total time, and (again) taking a break. This

suggests that the former are important features for accurate

prediction, while the latter are indicative of the differences between

productive persistence and wheel spinning in a computer science

context.

Keywords

Student modeling, persistence, wheel spinning, predictive

modeling, behavior detection

1. INTRODUCTION
Research on student modeling has identified various behaviors and

patterns related to learning outcomes and student success. One

construct has both a history of research outside of Educational Data

Mining (EDM) and is receiving renewed attention in the EDM

community. Known by the diverse names of grit [8], perseverance

[25], academic tenacity [9], and persistence, studies have focused

on measuring the trait, identifying when students are exhibiting it,

and quantifying its effects on various aspects of student learning.

More traditional efforts on this front have focused on measuring

persistence using questionnaires and testing its effect based on

grades and test scores [8, 17, 41]. Efforts to identify persistence in

log data of game-based learning systems [7, 27, 34] or intelligent

tutoring systems (ITS) [15] have shown great promise. Many of

these efforts have specifically focused on improving persistence

detectors for on-the-fly student feedback systems or interventions.

One aspect of persistence that has gained interest in the EDM

community in particular is the distinction between productive and

unproductive persistence. Persistence is typically characterized by

a determination to stick with a problem for long durations despite

facing obstacles, and it has often been portrayed as a positive trait.

However, researchers have come to question this simplistic stance,

noting that there seem to be two related but opposing sides to

persistence. On one hand, persistence may produce productive

results when it leads to consistent, long-term effort [8] or when

students relish the opportunity to overcome challenges [9]. On the

other hand, students who are "stuck" may be better off going back

to learning more about the subject rather than continuing to spend

time working on a problem they don't yet fully understand [3]. In

such cases, the student’s persistence might be characterized as

unproductive.

Given the opposing academic outlook of this dichotomy,

understanding what differentiates productive from unproductive

persistence is of critical importance. The latter has been termed

wheel spinning in the literature and has been defined as "a student

who spends too much time struggling to learn a topic without

achieving mastery" [3]. Recent research has specifically focused on

creating and improving automatic detectors of wheel spinning in

ITSs [11, 15, 24, 39, 42] and game-based learning systems [27].

In the context of computer science education, [23] have suggested

that fostering grit can lead to higher retention among CS students.

Other research has identified a weak correlation between grit and

measures of academic success [17, 25, 41], especially when

focusing on one of the two main components of grit—perseverance

of effort—which most closely aligns with definitions of persistence

[35].

In this paper, we add to the existing literature by exploring how

different elements of persistence on computer programming

problems may contribute to learning outcomes. We defined a set of

features quantifying various aspects of persistence during problem

solving and used predictive modeling approaches to predict student

scores on subsequent and related quiz questions. We focus on

careful feature engineering and model interpretation to shed light

on the intricacies of both productive and unproductive persistence.

By investigating these constructs within a computer science course,

our study also aims to better understand their application in this

context.
Copyright © 2021 for this paper by its authors. Use permitted under

Creative Commons License Attribution 4.0 International (CC BY 4.0).

2. RELATED WORK

2.1 Modeling Productive Persistence vs.

Wheel Spinning
The EDM community’s interest in persistence was sparked by [3],

who found that students who struggle to master a skill within a

certain timeframe are unlikely to do so at all. Besides identifying

wheel spinning and describing how it differs from productive

persistence, the same study found a clear correlation between wheel

spinning and other negative behaviors such as gaming the system

and disengagement.

Subsequent studies have devised variations in criteria for

differentiating between productive persistence and wheel spinning

[42], with many models defining mastery based on the number of

correct submissions in a row and others relying heavily on the

stability of Bayesian knowledge tracing (BKT) student model

predictions [16]. Despite differences in operationalization,

however, predictive machine learning models have been found to

serve as successful wheel-spinning detectors. Some of the

algorithms that have been used include linear regression [3],

logistic regression [11, 42], decision trees [15, 27, 39], random

forest [27, 42], and neural networks [24]. Most of these studies

calculated productive persistence or wheel spinning labels based

solely on the data gathered rather than relying on human observers

or coders. Two notable exceptions are [24, 27].

The goal of the most recent studies has been to identify wheel

spinning in ITSs as early as possible. [42] compared different

criteria and feature sets and have shown that it is possible to make

predictions with acceptable accuracy as early as step four of a

problem. They were also surprised to find that a logistic regression

model trained on only one feature (“correct response percentage”)

resulted in prediction performance that was close to their best

models. Relying on hint requests, submission correctness, and time

per skill, [39] concluded that models can detect students who will

wheel spin after only three questions.

The studies mentioned thus far have focused almost exclusively on

ITSs, which are most commonly used to teach math. Detecting and

studying persistence on computer programming problems requires

first understanding how data from these tasks has been analyzed in

past studies.

2.2 Using Action Logs to Study Programming

Behaviors
There is growing interest in leveraging data analytic methods to

study students’ action logs produced during programming activities

[13], including to better understand the students’ programming

processes, behaviors and strategies. Log data have been used to

generate visualizations of student behaviors that can be manually

inspected to better understand their programming approach [5, 10],

explore how students progress through homework assignments [6,

30], understand the learning pathways of novice programmers [4]

and analyze problem-solving behavior in a debugging game [20].

Generally, two broad categories of features have been used: 1)

frequencies of behaviors and 2) similarity/distance between

programs. The first category provides aggregated information

related to the quantity of actions performed by the student. This

includes the number of blocks used in a Scratch program [10], how

often a program was compiled and how many characters it included

[5], the number of actions and logic primitives used [4], and the

number of lines added, deleted, and modified [6]. [20] leveraged

expert judgments to identify meaningful behaviors, such as massive

deletion and replacing loops with repetitive code.

Studies have also developed features to evaluate how similar or

different two computer programs are. [30] used a combination of

the differences in bag of words, abstract syntax tree (AST) edits and

similarity in calls to the application programing interface (API) to

identify similar program states. [6], in addition to using this same

method, considered the frequency of changes in a student’s

program and the magnitude of those changes.

As our goal was to focus on behaviors related to how students

approach solving a problem, rather than investigating the content

of the submitted solution, we used an approach in line with the first

category to investigate elements of student persistence in a series

of computer programming problems. This allowed us to focus

specifically on the productive and unproductive behaviors of

persistent students.

3. METHODS

3.1 Data Collection and Label Generation
We collected data from an introductory computer science course at

a large midwestern university in the U.S. hosted on PrairieLearn,

an open-source, web-based problem-driven learning system [40].

Throughout the semester, 733 students used PrairieLearn to submit

almost-daily programming homework problems, take weekly

quizzes, and complete cumulative exams. In addition, students

were free to practice past problems and questions as much as they

desired. As our work aims to investigate the relationship between

persistence during homework and subsequent assessment, we

filtered the data to focus on attempts submitted towards solving a

homework problem or a quiz question. After removing practice

submissions and other non-credit assignments, our resulting data

set consisted of 290,703 individual homework problem attempts

and 313,097 quiz question attempts.

All homework assignments were programming problems with

checkstyle, compiler, and problem-specific tests that students’ code

had to pass to receive full credit. Students had one day to

successfully complete each homework problem. They were

allowed to submit solution attempts as often as required until they

successfully passed all the tests. After each submission, the system

ran tests to check the correctness of the solution and provided

feedback indicating mistakes. First, the system tested whether the

solution had any checkstyle and compiler errors. If such error

existed, the system showed feedback about these errors and

stopped. If there were no checkstyle or compiler errors, the system

further used several problem-specific tests to examine whether the

solution fulfilled the requirement. For example, given some random

input, would the solution generate the correct output? If not, the

system would return feedback about the problem-specific test error.

Otherwise, the solution was regarded as correct.

We aggregated our dataset at the student-problem level using a

series of features specifically related to persistence. While

persistence can be studied at various grain sizes, we chose this level

due to our interest in how students tackle difficulties within a

particular programming problem. Similarly, we only kept instances

that demonstrated struggling, as defined in section 3.2.1, since

these were the cases that could elicit persistence from students.

Quizzes were conducted weekly as part of regular class activity to

assess learning and consisted of both multiple-choice questions and

programming tasks. Quizzes were made available at the end of the

week and were designed to provide early assessment related to the

content of the homework problems assigned earlier that week. We

aligned the content of each homework problem to corresponding

multiple-choice quiz questions to directly investigate the

relationship between persistence in specific homework problems

and outcome on related assessment questions. Once we had these

alignments, we calculated for each student-problem instance the

total number of points obtained on the relevant quiz questions and

the maximum possible points. Using these values, we then

calculated the point percentage as the indicator of learning. Only

quiz questions that students attempted were considered for these

calculations. After these changes and calculations, our aggregated

dataset consisted of 7,673 instances of student-problem pairs,

submitted by a total of 710 students.

The resulting distribution of the score outcome variable had a

strong negative skew, with most instances accumulated at higher

scores, as shown in Figure 1. This is because students often

managed to obtain a perfect score on their aligned quiz questions.

Students were typically given two chances to select the right

answer, the second time for half credit.

Figure 1. Distribution of score values

3.2 Feature Engineering
Given our goal to study how specific behaviors might be related to

persistence, our feature engineering efforts focused on developing

features based on an underlying rationale about their relationship to

productive or unproductive persistence. Following the Carnegie

Foundation for the Advancement of Teaching’s definition of

productive persistence—“tenacity plus the use of good strategies”

[18]—we sought to identify good learning strategies and habits

based on the available data. Other features were based on more

generalized applications of the aspects of unproductive persistence

that have been identified in the wheel-spinning literature. This

process resulted in a total of 12 base features. We also standardized

most of these at the problem level (by subtracting the problem’s

mean and dividing by the problem’s standard deviation) to create

an additional 10 features. The rest of this section describes each

feature and our rationale behind it.

3.2.1 Struggling threshold features
Whether the student went beyond a problem’s corresponding time

or attempt threshold.

We defined students as struggling if they worked on a programming

problem for a long time or if they submitted a high number of

solutions to a problem. We considered that students could only

show persistence in the context of problems for which they

struggled.

This operationalization of struggling depends on identifying both a

time and attempt threshold, each specifically calculated for that

homework problem. Thus, once we calculated the thresholds for

each problem, we created two binary struggling threshold features:

beyond time threshold and beyond attempt threshold. We only kept

instances of students that satisfied at least one of these two criteria.

We also created two numerical features that measured a student’s

deviation from each of these thresholds. Because the thresholds

were already calculated at the problem level, standardizing these

deviation features would result in perfectly collinear features, so we

did not standardize them.

For the time threshold, we used the minimum value between the

75th quantile of students’ total time on each problem and 15

minutes. We combined the 75th quantile and 15 minutes to

determine the time threshold based on several reasons. First, given

that the course is only an introductory CS course, it is reasonable

that one fourth of students struggled with difficult programming

problems. Second, the proportion of students who struggled with

unchallenging problems would be smaller. Using an absolute

threshold would be better for these cases. Third, we used 15

minutes as the absolute threshold because 57.56% of problems had

a 75th quantile of total time smaller than 15 minutes. It seems

reasonable to regard close to half of problems as unchallenging.

Given that the number of attempts is an important indicator of

persistence, many attempts on a problem might also be indicative

of struggling, even when the total time spent on the problem falls

under the time threshold. Analogous to deciding the time threshold,

we used the minimum value between the 75% quantile of the

number of attempts on a problem and 9 attempts to determine the

attempt threshold. If the 75th quantile of the number of attempts on

a problem was smaller than 9 attempts, the later became the attempt

threshold. We used 9 attempts as the absolute threshold because

56.06% of problems had a 75th quantile of the number of attempts

no more than 9 attempts. This number was close to 57.56%, the

proportion of problems with a 75th quantile of total time smaller

than 15 minutes.

3.2.2 Solved
Whether the student successfully solved the programming problem

before the deadline.

This is directly related to wheel spinning as defined by [11]:

"problem solving without making progress towards mastery."

While PrairieLearn is not suited for measuring mastery the way

[11] did with the Cognitive Algebra Tutor and ASSISTments ITSs

(three consecutive, correct responses within a specific skill),

persistence while struggling that does not lead to an eventual

correct solution can be considered a form of wheel spinning or

unproductive persistence. Based on this, we hypothesized that

solving a challenging problem (productive persistence) would lead

to a higher quiz-question score than not solving the problem (wheel

spinning).

3.2.3 Number of submissions
The count of how many times the student submitted an attempted

solution for the problem.

This is a typical measure used in the persistence literature [15, 39,

42]. Since submissions on PrairieLearn typically end when a

student successfully solves a problem, this feature is a count of the

number of failed attempts + 1. In essence, this is one way of

measuring the level of persistence demonstrated. We reasoned that

more unsuccessful attempts would indicate more wheel spinning,

resulting in lower quiz scores.

3.2.4 Total time on problem
The total amount of time (in seconds) spent solving the problem.

As with the number of submissions, the time that students spend on

a challenging problem might indicate the amount of persistence

being demonstrated. We again reasoned that more time (and thus

more wheel spinning) may be predictive of more struggling and

lower scores on the quiz questions.

Our platform only allowed us to measure the time between

submissions, so we had no way of knowing with certainty how

much time was spent working on a problem. If the time difference

between a student’s two consecutive submissions was beyond 15

minutes, we regarded this student as being away from this problem

during that interval (see the feature taking a break below for the

choice of 15 minutes as a threshold). In these cases, we replaced

this time difference with the student’s mean time difference

between other consecutive submissions on this problem so that we

could estimate the student’s total time on the problem more

accurately.

3.2.5 Taking a break
Whether the student spent time away from the problem after

passing one of the struggling thresholds.

We defined taking a break as a struggling student being away from

the problem at least once. When the time between two consecutive

submissions on the same problem went beyond 15 minutes, we

regarded the student as away from the task. As discussed above, 15

minutes might be sufficient for solving unchallenging problems if

students did not struggle. Moreover, 81.57% of pairs of consecutive

submissions had a time difference less than 15 minutes. This

proportion only increased slightly to 83.77% when increasing this

threshold from 15 minutes to 1 hour. Thus, it is reasonable to use

15 minutes as the threshold for being away from the problem. Note

that if a student attempted other homework problems between two

consecutive submissions on the same problem, we regarded this

student as interleaving rather than taking a break.

Our rationale for measuring break taking is based on the idea that a

wheel-spinning state may be overcome by time away from task.

Some of the cognitive benefits of breaks have been documented [1,

19, 26, 36] and seem to be especially impactful for intensive and

prolonged tasks. The term wheel spinning itself was coined in

reference to the imagery of a car spinning its wheels but not going

anywhere, suggesting that the indiscriminate tactic of subsequent

attempts may not always be productive. In their article defining this

new construct, [3] suggest devising ways to break up fruitless

attempts at solving problems. Our feature tries to capture students

who independently choose to break up their homework in this way.

3.2.6 Interleaving
Whether the student switches to a different problem for a time and

then comes back to continue attempting the original problem.

Interleaved practice, as opposed to blocked practice, refers to a

learning technique that mixes up the order of topics, lessons, or

problems presented. Studies have shown that this practice usually

improves learning outcomes [32, 38], though—to the best of our

knowledge—this has not been explored in a CS context. For the

purposes of our study, we measured interleaving as a student

attempting a problem without solving it, attempting a different

problem, and then returning to continue working on the original

problem. We reasoned that such a practice could potentially serve

to break up the monotony and potential frustration associated with

wheel spinning and thereby lead to better learning. We considered

this an alternative to taking a break and did not double count such

instances in the features.

3.2.7 Rapid guessing
Whether the student submitted at least three quick submissions in a

row.

Quick, consequent submissions may indicate guessing or uncritical

attempts to fix problems without much reflection. This behavior has

been associated with students trying to game the system [2, 28] and

with wheel spinning [3]. Given the nature of programming tasks as

opposed to attempts in an ITS, we defined a quick submission as a

gap between attempts of less than 15 seconds. If a student’s

submission stream to a problem contains three or more consecutive

quick submissions, we labeled this student as performing rapid

guessing on the problem. We hypothesized that rapid guessing

would be associated with a lower score on related quiz questions.

3.2.8 Time interval between consecutive submissions
The student’s mean and standard deviation of time intervals

between consecutive attempts on the problem.

Shorter time between submissions may indicate more unproductive

attempts to push through to an answer without stopping to

think/work carefully or take breaks [39]. This is also similar to the

common practice of cramming, as opposed to the more effective

practice of spaced repetition. [15] found both the mean and standard

deviation of time differences to be about equally as predictive of

wheel spinning. We nevertheless chose to include both features in

our initial model to test this claim. We did not count cases of break

taking (intervals longer than 15 minutes) towards these features.

Because of its association with wheel spinning, we hypothesized

that we would find a positive correlation between these features and

score.

3.3 Machine Learning and Interpretation
To test the importance of our various features, we created a random

forest model using a shuffled 70/30 validation/testing split grouped

by student with 5,396 and 2,277 instances respectively. We

conducted 500 iterations of Bayesian hyperparameter optimization

on the validation set using 10-fold cross validation grouped by

student. This hyperparameter tuning was set to optimize the R2

score.

We originally tested a wide array of models, including various

linear, tree-based, and ensemble algorithms, and we further tuned

some of the most promising ones. We found that variations of

gradient boosting models performed best. However, we chose to

focus on random forest for our feature interpretation for two

reasons: (1) the performance gained by using the best models over

random forest was negligible, and (2) random forest models have

been shown to be useful for predictions related to persistence in

other EDM research [27, 42].

Once we had constructed our final model, we re-trained it on the

entire dataset in preparation for feature interpretation. For the task

of interpreting feature importance, we analyzed SHapley Additive

exPlanations (SHAP) values. SHAP is a game-theoretic approach

that calculates the effect that each value in the feature matrix has

on that instance’s prediction, relative to the mean prediction [22].

That is, we can output a matrix with the same dimensions as the

features data set, each value serving as an explanation of that

feature’s effect on the prediction made for that particular instance.

These SHAP values are in the same unit as the target label—

percentage score in our case—further lending themselves for

interpretation. Though SHAP values are very resource-intensive to

fully and accurately calculate, the nature of tree-based models

makes it possible to optimize the process significantly [21].

It is important to note that the mean of the SHAP values for any

feature will always be zero. This is because SHAP values are

calculated as the difference of each feature-instance from the mean

predicted score. However, by finding the mean absolute value of

the SHAP values for each feature, we can identify which features

have the strongest broad, average impact on prediction.

While mean Gini impurity has been used to interpret features in the

persistence literature [42], and permutation feature importance is

commonly used as well, numerous studies have identified potential

issues with these approaches that can lead to misleading

interpretations [12]. This is especially true when using highly

correlated features [37], which is the case with our data.

Furthermore, SHAP allows for investigation into the interplay

between features beyond what these other methods can do.

We conducted all our work using open-source Python packages

built on top of Scikit-learn [29]. We tested and tuned a variety of

models using PyCaret [31], performed Bayesian optimization [14]

with scikit-optimize [33], and investigated feature importance

using SHAP [22].

4. RESULTS AND DISCUSSION

4.1 Model Results and Preliminary Analysis
Our tuned random forest model attained an average cross-validated

R2 of 0.133 and an average RMSE of 0.129 on the validation set.

On the held-out testing set, the resulting R2 was 0.145 and the

RMSE was 0.130. Our persistence features accounted for roughly

14% of the variation in related quiz scores.

A preliminary analysis of our model uncovered certain important

patterns. For one, our least impactful features were all binary

measures—such as whether interleaving, rapid guessing, or break-

taking were observed—whereas our top features were the

standardized measures of those binary features. Figure 2 shows the

entire set of feature rankings based on mean absolute SHAP values.

Figure 2. Preliminary model feature rankings

A detailed exploration of these features revealed what appears to be

an opposing impact between some binary features and their

standardized counterparts. For example, the feature solved has a

negative correlation between its values and its SHAP values

(r = -0.217, p < 0.0001), whereas its standardized version,

solved_std, has a positive correlation (r = 0.33, p < 0.0001).

Measuring this correlation between feature and SHAP values

allows us to better understand how the model is using the feature.

Higher correlation, and thus a stronger linear relationship, suggests

a more straight-forward interpretation for the feature’s role in the

model. While the impact of solved is very small in the overall model

(ranked 17th, mean absolute SHAP = 0.00003), solved_std is our

top feature in terms of overall impact on the predicted score (mean

absolute SHAP = 0.02129). We found this same inverted

relationship between many other impactful standardized features

and their original, binary, far less impactful counterparts.

Because we standardized features at the problem level, the

correlation between each unstandardized and corresponding

standardized feature is never quite perfect, but some do come close.

Random forest models typically do not suffer from collinear

features the way more traditional statistical regression methods do.

This is largely because of the way features are randomly sampled

for each tree. Even when both collinear features are part of the

feature subset, a decision tree will typically ignore one in favor of

the other. We suspect that much of our model’s preference for the

standardized features over unstandardized ones is the added

problem-level information they contain, which could be interpreted

as information regarding the difficulty of the problem.

However, while the predictive power of a random forest is not

affected by collinear features, model interpretability suffers, as we

found through our preliminary analysis. Given our goal of better

understanding the different aspects of persistence and their

relationships, we decided to remove the original non-standardized

features. We also removed time_threshold_deviation and

attempt_threshold_deviation, which were very highly correlated

with total_time_std and num_submissions_std respectively. We

then re-trained and re-tested our model.

After removing these features, we found that our model’s average

cross-validated R2 on the validation set increased slightly, from

0.133 to 0.134, while RMSE remained constant. On the held-out

testing set, its R2 also increased, from 0.145 to 0.147, while RMSE

remained constant. We then re-trained our model on the entire

dataset in preparation for our in-depth feature analysis.

4.2 Feature Importance and Interpretation

4.2.1 Feature rankings
Our analysis using SHAP values found that the solved_std and

rapid_guessing_std features had the biggest effect, accounting for

an average impact of 0.0215 and 0.0172 on the predicted score

respectively. The third most important feature, taking_break_std,

had an average impact less than half as strong at 0.0076. Together,

these three features account for 75% of all features’ total impact on

the predicted score. Figure 3 shows the feature rankings based on

mean absolute SHAP values, while Table 1 allows for comparison

with other methods such as Gini-impurity-based importance and

permutation importance. Rankings based on these three different

approaches yielded almost identical results with only minor

variations, strengthening the reliability of our findings.

Figure 3. Final model feature rankings

Besides ranking the features by impact on the predicted score,

SHAP values allow us to explore the nature of that impact more

deeply, as well as the interactions between features. Figure 4 is a

beeswarm plot of SHAP values by feature with color indicating the

value of each individual instance.

Figure 4. SHAP beeswarm plot

To further aid our interpretation, we also explored which features

had the highest absolute correlation between their values and their

corresponding SHAP values. In essence, this correlation is a

measure of just how linear each feature’s effect is on the predicted

score. We calculated Pearson’s r for all features (see Table 1) and

found that all p values were below 0.0001, except for sd_time_diff.

Throughout this analysis, we point out when a feature’s correlation

is indicative of a linear relationship.

4.2.2 Solved
We can see (Figure 4) that the bulk of solved_std is composed of

high values (red color), indicating that most students managed to

solve most homework problems. The long positive skew suggests

that small, positive variations in this feature could potentially push

the predicted quiz score up by about 0.1. The few lower values in

this feature (blue color) are found on the left side of the plot,

suggesting that not solving the problem tended to pull the predicted

score down. Indeed, we found a moderate positive linear

relationship between solved_std and its SHAP values (r = 0.34),

further confirming our initial analysis.

This confirms our hypothesis. It suggests that solving a challenging

problem (productive persistence) may be related to a better

understanding of the underlying concepts, whereas not solving the

problem (wheel spinning) suggests a lack of understanding.

4.2.3 Rapid guessing
Our models’ second most impactful feature, rapid_guessing_std, is

in many ways the opposite. Most students did not engage in rapid

guessing. Those who did, particularly on homework problems

where few others did—identified by high rapid_guessing_std, or

red color in the beeswarm plot (Figure 4)—were more generally

affected negatively in their predicted score based on this feature.

This effect can more clearly be seen when plotting the SHAP values

for the feature against the values of the feature itself (Figure 5).

This view allows us to get a better sense of how most instances with

a higher rapid_guessing_std value impact the predicted score

negatively. This aligns with our hypothesis: rapid guessing, with its

potential implications of wheel spinning [3] and gaming the system

[2, 28], is indicative of lower learning outcomes.

Figure 5. Correlation between rapid_guessing_std and its

SHAP values, with solved_std as color

By adding the values of our top impactful feature, solved_std, as

the color of the plot illustrated in Figure 5, we can also see an

interesting interaction between the two features. It appears that the

impact of the high rapid_guessing_std values is at least partly

dependent on solved_std—instances where the student failed to

solve the problem (in blue) were less negatively impacted by

rapid_guessing_std (as indicated by their mostly positive SHAP

Table 1. Feature impact measures (r is correlation between feature values and corresponding SHAP values)

feature mean absolute SHAP Gini importance permutation importance r p

solved_std 0.02149 0.26554 0.17083 0.340 < 0.0001

rapid_guessing_std 0.01724 0.20987 0.17059 -0.076 < 0.0001

taking_break_std 0.00758 0.10511 0.04310 -0.608 < 0.0001

beyond_time_threshold_std 0.00373 0.07514 0.02790 -0.349 < 0.0001

beyond_attempt_threshold_std 0.00369 0.07028 0.02760 -0.080 < 0.0001

num_submissions_std 0.00326 0.07751 0.03082 -0.833 < 0.0001

total_time_std 0.00257 0.07871 0.02550 -0.773 < 0.0001

avg_time_diff_std 0.00099 0.05398 0.01558 -0.158 < 0.0001

sd_time_diff_std 0.00098 0.06166 0.01856 0.008 > 0.5

interleaving_std 0.00017 0.00219 0.00028 0.126 < 0.0001

values). One explanation may be that students who rely on rapid

guessing and manage to solve the problem may come away with

more misguided confidence in their mastery of the material than

those who fail to solve the problem and are thus less likely to

consider reviewing before a quiz. However, this hypothesis was not

investigated further.

4.2.4 Taking a break
Our model’s third most impactful feature, taking_break_std, has a

very clear pattern that is easily observable in Figure 4. Lower

feature values generally lead to a positive impact on predicted

score, whereas taking a break is more likely to have a negative

impact on score. We found a negative linear relationship between

taking_break_std and its SHAP value (Figure 6), with Pearson’s r

of -0.608. The distribution of SHAP values for this feature indicates

a potential negative impact about three times as large as the positive

one.

Figure 6. Correlation between taking_break_std and its SHAP

values

This result is the opposite of what we hypothesized. Since taking

breaks during a difficult task has been shown to improve cognition

[36], we hypothesized that students who took a break while

struggling would ultimately be more productive. We specifically

marked a student as taking a break only if there was a large gap

between submissions (15 minutes) after they had passed one of the

two struggling thresholds.

One possible explanation is that students who took a break did, in

fact, perform better than they would have otherwise. Since our

method does not directly test causation, our model may be using

this feature as a proxy for students who struggled more than others.

Another possibility is that this feature is not solely capturing

intentional break-taking, but also interruptions to students’ work,

which may serve as distractions—certainly not an ideal learning

situation. We did not calculate how many times students took a

break, only if there was at least one 15-minute gap between

submissions when struggling. Finally, because homework

problems were due at midnight on the day they became available,

students may simply not have had sufficient time for effective break

taking. Without additional information about learning context or

calculating additional features, we have no way of knowing which

of these explanations, if any, are the most likely.

4.2.5 Struggling threshold features
For beyond_time_threshold_std, we can see in Figure 4 that lower

values generally lead to increases in the predicted score and vice

versa. This is indicative of the underlying attribute this feature

attempts to capture—going beyond the time threshold yields

smaller (generally negative) SHAP values, whereas not going

beyond the time threshold yields larger (generally positive) values,

the exact value being heavily affected by how much other students

crossed the threshold on the same problem. For students who take

longer than the norm, this generally has a negative effect on their

score. The relationship here is moderately linear with an r of -0.349.

The fifth top feature that we identified,

beyond_attempt_threshold_std, does not have such a clear pattern.

The SHAP values seem to be widely spread irrespective of the

feature’s values. The feature’s distribution is bimodal, as is the case

with most of the features that standardize a binary variable, and we

did find a small distinction in the SHAP values between the two

modes (Figure 7). While the mean for each mode is essentially zero,

higher instances of beyond_attempt_threshold_std, which

correspond with student-problem instances that went beyond that

problem’s attempt threshold, have a moderate negative correlation

with their SHAP values (r = -0.409, p < 0.0001) and lower

instances, on the other hand, have a positive correlation about

equally as strong (r = 0.382, p < 0.0001). This suggests that the

impact of this feature on predicted score is highly dependent on

how much one’s status on the underlying binary variable

(beyond_attempt_threshold) varies from the norm for that given

homework problem.

Figure 7. Correlation between beyond_attempt_threshold_std

and its SHAP values (with annotations)

4.2.6 Number of submissions
We found that num_submissions_std, our model’s sixth top feature

in terms of impact, has the strongest correlation between its feature

values and SHAP values (r = -0.833). This fits with our hypothesis.

The more attempts that students submit, the more likely they are to

be struggling, and the less likely they are to perform well when

tested on the same skills during their weekly quiz.

4.2.7 Time features
We found that our three time-related features—not including

beyond_time_threshold_std, which is of a very different nature

since its non-standardized version is a binary feature—had some of

the weakest predictive power in our model. total_time_std had a

still moderate mean absolute SHAP at 0.00257 and a very strong

correlation between its feature and SHAP values with r = -0.773.

avg_time_diff_std and sd_time_diff_std, by comparison, had a

much lower mean absolute SHAP (respectively 0.00099 and

0.00098) and no correlation.

The strong, negative correlation between total_time_std and its

SHAP values mean that the model is interpreting longer time on a

problem as being related to lower learning outcomes, or at the very

least as a student struggling enough with a problem to lead to a

lower score on the weekly quiz. This latter possibility is in line with

our hypothesis and with what we found for

beyond_time_threshold_std. Interestingly, this pattern is far more

pronounced for instances that went beyond the time threshold (red

points in Figure 8), whereas the relationship is seemingly reversed

for cases where students did not go beyond the time threshold

(blue/purple points in Figure 8).

Figure 8. Correlation between total_time_std and its SHAP

values, with beyond_time_threshold_std as color

As for the two features that specifically look at time between

submissions (avg_time_diff_std and sd_time_diff_std), their

weakness both in predictive impact and correlation with SHAP

values suggest at face value that this factor has little value at

predicting learning success (or lack thereof) when students struggle

with a problem. These features’ impact may also have been affected

by the high correlation between them (r = 0.76). Similar

information may have also been captured by a combination of

beyond_time_threshold_std and beyond_attempt_threshold_std.

4.2.8 Interleaving
Finally, our model’s least impactful feature, interleaving_std, had

by far the lowest mean absolute SHAP value (0.00017) and a low

correlation between its features and its SHAP values (r = 0.126).

We originally hypothesized that this feature would play a bigger

role in predicting students’ scores, considering that the practice of

interleaving when struggling is generally considered a good

learning practice [32, 38]. However, its low impact in our model is

likely because we had so few instances of interleaving—only nine

out of 7,673 instances. Most of these nine did lead to an increase in

predicted score, but without more examples of the practice, we are

unable to make any sound conclusions regarding its role.

4.3 Limitations
Our study suffers from limitations primarily related to the aligned-

quiz-question scores we calculated for each student-problem

instance. For one, the score distribution was heavily skewed due to

the abundance of almost perfect quiz scores. Additionally, while

the PrairieLearn platform allowed us to use the course’s quizzes

without requiring students to take an additional posttest, the scores

did not take into account students’ prior knowledge and skills. This

made it difficult to measure the impact of students’ productive vs.

unproductive persistence directly.

These factors likely led to our model’s limited predictive

performance (R2 = 0.147 on the held-out test set). While we believe

that our final model’s performance was sufficient for our purposes

of interpreting the relationship between elements of persistence and

learning outcomes, it should be possible to create a more accurate

model without severely sacrificing interpretability.

5. CONCLUSION
The most impactful features were those related to solving the

problem, rapid guessing, and taking a break. Those with the most

straightforward linear effect were the number of submissions, total

time, and (again) taking a break. All three of the latter had a strong

negative correlation between their feature values and their impact

on prediction. In other words, more attempts, taking a longer time,

and taking a break are all correlated with lower scores on related

quiz questions. Solving the problem—our most impactful feature—

had a moderate positive correlation, highlighting the positive nature

of the relationship between successfully completing homework

problems and score on subsequent related quiz questions.

This all suggests that solving the problem and rapid guessing are

important features for accurate prediction, while the number of

submissions and total time are indicative of the differences between

productive persistence and wheel spinning in a computer science

context. Taking a break fits into both of these categories.

Perhaps most important, we were able to identify features that are

directly related to learning strategies. Our findings suggest that

students should avoid rapidly submitting subsequent programming

attempts without actively trying to address problems in their code

(rapid guessing). Taking a break may also be unproductive

behavior, though this finding may be an artifact of the specific

context in which students were able to submit homework in this

course, as well as the particular way in which we calculated this

feature. As for interleaving, its predictive strength in our model was

low, but its effects nevertheless suggest that a future investigation

should study whether it can be an effective practice when struggling

on a problem.

In order to address the limitations of our study, we suggest that

future research focus on devising a more robust measure of learning

that takes into account students’ individual starting points.

Additionally, for the CS context of this study, a valid measure of

programming proficiency that considers the problem-solving

process would be superior to the quiz scores we used as proxy.

6. ACKNOWLEDGMENTS
We would like to acknowledge NSF grant #DRL-1942962 for

making this work possible.

7. REFERENCES
[1] Ariga, A. and Lleras, A. 2011. Brief and rare mental “breaks”

keep you focused: Deactivation and reactivation of task

goals preempt vigilance decrements. Cognition. 118, 3

(Mar. 2011), 439–443. DOI:https://doi.org/10/b8qg78.

[2] Baker, R.S., Corbett, A.T., Koedinger, K.R. and Wagner, A.Z.

2004. Off-task behavior in the cognitive tutor classroom:

When students “game the system.” CHI ’04: Proceedings of

the SIGCHI Conference on Human Factors in Computing

Systems (2004), 8.

[3] Beck, J.E. and Gong, Y. 2013. Wheel-spinning: Students who

fail to master a skill. Artificial Intelligence in Education

(Berlin, Heidelberg, 2013), 431–440.

[4] Berland, M., Martin, T., Benton, T., Petrick Smith, C. and

Davis, D. 2013. Using learning analytics to understand the

learning pathways of novice programmers. Journal of the

Learning Sciences. 22, 4 (Oct. 2013), 564–599.

DOI:https://doi.org/10/gg7fkh.

[5] Blikstein, P. 2011. Using learning analytics to assess students’

behavior in open-ended programming tasks. Proceedings of

the 1st International Conference on Learning Analytics and

Knowledge (Banff, Alberta, Canada, Feb. 2011), 110–116.

[6] Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S.

and Koller, D. 2014. Programming pluralism: Using

learning analytics to detect patterns in the learning of

computer programming. Journal of the Learning Sciences.

23, 4 (Oct. 2014), 561–599.

DOI:https://doi.org/10.1080/10508406.2014.954750.

[7] DiCerbo, K.E. 2014. Game-based assessment of persistence.

Journal of Educational Technology & Society. 17, 1 (2014),

17–28.

[8] Duckworth, A.L., Peterson, C., Matthews, M.D. and Kelly,

D.R. 2007. Grit: Perseverance and passion for long-term

goals. Journal of Personality and Social Psychology. 92, 6

(2007), 1087–1101. DOI:https://doi.org/10.1037/0022-

3514.92.6.1087.

[9] Dweck, C.S., Walton, G.M. and Cohen, G.L. 2014. Academic

tenacity: Mindsets and skills that promote long-term

learning. Bill & Melinda Gates Foundation.

[10] Fields, D.A., Quirke, L., Amely, J. and Maughan, J. 2016.

Combining big data and thick data analyses for

understanding youth learning trajectories in a summer

coding camp. Proceedings of the 47th ACM Technical

Symposium on Computing Science Education (New York,

NY, USA, Feb. 2016), 150–155.

[11] Gong, Y. and Beck, J.E. 2015. Towards detecting wheel-

spinning: Future failure in mastery learning. Proceedings of

the Second (2015) ACM Conference on Learning @ Scale

(Vancouver BC Canada, Mar. 2015), 67–74.

[12] Hooker, G. and Mentch, L. 2019. Please stop permuting

features: An explanation and alternatives. preprint

arXiv:1905.03151. (May 2019).

[13] Ihantola, P. et al. 2015. Educational data mining and learning

analytics in programming: Literature review and case

studies. Proceedings of the 2015 ITiCSE on Working Group

Reports (Vilnius Lithuania, Jul. 2015), 41–63.

[14] Joy, T.T., Rana, S., Gupta, S. and Venkatesh, S. 2016.

Hyperparameter tuning for big data using Bayesian

optimisation. 2016 23rd International Conference on

Pattern Recognition (ICPR) (Dec. 2016), 2574–2579.

[15] Kai, S., Almeda, M.V., Baker, R.S., Heffernan, C. and

Heffernan, N. 2018. Decision tree modeling of wheel-

spinning and productive persistence in skill builders. JEDM

| Journal of Educational Data Mining. 10, 1 (Jun. 2018), 36–

71. DOI:https://doi.org/10.5281/zenodo.3344810.

[16] Käser, T., Klingler, S. and Gross, M. 2016. When to stop?

Towards universal instructional policies. Proceedings of the

Sixth International Conference on Learning Analytics &

Knowledge - LAK ’16 (Edinburgh, United Kingdom, 2016),

289–298.

[17] Kench, D., Hazelhurst, S. and Otulaja, F. 2016. Grit and

growth mindset among high school students in a computer

programming project: A mixed methods study. ICT

Education (Cham, 2016), 187–194.

[18] Krumm, A.E., Beattie, R., Takahashi, S., D’Angelo, C., Feng,

M. and Cheng, B. 2016. Practical measurement and

productive persistence: Strategies for using digital learning

system data to drive improvement. Journal of Learning

Analytics. 3, 2 (Sep. 2016), 116–138.

DOI:https://doi.org/10/ggxwxt.

[19] Kühnel, J., Zacher, H., Bloom, J. de and Bledow, R. 2017.

Take a break! Benefits of sleep and short breaks for daily

work engagement. European Journal of Work and

Organizational Psychology. 26, 4 (Jul. 2017), 481–491.

DOI:https://doi.org/10/gfzk8b.

[20] Liu, Z., Zhi, R., Hicks, A. and Barnes, T. 2017. Understanding

problem solving behavior of 6–8 graders in a debugging

game. Computer Science Education. 27, 1 (Jan. 2017), 1–

29. DOI:https://doi.org/10/gftxxk.

[21] Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin,

J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N. and Lee,

S.-I. 2020. From local explanations to global understanding

with explainable AI for trees. Nature Machine Intelligence.

2, 1 (Jan. 2020), 56–67. DOI:https://doi.org/10/ggjtp4.

[22] Lundberg, S.M. and Lee, S.-I. 2017. A unified approach to

interpreting model predictions. Advances in Neural

Information Processing Systems. 30, (2017).

[23] Mahatanankoon, P. and Sikolia, D.W. 2017. Intention to

remain in a computing program: Exploring the role of

passion and grit. Twenty-third Americas Conference on

Information Systems. (2017).

[24] Matsuda, N., Chandrasekaran, S. and Stamper, J. 2016. How

quickly can wheel spinning be detected? Proceedings of The

9th International Conference on Educational Data Mining

(EDM 2016) (2016), 607–608.

[25] McDermott, R., Daniels, M. and Cajander, Å. 2015.

Perseverance measures and attainment in first year

computing science students. Proceedings of the 2015 ACM

Conference on Innovation and Technology in Computer

Science Education (Vilnius, Lithuania, Jun. 2015), 302–307.

[26] McGinley, L. 2011. Test performance and study breaks. Fort

Hays State University.

[27] Owen, V.E., Roy, M.-H., Thai, K.P., Burnett, V., Jacobs, D.,

Keylor, E. and Baker, R.S. 2019. Detecting wheel-spinning

and productive persistence in educational games.

Proceedings of The 12th International Conference on

Educational Data Mining (EDM 2019) (Jul. 2019), 378–

383.

[28] Paquette, L., de Carvalho, A.M.J.A. and Baker, R.S. 2014.

Towards Understanding Expert Coding of Student

Disengagement in Online Learning. Proceedings of the 36th

Annual Cognitive Science Conference (2014), 1126–1131.

[29] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,

R., Dubourg, V., Vanderplas, J., Passos, A. and Cournapeau,

D. 2011. Scikit-learn: Machine learning in Python. Journal

of Machine Learning Research. 12, (2011), 2825–2830.

[30] Piech, C., Sahami, M., Koller, D., Cooper, S. and Blikstein, P.

2012. Modeling how students learn to program. Proceedings

of the 43rd ACM technical symposium on Computer Science

Education (New York, NY, USA, Feb. 2012), 153–160.

[31] PyCaret: An open source, low-code machine learning library

in Python: 2020. https://www.pycaret.org.

[32] Rohrer, D., Dedrick, R.F. and Stershic, S. 2015. Interleaved

practice improves mathematics learning. Journal of

Educational Psychology. 107, 3 (2015), 900–908.

DOI:https://doi.org/10/gf7dfp.

[33] Scikit-optimize: Sequential model-based optimization in

Python: 2020. https://scikit-optimize.github.io/.

[34] Shute, V.J., D’Mello, S., Baker, R., Cho, K., Bosch, N.,

Ocumpaugh, J., Ventura, M. and Almeda, V. 2015.

Modeling how incoming knowledge, persistence, affective

states, and in-game progress influence student learning from

an educational game. Computers & Education. 86, (Aug.

2015), 224–235.

DOI:https://doi.org/10.1016/j.compedu.2015.08.001.

[35] Sigurdson, N. and Petersen, A. 2018. An exploration of grit in

a CS1 context. Proceedings of the 18th Koli Calling

International Conference on Computing Education

Research (Koli, Finland, Nov. 2018).

[36] Steinborn, M.B. and Huestegge, L. 2016. A walk down the

lane gives wings to your brain: Restorative benefits of rest

breaks on cognition and self-control. Applied Cognitive

Psychology. 30, 5 (2016), 795–805.

DOI:https://doi.org/10/ghcrj3.

[37] Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. and

Zeileis, A. 2008. Conditional variable importance for

random forests. BMC Bioinformatics. 9, 1 (Dec. 2008).

DOI:https://doi.org/10/d7p3rw.

[38] Taylor, K. and Rohrer, D. 2010. The effects of interleaved

practice. Applied Cognitive Psychology. 24, 6 (2010), 837–

848. DOI:https://doi.org/10/fkm7mp.

[39] Wang, Y., Kai, S. and Baker, R.S. 2020. Early detection of

wheel-spinning in ASSISTments. Artificial Intelligence in

Education. I.I. Bittencourt, M. Cukurova, K. Muldner, R.

Luckin, and E. Millán, eds. Springer International

Publishing. 574–585.

[40] West, M., Herman, G. and Zilles, C. 2015. PrairieLearn:

Mastery-based online problem solving with adaptive

scoring and recommendations driven by machine learning.

2015 ASEE Annual Conference and Exposition Proceedings

(Seattle, Washington, Jun. 2015), 26.1238.1-26.1238.14.

[41] Wolf, J.R. and Jia, R. 2015. The role of grit in predicting

student performance in introductory programming courses:

An exploratory study. SAIS 2015 Proceedings. 21, (2015).

[42] Zhang, C., Huang, Y., Wang, J., Lu, D., Fang, W., Fancsali,

S., Holstein, K. and Aleven, V. 2019. Early detection of

wheel spinning: Comparison across tutors, models, features,

and operationalizations. Proceedings of The 12th

International Conference on Educational Data Mining

(EDM 2019). (2019), 468–473.

	1. INTRODUCTION
	2. RELATED WORK
	2.1 Modeling Productive Persistence vs. Wheel Spinning
	2.2 Using Action Logs to Study Programming Behaviors

	3. METHODS
	3.1 Data Collection and Label Generation
	3.2 Feature Engineering
	3.2.1 Struggling threshold features
	3.2.2 Solved
	3.2.3 Number of submissions
	3.2.4 Total time on problem
	3.2.5 Taking a break
	3.2.6 Interleaving
	3.2.7 Rapid guessing
	3.2.8 Time interval between consecutive submissions

	3.3 Machine Learning and Interpretation

	4. RESULTS AND DISCUSSION
	4.1 Model Results and Preliminary Analysis
	4.2 Feature Importance and Interpretation
	4.2.1 Feature rankings
	4.2.2 Solved
	4.2.3 Rapid guessing
	4.2.4 Taking a break
	4.2.5 Struggling threshold features
	4.2.6 Number of submissions
	4.2.7 Time features
	4.2.8 Interleaving

	4.3 Limitations

	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

