CEUR-WS.org/Vol-3051/CSEDM_8.pdf

JupyterLab Extensions for Blocks Programming,
Self-Explanations, and HTML Injection

Andrew M. Olney
University of Memphis
365 Innovation Drive, Suite 303
Memphis, Tennessee 38152

aolney@memphis.edu

ABSTRACT

JupyterLab is a widely used platform for programming and
data science using computational notebooks, but it has not
been widely used in the educational data mining commu-
nity as a source of student data. We have developed three
JupyterLab extensions to enable educational data mining
research in CSEd and data science. Our Blockly exten-
sion supports blocks-based programming in JupyterLab and
logs both event-level blocks actions as well as kernel ac-
tions and errors. Our self-explanation extension appends
self-explanation prompts to codes cells and logs the input
text for further analysis. Finally, our HTML injection ex-
tension allows injection of arbitrary HTML and Javascript
into JupyterLab notebooks to enable pedagogies and data
collection currently unsupported by JupyterLab. All exten-
sions are open-source and distributed through NPM.

Keywords
JupyterLab, blocks programming, self-explanations, process
data, HTML injection

1. INTRODUCTION

Computational notebooks have been adopted by professional
data scientists [8], scientists generally [18], and are becom-
ing increasingly popular in computer science education [7,
12, 20]. The popularity of computational notebooks stems
from their ability to combine text, mathematical equations,
code, and graphs. By combining these elements, computa-
tional notebooks allow data scientists to create shareable, re-
producible reports: anyone receiving a computational note-
book can recreate the original analysis or modify it to ask
new questions. Like any report, a computational notebook
contains text explaining each step and describing results.
O’Hara et al. summarize it well: “A computational note-
book is a document that can be read like a journal paper
and run like a computer program.”[12, p. 263]

JupyterLab is the current iteration of the open-source Project
Jupyter and is widely used, with over a million computa-
tional notebooks on GitHub [17]. The name Jupyter is a
portmanteau of the programming languages Julia, Python,
and R, which were the original target languages of Jupyter,
but now dozens of languages are supported and can operate
simultaneously within a single notebook [14]. The success of

Copyright ©2021 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0)

Scott D. Fleming
University of Memphis
Dunn Hall 375
Memphis, Tennessee 38152

Scott.Fleming@memphis.edu

Project Jupyter has seen it integrated in a variety of plat-
forms, including Google’s Colaboratory, Kaggle’s Kernels,
and Microsoft Azure Notebooks, and as a result, Project
Jupyter is likely the most widely used computational note-
book today.

JupyterLab’s notebook frontend is web-based and presents
the user with a top-level menu followed by an expanding list
of cells. Each cell can be text, code, or multimedia output.
For example, if the last line of a code cell produced a ma-
trix, then the following output cell would be formatted as a
table, and if the last line generated a graph, then the out-
put cell would be the graph rendered as an image. Each cell
is runnable and re-runnable, and implicitly references the
context of previously executed cells. This ability to chunk
pieces of code is an advance over traditional interactive pro-
gramming where statements are entered line by line at the
command prompt, because it allows larger chunks to be cre-
ated and run at once.

JupyterLab has what is commonly described as a plugin
architecture, which makes it possible to modify the behav-
ior of JupyterLab without changing its source code. In
JupyterLab terminology, these plugins are called Jupyter-
Lab extensions. An extension is a software library, written
in JavaScript, that extends the functionality of JupyterLab.

Despite its wide professional use and use in classrooms, Jupy-
terLab hasn’t been used as a source of student educational
data in research published in educational data mining (EDM)
conferences and journals. In this paper we present three
JupyterLab extensions to advance EDM research. Our Block-
ly extension supports blocks-based programming in Jupyter-
Lab and logs both event-level blocks actions as well as kernel
actions and errors. Our self-explanation extension appends
self-explanation prompts to codes cells and logs the input
text for further analysis. Finally, our HTML injection ex-
tension allows injection of arbitrary HTML and Javascript
into JupyterLab notebooks to enable pedagogies and data
collection currently unsupported by JupyterLab. All ex-
tensions are open-source and can be installed at the com-
mand line with the standard jupyter labextension in-
stall command. They may be used independently, simulta-
neously, or merely as models for future extensions support-
ing research in EDM.

2. BLOCKLY EXTENSION

In the last decade, blocks languages have seen wide adop-
tion for teaching introductory programming [2, 16] as they
have shown multiple positive effects on learning, including
both cognitive and motivational effects, in introductory un-
dergraduate courses [1, 5, 9, 10, 15]. Blocks languages com-
pose code elements via irregularly shaped graphical widgets,
similar to puzzle pieces or LEGO®. Their design typically
makes syntactic mistakes difficult or impossible because the
widgets cannot fit together in nonsyntactic ways. Further-
more, since blocks are visually browsable on an interface
palette, students need only recognize them rather than the
more difficult task of recalling code, cf. [19].

Blockly is an open-source JavaScript library for creating
blocks-based editors for programming languages within a
web browser [6]. Blockly supports five languages out of
the box, including JavaScript, Python, PHP, Lua, and Dart,
and compiles a given assemblage of blocks into any one of
these languages through code generators. A variety of other
blocks-based projects use Blockly, including AppInventor,
Microsoft’s MakeCode, and Code.org.

Blockly’s user interface minimally consists of a workspace
for arranging blocks and a toolbox, or palette, for introduc-
ing blocks to the workspace. Within the blocks workspace,
blocks can be dragged, copied, pasted, deleted, or snapped
together. The blocks themselves contain elements like free-
text entry fields and dropdowns, and dropdowns can be set
to dynamically populate, e.g. with a list of current vari-
ables, rather than solely being static. Variable and function
categories of the toolbox are also dynamic, such that as a
variable is created, blocks for getting, setting, and similar
operations are dynamically created. Likewise the function
category of the toolbox yields blocks for functions which,
once defined, are dynamically added to the toolbox so they
can be called. To make the creation of new blocks and blocks
languages easier, Blockly also provides a web-based graph-
ical authoring tool for blocks that allows authors to create,
modify, and save blocks configurations, including code gen-
eration.

We have integrated Blockly with JupyterLab by building a
JupyterLab extension. When the user selects the extension,
it by default opens side-by-side with the active notebook
as shown in Figure 1. When a user arranges blocks in the
Blockly workspace and then presses the Blocks to Code
button, the corresponding Python code is generated in the
active cell in the notebook, along with a serialized XML
string in a code comment. The XML string allows the user
to reconstruct the blocks workspace used to generate the
code by clicking the Code to Blocks button.

Because the workspace can rapidly fill up with blocks, we
have introduced a feature called notebook sync. When note-
book sync is activated, clicking on a cell with an XML com-
ment clears the current workspace and replaces it with the
workspace that generated the code in that cell. This sync
action is equivalent to the user manually deleting all the
blocks in the workspace, selecting the target cell, and press-
ing the Code to Blocks button. This feature allows users
to focus on the blocks being used in their current workflow
without having to be distracted by blocks they have already

Table 1: Blockly Extension Logged Data

Source Name Payload
JupyterLab | execute-code code executed
JupyterLab | execute-code-error | message / stack trace
JupyterLab | active-cell-change | contents of active cell
JupyterLab | xml-to-blocks xml string
JupyterLab | block-to-code code / xml string
JupyterLab | notebook-changed | new notebook name
Blockly block-create event object
Blockly block-delete event object
Blockly block-change event object
Blockly block-move event object
Blockly var-create event object
Blockly var-delete event object
Blockly var-rename event object
Blockly ui-selected event object
Blockly ui-category event object
Blockly ui-click event object
Blockly ui-commentOpen | event object
Blockly ui-mutatorOpen event object
Blockly ui-warningOpen event object
Blockly ui-theme event object

used. Notebook sync brings the experience of working in
Blockly closer to the experience of working in JupyterLab,
where each cell can be manipulated independently of other
cells.

We have also introduced a feature called intelliblocks [13].
Intelliblocks are blocks that are dynamically configured by
querying the kernel for string completions and variable in-
formation (i.e. intellisense queries). Intelliblocks first query
the variable named by the block for type information, e.g.
pd in Figure 1, and then query all the children of that vari-
able for both completions, e.g. pd., and type information.
Intelliblocks appear to solve the block authoring problem of
Blockly and allow it to be scaled up to arbitrary libraries.
Without a solution like intelliblocks, a human author would
be required to make thousands of blocks for a library of
sufficient size, and a the user would then need to navigate
through all these blocks to find the ones needed. Through
our extension, intelliblocks allow research on blocks-based
programming without any additional authoring effort.

The extension logs both Jupyter and Blockly process data.
The logging is controlled by three query string parameters
that may be appended to JupyterHub links distributed to
participants: log=xxx, which enables logging to the spec-
ified url endpoint via POST requests; id=xxx, which logs
with the specified participant identifier; b1=1, which sets the
Blockly extension to auto-open in split-pane view. Each da-
tum is logged in JSON format with a payload that is either
a string or a JSON object. In the case of JupyterLab data,
the format is fairly simple, as shown in Table 1. However,
in the case of Blockly, the data is rather dense and complex.
For example, a move event includes the block id, the previ-
ous x/y position, and the current x/y position, in addition
to ids for the larger group of attached blocks and current
blocks workspace. Because of this complexity, the Blockly
events are logged exactly as they appear in execution, again
in JSON format.

3. SELF-EXPLANATION EXTENSION

The self-explanation effect is a well-known and studied ef-
fect where asking a student to produce self-explanations en-
hances learning [3, 4, 11]. Self-explanation prompts elicit
unstructured input from students about their thinking, and
so represent a rich source of data for understanding their
thought processes. Unlike the Blockly extension described
in Section 2, there is no need for a side pane with self-
explanations; rather it is more parsimonious to prompt for
self-explanations within the notebook itself.

We have create a self-explanation extension that automat-
ically adds self-explanation prompts to each code cell as
shown in Figure 2. Below each prompt is a text entry box for
the student’s explanation and a button to save their expla-
nation. While the student types, the font of the text is red,
until they press the save button, at which point it is logged
and the text changes to black. Similar to the Blockly exten-
sion, the self-explanation extension can be configured using
query string parameters for id, log, and se=1 (to enable
the extension). The data is POSTed to the endpoint speci-
fied by log and consists of the contents of the code cell and
the self-explanation. Pairing the code and self-explanation
ensures that they are properly analyzed together as a snap-
shot in time, as the student is always free to rewrite the
code, self-explanation, or both.

4. HTML INJECTION EXTENSION

The last extension we present, the HTML injection exten-
sion, is quite different from the others in that it does not in-
trinsically collect data. Rather, this extension is a template
for creating extensions that can be used for various pur-
poses, including collecting data. We developed this exten-
sion in response to a particular problem, displaying hosted
videos embedded in JupyterLab. Typically this is done by
executing Python and using associated widgets, but for ex-
perimental purposes we wanted to present embedded videos
without associated code. Surprisingly this is not possible un-
der the JupyterLab security model, which forbids JavaScript
running in Markdown cells.

To circumvent this limitation, we use the metadata asso-
ciated with the Markdown cell to specify arbitrary HTML
and JavaScript, which we then inject into the Markdown
cell outside the standard JupyterLab rendering of the note-
book. The extension allows for easy embedding of video
in the JupyterLab notebook, as shown in Figure 3. Any
other rich media disallowed by JupyterLab’s security model
can be embedded in the same way, as can JavaScript that
executes data collection functions. However, we note two
caveats with this approach. First, the elements specified in
the metadata will not render on servers that do not have this
extension installed, making the notebooks that depend on it
non-portable to some extent. Second, the extension allows
for non-obvious code to be run when a notebook loads, so it
is not recommended for use outside the research context.

S. CONCLUSION

We have presented three JupyterLab extensions to enable
educational data mining research in CSEd and data science.
Two of these, the Blockly extension and the self-explanation
extension, support direct logging of data to a standard end-
point for POST requests. The Blockly extension provides

clickstream-level data for blocks manipulation that can be
used for future research on learning programming. The self-
explanation extension provides rich natural language data
reflecting student reasoning during problem solving. The
third extension, the HTML injection extension, can be used
flexibly for presentation of rich media or for data collec-
tion. All extensions are open-source and distributed through
NPM at https://www.npmjs.com/~aolney. We hope these
extensions will enable future work using JupyterLab as a
source of student data for educational data mining.

6. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grants 1918751 and 1934745 by

the Institute of Education Sciences under Grant R305A190448.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation or the Institute of Education Sciences.

7. REFERENCES

[1] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari.
From Scratch to “real” programming. ACM
Transactions on Computing Education,
14(4):25:1-25:15, Feb. 2015.

[2] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and
F. Turbak. Learnable programming: Blocks and
beyond. Communications of the ACM, 60(6):72-80,
May 2017.

[3] M. T. H. Chi, M. Bassok, M. W. Lewis, P. Reimann,
and R. Glaser. Self-explanations: How students study
and use examples in learning to solve problems.
Cognitive Science, 13:145-182, 1989.

[4] M. T. H. Chi, N. de Leeuw, M. H. Chiu, and
C. LaVancher. Eliciting self-explanations improves
understanding. Cognitive Science, 18(3):439-477, 1994.

[5] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and
S. Cooper. Mediated transfer: Alice 3 to Java. In
Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE 12, pages
141-146, New York, NY, USA, 2012. ACM.

[6] Google. Blockly, 2019. original-date:
2013-10-25T21:13:337Z.

[7] J. B. Hamrick. Creating and grading IPython/Jupyter
notebook assignments with NbGrader. In Proceedings
of the 47Tth ACM Technical Symposium on Computer
Science Education, SIGCSE ’16, pages 242242, New
York, NY, USA, 2016. ACM.

[8] Kaggle. The state of ML and data science 2017, 2017.

[9] C. M. Lewis. How programming environment shapes
perception, learning and goals: Logo vs. Scratch. In
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE ’10, pages
346-350, New York, NY, USA, 2010. ACM.

[10] B. Moskal, D. Lurie, and S. Cooper. Evaluating the
effectiveness of a new instructional approach. ACM
SIGCSE Bulletin, 36(1):75-79, Mar. 2004.

[11] T. J. Nokes, R. G. M. Hausmann, K. VanLehn, and
S. Gershman. Testing the instructional fit hypothesis:
the case of self-explanation prompts. Instructional
Science, 39(5):645-666, Sept. 2011.

[12]

[14]

[15]

[16]

K. J. O’Hara, D. Blank, and J. Marshall.
Computational notebooks for Al education. In

I. Russell and W. Eberle, editors, Proceedings of the
Twenty-Eighth International Florida Artificial
Intelligence Research Society Conference, pages
263-268. AAAI Press, 2015.

A. M. Olney, S. D. Fleming, and J. C. Johnson.
Learning data science with Blockly in JupyterLab. In
Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education, SIGCSE ’21, page
1373, New York, NY, USA, 2021. Association for
Computing Machinery.

B. Peng, G. Wang, J. Ma, M. C. Leong, C. Wakefield,
J. Melott, Y. Chiu, D. Du, and J. N. Weinstein. SoS
notebook: an interactive multi-language data analysis
environment. Bioinformatics, 34(21):3768-3770, 2018.
T. W. Price and T. Barnes. Comparing textual and
block interfaces in a novice programming environment.
In Proceedings of the Eleventh Annual International
Conference on International Computing Education
Research, ICER, 15, pages 91-99, New York, NY,
USA, 2015. ACM.

M. Resnick, J. Maloney, A. Monroy-Herndndez,

N. Rusk, E. Eastmond, K. Brennan, A. Millner,

E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for all. Communications of the
ACM, 52(11):60-67, Nov. 2009.

A. Rule. We analyzed 1 million Jupyter notebooks —
now you can too.

H. Shen. Interactive notebooks: Sharing the code.
Nature News, 515(7525):151, Nov. 2014.

E. Tulving. How many memory systems are there?
American Psychologist, 40(4):385-398, 1985.

G. Wilson, F. Perez, and P. Norvig. Teaching
computing with the IPython Notebook (abstract
only). In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE
'14, pages 740-740, New York, NY, USA, 2014. ACM.

APPENDIX
A. FIGURES

Additional figures that support the main text are shown below.

' — JupyterLab

-

C @ localhost:8888/lab w @
File Edit View Run Kernel Tabs Seftings Help
- Blockly Palette x 7 MData.ipynb x
I IMPORT B+ XODO » = ¢ Code v xpython O #
o I IAREERLE import pandas as pd
| Locic set G o0, yith (D co EXETED using _ _ -) -
@ I LOOPS #<xml xmlns="https://developers.google.com/blockly/xml">
| MaTH pivot o .
| TEXT pivot_table l Ll
| usTts qt
I (Crololi read_clipboard
| CcoNVERSION rond cov
I VARIABLES read_excel
I FUNCTIONS read_feather
read_fwf
read_gbq
read_hdf
read_htrl -

Figure 1: The JupyterLab Blockly extension showing the Blockly workspace on the left and notebook on the right. The
workspace shows a dynamically-generated intelliblock for pandas with the possible function calls from the pd alias. Tooltips
for pd and the functions not shown due to space limitations. The notebook on the right shows the code generated from a
previous import block with the commented serialized XML used to regenerate that workspace when the cell is clicked again
using notebook sync.

baggingClassifier = ensemble.BaggingClassifier(n_estimators=100, max_sam

#<xml xmlns="https://developers.google.com/blockly/xml"><variables=<vari
3

Explain the code/output for this cell.

The classifier

Save

Figure 2: The JupyterLab self-explanation extension showing the text entry box it appends to the bottom of every code
cell. As the student types, the text changes red to indicate unsaved changes. When the student presses the “save” button, the
self-explanation is logged and the text changes to black.

4 Launcher X W we-bl-gLipynb X

g »~ ®= ¢ O =

**Follow the steps in the video
below** B + X O M » ®m G Markdown~ @ git
Slide Type Follow the steps in the video below
4 Fis Edt Vew Run Kemel G Tabs Sefings Hey
iy Pusetse
1 imeoRT
Raw NBConvert Format I rReesme
~] ocic
| roors
I wamH
Advanced Tools - | TExT
| usTts
Cell Metadata I 2:&:90"
{ i w
"html": "<iframe [varuetes)
class='metadata-html'
src="https://drive.google.com/f1
le/d/18P7zNt-
9PYIswS SaevZ5oNaocadlep7l/previe
w' width='624" height='351">
</iframe>"
}
(B 1 cooe | Cooe o Biocks | Report Bug | 8 Syne

Figure 3: The JupyterLab HTML injection extension showing a video embedded directly in the notebook markdown via the
metadata for that cell, circumventing the JupyterLab security model. Note that such elements will not render if the notebook
is viewed on a server without this extension installed.

