
Clickstream Data from a Formal Languages eTextbook∗

Mostafa Mohammed, and Clifford A. Shaffer
Virginia Tech, Blacksburg VA, USA
{profmdn, shaffer}@vt.edu

ABSTRACT
When students interact with an eTextbook, it typically logs
their interactions while engaged in activities like watching a
visualization, attempting to solve an exercise, or refreshing
the page. These event logs allow instructors and researchers
to evaluate students’ engagement level and approaches to us-
ing the artifacts. We predict that the way students use the
book and the artifacts affects their performance on the ex-
ercises, their learning gains, and their performance in other
aspects of the course.

In this paper, we describe a data set gathered from a com-
plete semester course on Formal Languages. This includes
all student interactions with the Formal Languages eText-
book. The book contains a set of auto-graded exercises and
visualizations about Formal Languages course contents in
the form of slideshows.

Keywords
OpenDSA, Formal Languages, auto-graded exercises, Inter-
actions logs

1. INTRODUCTION
Formal Languages course is a theory course that contains a
number of proofs and on-paper assignments. Formal Lan-
guages courses face a few challenges. They are often pre-
sented as fairly abstract and highly mathematical. This has
the benefit of making students practice useful skills like proof
writing, but might make it less appealing to students more
used to the hands-on style of the typical CS programming
course. A typical FLA class presents several models of com-
puting (deterministic and non-deterministic finite state ma-
chines, regular expressions, push-down automata, context-
free languages, Turing machines), with many proofs about

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.

Copyright ©2021 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0)

their relationships and limitations. There are many algo-
rithms associated with each model that students must learn
to apply. Many instructors have their students use simu-
lators to support this process, such as the state-of-the-art
simulator Java Formal Languages and Automata Package
(JFLAP) [7, 2]. JFLAP simulates most of the models used
in Formal Languages courses, so it helps students by allow-
ing them to watch different models, apply different algo-
rithms on these models, or test these models with different
input strings.

To increase student understanding and interaction with the
course materials we implemented an eTextbook using the
OpenDSA system. The OpenDSA project [1] is concerned
with building complete eTextbooks for different topics in
computer science like Data Structures and Algorithms, Com-
putational Thinking, or Formal Languages. These eText-
books are enhanced with various embedded artifacts such
as visualizations, exercises with automated assessment, and
slideshows to improve understanding. OpenDSA allows in-
structors to create instances of complete interactive eText-
books that integrate interactive artifacts with the textual
content. OpenDSA contains slideshows produced using the
JSAV (JavaScript Algorithm Visualization) framework [3] to
support various topics in undergraduate courses.

We used our eTextbook in a Formal Languages class of 60
students for an entire semester. We collected complete in-
teraction log data detailing use with the book. The data in-
cludes detailed students interaction with various slideshows,
and interactive exercises. The data set is a unique data
set for the researchers where it includes senor students in-
teractions with sophisticated book contents. Students deal
with different exercises that ask students to apply different
algorithms (i.e. Convert an NFA to DFA, or Minimize a
DFA), build complex models (i.e. DFA, NFA, PDA, and
TM), or write different grammars for languages. We are
making this data-set available to researchers via DataShop.
So researchers can get a complete data-set on senior-level
students accessing a theory eTextbook course. This is dif-
ferent that usual data sets that contains data about students
interactions with programming courses.

2. OPENFLAP
JFLAP is used extensively in FLA courses to help students
visualize and observe the behavior of models and associated
algorithms [8]. However, JFLAP has three disadvantages
from the point of view of integrating material into an eText-



book. First, it was written in Java and is a stand-alone
application that runs on the student’s machine. This does
not allow it to easily tie to online tools like OpenDSA, or
to an LMS [4, 6]. Second, JFLAP does not have any mech-
anism for auto-grading exercises. Students can use JFLAP
to help solve many typical homework problems, such as cre-
ating a machine to recognize a given language. But they get
little feedback from JFLAP about whether their answer is
correct. Instead, they must wait until the homework is hand
graded by instructional staff. In contrast, we have reached
the state where many programming assignments can be done
with immediate feedback from auto-graders, largely based
on testing the program against unit tests.

These drawbacks inspired us to develop an open-access, web-
based version of JFLAP with enhanced support for auto-
graded exercises. We have largely re-implemented JFLAP
functionality within the OpenDSA framework. We refer
to it as OpenFLAP. OpenFLAP is implemented using the
JSAV library. OpenFLAP also allows us to create exercises,
auto-assess them, and report the result to an LMS through
OpenDSA’s standard framework [5].

3. OPENFLAP EXERCISES
OpenFLAP allows us to create two types of exercises.

• Auto-Graded exercises Auto-graded exercises ask stu-
dents to build different models, i.e., Deterministic Fi-
nite Automata (DFA) or writing a Context-Free gram-
mar. These exercises are similar to programming ex-
ercises. To test students’ solutions, instructors can as-
sign some test cases. That can be used to test the
correctness of students model/grammar.

• Proficiency exercises Proficiency exercises ask students
to apply an algorithm to a given model like convert an
NFA to a DFA. OpenFLAP allows instructors to cre-
ate proficiency exercises where students need to apply
algorithm steps on a given model. OpenFLAP checks
the correctness of every student step and shows a mes-
sage to the student to prompt them to retry the incor-
rect step before moving forward to the next steps

4. STUDENTS INTERACTION DATA-SET
When students work with our eTextbook, the OpenDSA
system collects data about students interactions with the
book components. The book contains several slideshows,
exercises, khan-academy exercises, and traditional text with
some images. Students need to answer all exercises to earn
credit and they can freely skip looking at the slideshows or
read the text. Our Formal Languages eTextbook includes:

• Prose and images. Traditional text about the algo-
rithms and proofs for different Formal Languages mod-
els. We added some images that can help to under-
stand the text.

• Slideshows A series of slides is often used to describe a
topic to students. Slideshows include four buttons that
allow students to navigate in the slide show. These
buttons are a) next slide, b) previous slide, c) first
slide, and d) last slide. Figure 1 shows an example for
NFA to DFA slideshow.

Figure 1: Slideshow example for NFA to DFA algorithm.

Figure 2: Auto-graded exercises to create a DFA.

• Auto-graded exercises and Proficiency exercises. A
large number of exercises are available, related to build-
ing various example machines. Exercises are included
that require students to build Deterministic and Non-
Deterministic Finite Automata, Push Down Automata,
or Turning Machines. Some exercises are about writ-
ing Grammars for a given language, or converting a
model to another model. All exercises require students
to score 100% correctness to get the credit for the ex-
ercise. Students can repeat the exercise as necessary
to achieve credit. Figures 2 and 3 shows examples for
Auto-graded exercises and proficiency exercises.

• Multiple Choice, T/F, Fill-in-the-blank. OpenDSA in-
cludes many questions in standard simple question for-
mats, implemented using the Khan Academy Exercises
Framework. Figure 4 shows an example for a Khan
Academy exercise.

Every primitive user interaction (button clicks, page loads,
window focus and blur events) is captured and stored in
the database. Table 1 lists specific events from the data set
along with their meaning.

5. DATA FORMAT
The data comes in the form of a CSV file with 262205 rows,
where each row is an event that is made by a student. Each
event row includes the interaction ID, user ID, event name,
event description, event time, browser name, Operating Sys-
tem name, Device used, and chapter id.



Figure 3: Proficiency exercise to convert an NFA to DFA.

Figure 4: Khan Academy exercise.

event description
Window-load loaded a book module
Window-focus Window focus
jsav-forward Slide show forward button

jsav-exercise-reset Exercise reset button
jsav-exercise-grade Request exercise grade
jsav-matrix-click Click in cell for grammar production
jsav-node-click Select a graph node

submit-deleteButton Deleted a graph node
submit-edgeButton Button click: enter add-an-edge state

window-unload Closed the module

Table 1: Some events types from the data set.

The data set can be found at https://pslcdatashop.web.

cmu.edu/DatasetInfo?datasetId=3427.

6. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation
under grants DUE-1139861, DUE-1431667 and IIS-1258471.
The Egyptian Ministry of Higher Education funded Mostafa
Mohammed during his PhD. We are grateful to the many,
many students who have worked on OpenDSA, OpenFLAP,
and the FLA eTextbook over the years.

7. REFERENCES
[1] E. Fouh, V. Karavirta, D. A. Breakiron, S. Hamouda,

S. Hall, T. L. Naps, and C. A. Shaffer. Design and
Architecture of an Interactive ETextbook–The
OpenDSA System. Science of Computer Programming,
88:22–40, 2014.

[2] JFLAP website. http://jflap.org, 2020.

[3] V. Karavirta and C. A. Shaffer. JSAV: the JavaScript
Algorithm Visualization Library. In Proceedings of the
18th ACM Conference on Innovation and Technology in
Computer Science Education, pages 159–164. ACM,
2013.

[4] M. Mohammed, S. Rodger, and C. A. Shaffer. Using
programmed instruction to help students engage with
etextbook content. The First Workshop on Intelligent
Textbooks, 2019.

[5] M. Mohammed, C. A. Shaffer, and S. H. Rodger.
Teaching formal languages with visualizations and
auto-graded exercises. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education,
pages 569–575, 2021.

[6] M. K. O. Mohammed. Teaching formal languages
through visualizations, simulators, auto-graded
exercises, and programmed instruction. In Proceedings
of the 51st ACM Technical Symposium on Computer
Science Education, SIGCSE ’20, page 1429, New York,
NY, USA, 2020. Association for Computing Machinery.

[7] S. H. Rodger and E. Gramond. JFLAP: An aid to
studying theorems in automata theory. Integrating
Technology into Computer Science Education,
30(3):302, 1998.

[8] S. H. Rodger, E. Wiebe, K. M. Lee, C. Morgan,
K. Omar, and J. Su. Increasing Engagement in
Automata Theory with JFLAP. In ACM SIGCSE
Bulletin, volume 41, pages 403–407. ACM, 2009.


